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Abstract

We consider two-level factorial designs with the response being the observed item’s lifetime.  For each
factor combination, we put on test n items and stop testing when exactly r items have failed.  Our
principal assumptions are that there exists a monotone transformation of the  random  response  which
belongs  to  a  location-scale  family,  and that  only  the  location  parameter  linearly  depends  on  the
factors  involved. We develop a simple time-saving testing scheme which permits an efficient
computational procedure for estimating the factor effects.
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1.  Introduction

The idea of this paper is simple:  we want to adjust the standard factorial experiment,  in  which  the
response  is  the  observed  lifetime,  to  the  case  of type-II censored observations.

Many industrial experiments are aimed‘ at finding the factor combination that provides the longest
lifetime.  Since experiments of this sort take usually a long time and are very expensive, it is desirable
to use lifetime acceleration methods  (e.g.,  by applying  higher stresses  than in  normal operating
conditions , see e.g. Nelson (1990)), and/or to stop the experiment after prescribed time or after
prescribed number of failures has been observed.  This paper is devoted  to  the  statistical
methodology  of  lifetime  testing  with  type-II  censored lifetime observations.

Papers of Hamada (1995), Hamada and Wu (1991) and Bullington et al (1993) present methods and
examples of processing incomplete lifetime data in the framework of factorial life testing experiments.
Their methodology is based on introducing a parametric model for the logarithms of the observed
lifetimes and on using the maximum likelihood method (MLM) for parameter estimation.   The  MLM
is  computationally  involved,  especially  when  a large  number  of  parameters  is  present  in  the
model,  e.g.  in a  screening  experiment for studying the influence of many factors on lifetime.  Even if
the MLM  software  produces  a  numerical  solution  to  the  maximum  likelihood equations, it might
be not the desired solution, see the discussion in Hamada and  Tse  (1992).   There are also difficulties
in establishing the significance of the maximum likelihood estimates because this issue involves
asymptotics which might be not accurate.  Hamada (1995) demonstrates that the MLM may provide a
disappointing result, e.g.  all factors involved seem to be significant, see Table 8 in the above paper.
Probably, in the experiments with type-I  censored  data,  the  MLM  remains  the  only  way  to
extract  information from data.

If, however, for all factor combinations the lifetime data are type-II censored, i.e. are  censored  after
observing r  2  failures,  then  under reasonable assumptions, for two-level factorial experiments,
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there exists an extremely simple and computationally efficient method of estimating the factor effects.

In  Section  2  we  describe  our  method  and  the  basic  assumptions.  If  for each  factor  combination
we  observe r failures  then  our  method  uses  as  a response an ”optimal” convex combination of the
appropriately transformed first r order statistics.

In Section 3 we apply our method to the Thermostat Test data described in  Burlington  et  al  (1993).
In  this  experiment, n similar  thermostats  were tested under identical conditions until the appearance
of r failures.

We discuss the properties of our method in terms of estimation accuracy and testing duration.

2. Basic Assumptions. Description of the testing procedure. Parameter estimation.

Suppose that the experiment consists of N runs.  Each run j, j = 1, 2, ..., N, corresponds  to  a  fixed
combination  of  the  factors  involved.   We denote by capital letters A, B, C, ..., K these factors.

We make the following assumptions.

(i)  In the j-th run,  a random sample of n items is tested until r, r  2 failures are observed.  All
items in the sample are statistically identical and are tested under the same conditions.  Denote
by )( j

iτ , i = 1, 2, ...r, the item lifetimes observed in the j-th run.

(ii)  There exists a monotone transformation ψ (·) of )( jτ  into )( jY , )( )()( jjY τψ= , such that )( jY
belongs to a location-scale family, in which only the location parameter depends on the factors
involved:

( ) .,...,,,)()( ZKCBAY jj βα +=
(1)

  Here Z is a ”standard” parameter-free random variable.

(iii)  The location term in (1) linearly depends on the factors involved:

)()()( ... j
K

j
A

j WKWA ⋅++⋅+= θα (2)

For simplicity, the letters A, B, ..., K in (2) denote the numerical contribution of  the
corresponding  factors; is  a  constant,  the  same  for  all  runs  and  all factor combinations.

