
Reliability: Theory & Applications No.2, April 2006

- 57 -

ss tt
uu dd

yy

FFAAIILLUURREE PPRREEVVEENNTTIIOONN BBAASSEEDD OONN PPAARRAAMMEETTEERRSS
EESSTTIIMMAATTIIOONN AANNDD PPRREEDDIICCTTIIOONN

Oleg Abramov
Vladivostok, Russia

This work was funded by the Russian Foundation for  Basic Research Grant 05-08-01398.

Abstract: A problem of the state prediction and condition-based maintenance of
complex engineering systems is considered. An approach to solving this problem
is based on the construction of the special minimax and robust algorithms, which
can be used in the case when inspection data are incomplete and insufficient. The
method for individual robust prediction based on the extremal properties of Karlin
polynomials and the ideas of minimax estimation is proposed.

1.INTRODUCTION

For complex engineering systems under heavy-duty service the failure of which leads to heavy losses
or disastrous consequences the main problem of system monitoring and diagnostics becomes not the
identification and isolation of failure, but prevention of them. The solution of this task can be based on
individual maintenance.  Predicting and estimating the state of an engineering system forms an
information base for individual (condition-based) maintenance.
The difficulty in solving the problem of individual status prediction is largely caused by the lack or
shortage of statistic information on field variation of system parameters. In this case the application of
classical methods of mathematical statistics to the solution of status estimation and prediction problem
may cause serious errors.

The paper states and solves a problem of adopting optimal estimation and prediction strategies when
the stochastic properties of measurement errors and errors of status model are unavailable. We use a
technique of individual robust prediction which is based on the extremely properties of Karlin
polynomials (Karlin and Studden, 1966) and the ideas of minimax estimation. This technique makes a
prediction even if the number of test measurements is small.   It does not need any stochastic properties
of measurement errors and other noises (it is only necessary to know their limits), obtains not only a
simple average, but also secures bounds in which an actual value of measurement parameter would lie
in future. This technique has adaptive properties improving the prediction accuracy in an instable
situation.
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2. PREDICTION TECHNIQUE

Let the availability of an engineering system be determined by the value of a certain performance
parameter x(t),  with the availability condition  given  in the form

A(t) ≤  x( t) ≥ B(t)

where A(t) and B(t) are lower and upper bounds on  the  variable parameter, respectively. A parameter
variation is considered  to be a realization of the random function of the following form
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where  xk  is a random  variable, { }u tk k
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  are deterministic functions of time.

The engineering system serves at  the time  interval  [0,  T] during which the parameter may be
inspected or adjusted.  Measurement errors (as well as errors of process identification, mistakes caused
by fluctuation, etc.) are regarded  as  noise Ψ(t)  added to a particular realization of the stochastic
process (1). We only know about the noise that

Ψ(t) ≤ δ , t ∈[0,T], (2)

where δ   is the extreme error.

The problem consists in specifying such instants of inspection that the parameter x, for  certain,  lies  in
the  allowed bounds A(t) and B(t) for a time period T. Suppose that we  would obtain a section of
process realization θ(t)  on  the  interval  [t0 ,tµ ].   Then

θ(t) - δ ≤ x(t) ≤ θ(t) + δ , t ∈ [t0 ,tµ ].

The actual realization x(t)  on interval [t0,tµ]  is enclosed in  a  "tube",  bounded  by  the functions
f(t)=θ(t)-δ    and g(t)=θ(t)+δ (Fig.1).  In the tube there are  many  realizations  in  the form ∑ xk uk

(t)  which are referred to as tolerable. In  predicting  the behavior of the process for t>tµ  we take the
"worst"  realizations,  i.e. the realizations that at  t ∈ (tµ ,T]   go  above  or below the rest. We have
proved that on imposing certain restrictions on the set of  functions { }m

kk tu 0)( = ,  Karlin  polynomials L-

(t) and L+(t) are the worst  realizations (Abramov  and  Rozenbaum,1990).

 The following theorems establish for continuous function (realization of the random process) the
existence of two special polynomials processing  certain  extremal properties.

Theorem 1. Let { }m
k tu 0)(  be a Tchebycheff system (T-system) and f and g  two continuous functions

on  [a,  b]  such that there exists a polynomial )(tν  being between f and g i.  e., ),()()( tgttf <<ν
],[ bat ∈ .

a)  There exists a unique polynomial )(tL−  satisfying the properties:
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b)  Let condition (ii) be replaced by )( ′ii  from (*) by interchanging the functions f  and g. Then there
exists a unique polynomial )(tL+  satisfying (i) and )( ′ii .

Theorem 2.  Let { }m
kk tu 0)( =  be a T-system on ],[ NM  and in accordance with Theorem 1 for continuos

functions f(t), g(t) we constructed two polynomials )(),( tLtL −+  on [a, b], where M<a<b<N. Then for
an arbitrary polynomial u(t) satisfies conditions

),()()( tgtutf ≤≤

we   have

)},(),(max{)()}(),(min{ tLtLtutLtL +−+− << ].,(),[ NbaMt ∪∈∀

The curves of L-(t) and L+(t)  define so called "prediction cone" (Fig. 1)  in the sense that the actual
realization  of  the process under study is for certain within the cone at t∈( tµ, , T].