(iv)  The experiment has as a two-level factorial orthogonal design, i.e. the coefficients )( j
AW , ...,

)( j
KW  equal tp ±1, and the column- vectors WA = [ )1(

AW , ..., )( N
AW ], ...,WK = [ )1(

KW , ..., )( N
KW ]

are pair wise orthogonal.

Remark 1.  If the lifetime for each run has a lognormal distribution with only location parameter
depending on the factors involved, then (x) = log x, and Z will have a standard Normal distribution.
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Another assumption widely used in practice is that )( jτ  has a Weibull distribution, with only the scale
parameter depending on the experimental factors. Then the logarithmic transformation also produces
the desired form (1) with Z being distributed according to the standard extreme-value distribution
Extr(0, 1) : P(Z > t) = exp( et). (For the proofs see e.g. Gertsbakh (1989), Ch. 2)

Since (1) is a location-scale family, it follows from our assumptions that for each j we observe the first
r order statistics of the corresponding sample, and this is the same as observing, for each j,

.,...,2,1,:
)()(

: riZY ni
jj

ni =+= βα (3)

Here Zi:n is the i-th order statistic from a sample of n random variables Zs, s = 1, ..., n.

Remark 2.  Add and subtract from the right-hand side of (3) the term [ ] nini mZE :: ββ = .  Then we can
assume that (3) takes the form

.,...,2,1,:
)(

0
)(

: riY ni
jj

ni =+= βεα (4)

where ni:ε  is a zero-mean error term, and )(
0

jα  differs from )( jα  by a constant absorbed into the θ -term
(see (2)). Note that this constant is the same for all runs j = 1, ..., N.

In order to use all information observed in the j-th run, we suggest to consider as the response a convex
combination of the first r order statistics:

∑
=

=
r

i

j
nii

j Y
1

)(
:

)( α , (5)

where ∑ =
=

r

i i1
1α , 0≥iα .

Now the response of the j-th run takes the form:

jjj ZaX β+= )()( , (6)

where Zj is a zero-mean error term, and a(j) differs from the expression in (2) by a constant

∑ =

r

i niim1 :αβ .

It is desirable to choose the coefficients iα  to provide the minimal variance of the response, as the
following claim states.

Claim 1.

(i)  Minimal variance of ∑ =

r

i niiZ1 :α  subject to 0,1
1

≥=∑ = i
r

i i αα  is attained at
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[ ]**
1 ,..., rαα =V-1 ⋅⋅1 , (7)

where V is the covariance matrix of [Z1:n, ...,Zr:n], C = (1T ·V 1 · 1) 1, and 1 is a column matrix
with all elements being equal 1.

(ii)  The minimum of the variance equals to C.

The proof is based on the Extended Cauchy-Schwarz inequality, see Johnson and Wichern (1982),
p.66. (Use (2.49) there and put d = 1.) #

Estimation of parameters A, B, ..., K.

From now on, let us assume that the iα  values are always equal to the optimal *
iα . Our model (6) now

takes the following form:

)()()()(

)1()1()1()1(

...
.....................................................

...

NN
K

N
A

N

KA

ZWKWAX

ZWKWAX

βθ

βθ

+⋅++⋅+=

+⋅++⋅+=

Now multiply the j-th row by njW j
A ,...,1,)( =  and sum up all rows.

Due to the orthogonality of WA, ..., WK, we obtain

βε+⋅=∑
=

ANXW
N

j

jj
A

1

)()( , (8)

where ε  is a zero-mean error-term. Now the unbiased estimator of A equals

µ ( ) ( )

1
/

N
j j

A
j

A W X N
=

= ∑ (9)

Similarly we obtain estimators for B, C, ..., K. By (9) and (6) their variance equals

µ 1 2 ( ) 1 2jVar A N Var Z N Cβ β− −   = =   , (10)

where C is determined by (i) in Claim 1.