Fig.1. Tube of admissible realizations and prediction cone
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We have synthesized algorithms for finding extreme realizations and investigated their properties.
Usually, we have the discrete measurement results of system state parameters. In the case of discrete
inspection  measurements form a sequence j} j=0 , at t0  t1  tj  t .    Measurement errors satisfy
conditions .

Then the actual realization x(t)  at t=tj   is enclosed in the   “windows”      [ j , j + ],.  j=1,  , ..
The set  of realizations which belong at t0, t1,    ,t to all windows is the set of admissible (tolerable)
realizations.

It is not difficult to shown that in the case of discrete inspections  the solution for L-(t)  and L+(t)  is
reduced to the solution of the two problems of  linear  programming
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≤ θj + δ, j=0,1,...,m ,

where t* - arbitrary selected time from ( tµ, , T].

3. MAIN PROPERTIES AND APPLICATION

The approach under discussion meets general requirements to any prediction  procedure. Estimates
found are  unique,  optimal and unbiased. In addition to  measurement errors,  the  approach allows one
to take into account some other  mistakes  caused  by the difference of real processes of parameter
variation  from  a mathematical model adopted. Models of the form (1)  sufficiently well describe
processes  of  “irreversible”  parameter  variation during  system aging or wear. Reversible changes
caused by fluctuation in supply voltage, loads, ambient temperature, etc.  are usually regarded as
certain high-frequency noise imposed on  the basic trend of parameter variation. The stochastic
properties of the noise are usually unknown. A more real  situation  is  that we know  restrictions on the
values of reversible  fluctuations. This corresponds to the application of  additional  restrictions in the
form (2) and, consequently, the  reversible  fluctuations do not influence, in principle, to the  procedure
of  building  a prediction cone. But if the basic model contains an error,  then a special-purpose
adaptation  algorithm  is proposed to improve  prediction accuracy. The algorithm is based on the ideas
used in the technique of moving average  or  exponential  smoothing  and consists in weighing
measurement data.

By using prediction  data we can, in optimal way, solve the problem of specifying the time of next
inspection or preventive maintenance.

Crossing the bounds A(t) and B(t) of tolerance range by the extreme realizations L-(t)  and L+(t)
determines two  values  the minimum of which should advantageously be taken as the  time  of the next
µ+1-th  inspection
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tµ+1   = min (τ1, τ2 )
where τ1  and τ2  are  solutions  o f the  equations L-(t)=B(t)    and L+(t)=A(t), respectively.
Evidently,  the  inspected  parameter will, for certain, lie in  the  tolerance  range  for  the  time interval
tc  = tµ+1 - tµ .   The µ+1-th  measurement is used to find the next time interval during which the
parameter does not leave the tolerance range. If the time interval (we call it  the  interval of dependable
service) appears to be less than a certain minimum  interval tc

min :

( tµ+2 - tµ+1 )  < tc
min

then  we  must carry out preventive adjustment  of  the  parameter x(t).

We can easily extend the proposed approach  on  the  case where the working state of an engineering
system is described by several parameters.

If a set to which possible  measurement  errors  belong  is determined with a certain probability (say,
the  inequality  (2) is fulfilled with probability Pr), then the approach  allows  one to find margins in
which a parameter will lie the in future with probability no less than Pr.

The approach has been implemented as a program module PROGNOSIS which runs on  PC under the
MS Widows  operating system.  Windows application PROGNOSIS is intended to predict the state of
observable complex engineering systems and to schedule their condition-based maintenance. The
software is most advantageous to be used within computer  aided  control (measuring) systems of
heavy-duty objects, e.g. ship and aircraft engines, power stations. Besides that PROGNOSIS system
may also be applied for operational-life accelerated tests of high-reliable equipment.

The techniques applied are oriented onto conditions of initial data shortage and require neither knowing
stochastic properties of measurement errors  and disturbances nor large amount of the observation
results.

An efficiency of the software implementation is proved by failure prevention along with reducing
repair and maintenance expenses.

4.CONCLUSION

Condition-based maintenance of engineering systems considerably improves their functionality.
Preventing both failure and unnecessary  maintaining operations, such a strategy is the most favorable
one heavy –duty systems. Scheduling the condition-based maintenance is based on systems state
estimation and prediction.

The method for individual secure(robust) prediction based on the extremal properties of Karlin
polynomials and the ideas of minimax estimation is proposed.

This technique makes a prediction even if the number of test measurements is small.   It does not need
any stochastic properties of measurement errors and other noises (it is only necessary to know their
limits), obtains not only a simple average, but also secures bounds in which an actual value of
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measurement parameter would lie in future. This technique has adaptive properties improving the
prediction accuracy in an unstable situation.
It is advantageous to apply the technique to the design of servicing schedules for high-duty complex
engineering systems which failure may cause heavy manufacturing losses or grave consequences.
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