It is easy to prove that that all estimators of the factor coefficients are pair wise uncorrelated, e.g.
µ µ, 0Co A Kυ   =  . This follows from the properties of Z(j) and from the fact that vectors W(·) have equal

number of positive and negative terms.
Simplified estimator of .
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Let us return to the principal relationship (3), fix two integers s, s ≤ r, and m ≤  r, s < m, and write (3)
for i = m and i = s. Subtracting one from another, the )( jα  term cancels and we arrive at the formula

( )( ) ( )
: : : : , 1, 2,..., .j j

m n s n m n s nY Y Z Z j Nβ− = = (11)

It follows from (11) that

[ ] [ ] [ ] [ ]( )nsnm
j

ns
j
nm ZEZEYEYE ::

)(
:

)(
: −=− β (12)

Replace in (12) the expectations in the left-hand side by the corresponding averages and consider the
following simplified estimator for :

( )
: :

: :

m n s n

m n s n

y y
E Z E Z

β
−

=
   −   

 . (13)

Here ( )1
:: 1

N j
s ns n j

y N ψ τ−
=

= ∑ .  (The simplification is in replacing Zm:n  Zs:n by its expectation).

From (12) it follows that

µ [ ] [ ] [ ]
[ ] [ ]( )

: : : :
2

: :

2 ,
.m n s n m n s n

m n s n

Var Y Var Y Co Y Y
Var

N E Z E Z

υ
β

+ −  =  ⋅ −
(14)

By (3), Var[Yi:n] = β 2Var[Zi:n], and this results in

µ
[ ] [ ] [ ]

[ ] [ ]( )

2
: : : :

2
: :

2 ,
.m n s n m n s n

m n s n

Var Z Var Z Co Z Z
Var

N E Z E Z

β υ
β

 + −   =  ⋅ −
(15)

We state without proof that the smallest value of µVar β 
   is attained when m = r and s = 1.

3.  Example:  Thermostat Life Cycle Test.

Burlington et al (1993) describe a screening life testing experiment of thermostats aimed at finding the
best combination of design parameters (factors) which would provide the longest thermostat life.

Eleven  most  important  design  factors A, B, ..., K were  selected  by  an expert team, e.g. the current
density B, Beryllium Copper grain size E and heat treatment H .  For each factor, two levels were
chosen, the lower and the upper, denoted by 1 and +1, respectively - see Table 1.  For E, for example,
the grain sizes of 0.008” and 0.018” were chosen for the low and high level, respectively.
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Table 1
Thermostat test results, n = 10, r = 2

Factor
Run A B C D E F G H I J K 1:10 2:10

1
2
3
4
5
6
7
8
9
10
11
12

1
1
1
1
1
1

+1
+1
+1
+1
+1
+1

1
1
1

+1
+1
+1

1
1
1

+1
+1
+1

1
1

+1
1

+1
+1
+1
+1

1
+1

1
1

1
1

+1
+1

1
+1
+1

1
+1

1
+1

1

1
1

+1
+1
+1

1
1

+1
+1

1
1

+1

1
+1

1
1

+1
+1

1
+1
+1

1
+1

1

1
+1

1
+1

1
+1
+1
+1

1
1
1

+1

1
+1

1
+1
+1

1
+1
+1
+1
+1

1
1

1
+1
+1

1
1

+1
1
1

+1
+1

1
+1

1
+1
+1

1
+1

1
+1

1
1
1

+1
+1

1
+1
+1
+1

1
1
1

+1
1

+1
+1

1

957
206
63
76
92
490
232
206
142
259
381
56

2486
284
113
104
126
971
326
284
144
266
420
62

The experiment consisted of N = 12 runs with the factors being arranged according to the PLackett-
Burman resolution IV design, see Table 1.  For each factor  combination, n =  10  thermostats  were
subjected  to  heating  cycles under  identical  conditions  until  they  fail. The  duration  of  the  whole
test was 7,342 thermal kilocycles.  At the end of the test only two failures were observed in the first and
eleventh run (trials), four failures in the fourth trial, and ten failures in all other trials.  Table 1 presents
the test results for the two smallest observed lifetimes, for each factor combinations.

In our analysis we will ignore the presence of other observed lifetime data. In spite of a seeming loss of
information we demonstrate that our results are identical to those obtained by Burlington et al from
”complete” data.

In  the  notation  of  the  previous  section,  we  have r =  2,  the  observed lifetimes are 1:10, 2:10.  Our
function (x) = log(x) and this means that we assume that thermostat lifetime has either lognormal or
Weibull distribution. In  our  analysis,  the  observed  response  in j-th  run  will  be,  according  to
Section 2, 10:2210:11 loglog τατα ⋅+⋅=jx .

Our first choice is to assume that the thermostat lifetime has a lognormal distribution. Then Z in  (1)
is Normal(0, 1). Table 2 prescribes to  take 1α  = 0.199, 2α  = 0.801.  Using (9) and similar
formulas, we obtain now the estimates of the effects for all factors.  They are:

µA = 0.32. µB = 0.09, µC  = 0.12, µD  = 0.06, µE  = 0.92, µF   = 0.005, µG  = 0.25, µH  = 0.21, I$

= 0.27, µJ  = 0.27, µK  = 0.31

The normal plot of these estimates, see Fig. 1, clearly indicates that the only significant factor is E, and
its sign says that the grain size must be kept on its lower level 0.008”.  This coincides with Burlington’s
conclusion.

[For using normal plot to identify the significant factors see e.g.  Box and Draper (1987), Ch.4]



Reliability: Theory & Applications No.2, April 2006

- 29 -

ss tt
uu dd

yy

Table 2
Optimal weights *

iα  for the convex combinations of the first r order statistics
and their variances (n = 10)

Extreme-value distribution Normal distribution

r *
1α *

2α *
3α *

4α *
5α γ Var *

1α *
2α *

3α *
4α *

5α γ Var
2 0.148 0.852    0.94 0.61 0.199 0.801    0.96 0.20
3 0.045 0.205 0.750    0.93 0.37 0.161 0.154 0.685   0.92 0.16
4 0.023 0.080 0.0216 0.681  0.92 0.26 0.140 0.135 0.135 0.590  0.88 0.14
5 0.016 0.047 0.096  0.217 0.624 0.90 0.17 0.126 0.124 0.125 0.118 0.507 0.83 0.12

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

0.02

0.04
0.06
0.08
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

0.9
0.92
0.94
0.96

0.98

0.99

Normal Probability Paper

Figure1. Normal plot of factor effects

After  some  modification  of  the  model  by  including  into  it  interactions, Hamada (1995) found that
that two factors E and H and their interaction EH are significant and that both factors must be kept
on their lower level. Our normal plot does not confirm the significance of the H factor. We may,
however estimate the interaction effect of EH.  Assume that all effects except E equal zero.  Multiply
the response column [x1, ..., xN ] by the product of E and H columns.  We will find that ·E H⋅  = 0.42,
which may be considered as  an  evidence  that  the  interaction  is  significant.  Then  both  factors, E,
H should be kept on their upper level. This also coincides with the Hamada’s conclusion (1995).

Let us estimate and the standard error of its estimate.  For this purpose we  use  formulas  (13)  and
(15)  and  the  expected  values,  and  variances  and covariances  of  the  order  statistics Z1:N and Z2:N

given  in  Tables  3a,b.  For the normal case µβ  = 0.59 and
µ
β

σ = 0.15.

E
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Table 3a
The covariance matrix of order statistics for n = 10, r = 9, Z ~ )1,0(Extr .

i 1 2 3 4 5 6 7 8 9
1 1.645 0.436 0.275 0.193 0.144 0.111 0.086 0.067 0.051
2  0.646 0.290 0.204 0.152 0.117 0.091 0.071 0.054
3 0.397 0.217 0.162 0.124 0.097 0.076 0.058
4 0.287 0.174 0.137 0.104 0.081 0.062
5 0.227 0.145 0.113 0.088 0.067
6 0.190 0.125 0.098 0.074
7 0.166 0.111 0.085
8 0.152 0.100
9 0.149

Table 3 b
Mean values of the order statistics, n = 10

m(1) m(2) m(3) m(4) m(5)
2.800 1.826 1.267 0.868 0.544

m(6) m(7) m(8) m(9) m(10)
0.257 0.012 0.284  0.585  0.990

All the above analysis can be carried out also for the assumption that the lifetime has Weibull
distribution.  Then Z ~ Extr(0, 1).  Practically all results  will  be  very  similar  to  the  above  normal
case.  The  only  difference appears in the estimate of :  now µβ  = 0.33 and

µ
β

σ = 0.12.

Remark 1.

In a preliminary trial to process the data in Table 1, we took as a response only the logarithm of a single
order statistic 2:10.  The results were  essentially  the  same  as  for  the  case  of  using  optimally  two
first  order statistics.  An  explanation  might  be  the  fact  that  including 1:10  adds very little to the
accuracy of the estimates of factor effects.

The columns named γ in Table 1 show the value of the ratio γ = C/Var[Zr:n]. Surprisingly, for r
1,2,3,4,5 and n = 10, for Z ~ N (0, 1) and Z ~ Extr(0, 1) the -values are quite close to 1.  Therefore,  the
r-th  order  statistic  contains practically the same information as the whole set of  the first r order
statistics.

Remark 2.

How much we gain in the accuracy of the estimates of factor effects if we increase r?  The columns
Var display the variances of the optimal convex combinations of the first r order statistics.  For the
normal case, we may gain almost twice in the decrease of the variance by increasing r from 2  to  6.
Interestingly,  a  complete  sample  of n =  10  for  the  lognormal  case would give the variance equal
to 0.1, a reduction of variance by factor of 2, comparing to r = 2.
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Assume that Z ~ Extr(0, 1), r = 5.  Then the variance would decrease by a factor of three, and a
complete sample would result in variance reduction by a factor of 3.7, comparing to r=2.

Remark  3:  gain  in  test  duration.

In practice, the variance reduction achieved by the increase of the r value must be weighted against the
increase of the duration of the whole life testing experiment.

Let us discuss this issue in more detail.  Returning to (1) and using the logarithmic  transformation,  let
us  present  the k-th  smallest  observation  in the j-th run as

j
nk

jj
nk Z ::log βατ += , (16)

and, taking expectations,

[ ] j
nk

jj
nm mE ::log βατ += . (17)

Now put in (17) k = g and k = s and approximate the mean of the logarithm by the logarithm of the
mean.  Then we obtain

[ ] [ ] ( )nsng
j
ns

j
ng mmEE :::: loglog −≈− βττ (18)

or

[ ] [ ] ( )[ ]nsng
i
ns

i
ng mmEE :::: exp/ −≈ βττ (19)

Example.   Suppose that the logarithm of the observed lifetime is normally distributed,  the  sample
size n =  10  and  we  want  compare  the  increase  of test duration arising from the increase of k from
2 to 5.  From Table 4 b we see that [m5:10  m3:10 ] = 0.123 + 1.00 = 0.877.  For = 0.59,  we obtain
that  the  means  of  the  test  duration  increase  approximately  by  a  factor  of exp[0.59 * 0.877] =
1.68.  Suppose  now that  we  observe  all n = 10  failures, i.e. g =  10. Then the test duration
increases approximately by a factor exp[0.59(1.54 + 1.00)] 4.5.

Table 4 a
The covariance matrix of order statistics for n = 10, Z ~ N(0, 1)

i  1  2  3  4  5  6  7  8  9  10
1  0.344 0.171 0.116 0.088 0.071 0.058 0.049 0.041 0.034 0.027
2 0.214 0.147 0.112 0.090 0.074 0.062 0.052 0.043 0.034
3 0.175 0.134 0.108 0.089 0.075 0.063 0.052 0.041
4 0.158 0.128 0.106 0.089 0.075 0.062 0.049
5 0.151 0.126 0.106 0.089 0.074 0.058
6 0.151 0.128 0.108 0.090 0.071
7 0.158 0.138 0.112 0.088
8 0.175 0.147 0.116
9 0.214 0.171
10          0.344
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Table 4 b
Mean values of the order statistics (normal case)

m(1) m(2) m(3) m(4) m(5)
1.5388 1.0014 0.6561 0.3758 0.1227
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