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Summary & Conclusion - This paper presents the concept of observed risks. 
These risks are determined after the statistical inspection tests of quality or 
reliability, so they depend on the test results. They allow evaluating probability of 
erroneous decisions (risks) after the test, not before it as it is traditionally done.  
We give the main properties of the observed risks. Numerical examples illustrate 
the suggested concept and demonstrate its usefulness. 

 
 
 
 
 
 

1. INTRODUCTION 
 
In natural sciences an experiment is usually planned so that its conjectural error does not exceed some 
chosen value, but after termination of the experiment its actual error is estimated. However in 
statistical test problems another approach is generally used. The probability of risks is considered as 
the measure of risk before the test as well as after it. This is strange, but after the test completion  and 
decision making, the risks does not become more accurate. 
 
This paper intends to fill up this gap for the problems of quality and reliability inspection. Besides that 
the problem of inspection with the use of confidence limits and two levels of a checked index is 
solved. 
 
This approach was officially admitted in 1987 in the former USSR and the appropriate technique has 
been included in the National Standard [1]. Nevertheless it did not attract attention of theoreticians and 
it is not mentioned in the University courses and practical manuals. Therefore the authors would like 
to attract attention to this approach, which was described in their previous papers [2, 3] and handbook 
[4]. 
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2. NOTATION 
 
Q – quality or reliability index of some item. 
Q0 – acceptance level of Q. 
Q1 – rejection level of Q. 
H0 – null hypothesis: { }0 0H Q Q= ≥ for the positive index (the larger the value of Q, the higher quality 

or reliability); { }0 0H Q Q= ≤  for the negative index (the smaller the value of Q, the lower quality or 
reliability). 
H1 – alternative hypothesis: { }1 1H Q Q= ≤  for the positive index; { }1 1H Q Q= ≥  for the negative 
index. (We will consider further the positive index). 
x – test data. 
X0 –  acceptance region. 
X1 – rejection region. 
α  – (planned) producer's risk: { }1 0Pr ;x X Hα = ∈ .  

β  – (planned) consumer's risk: { }0 1Pr ;x X Hβ = ∈ . 

*( , )Q x γ  – lower confidence limit for Q under the test data x and confidence coefficient γ .  
*( , )Q x γ  – upper confidence limit for Q under the test data x and confidence coefficient γ . 
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=∑   –  Poisson distribution.  

 
 

3. OBSERVED RISKS IN THE CASE OF SINGLE-SAMPLE INSPECTION  
WITH THE USE OF ACCEPTING CONSTANT 

 
In this case we use some test statistic S(x), which is a function of the observations, and the accepting 
constant C. Let the test statistic S(x) be such that the larger its value, the stronger the evidence of 
higher quality or reliability of the tested item). The null hypothesis H0 is accepted and we make the 
decision that the item conforms to quality or reliability specifications when ( )S x C≥ . The H0 is 
rejected and we make the decision that the item does not conform to the specifications when ( )S x C< . 
 
Thus 
 

{ }0 : ( )X x S x C= ≥ , (1a) 

{ }1 : ( )X x S x C= < . (1b) 
 
Hence 
 

{ }0Pr ( ) ;S x C Hα = < , (2a) 

{ }1Pr ( ) ;S x C Hβ = ≥ . (2b) 
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The observed producer's risk *( )xα  for test data x* is defined as the probability that the result for the 
item with the value of index not less than Q0 will not be better than x*.  
 
The observed consumer's risk *( )xβ  for test data x* is defined as the probability that the result for the 
item with the value of index not greater than Q1 will not be worse than x*.  
 
Therefore  
 

{ }* *
0( ) Pr ( ) ( );x S x S x Hα = ≤ , (3a) 

{ }* *
1( ) Pr ( ) ( );x S x S x Hβ = ≥ . (3b) 

 
Thus in determining the observed risks we use the value of test statistic itself and not only the fact that 
it is greater or less than the acceptance constant C [compare (3a,b) with (2a,b)]. 
 
Theoretically the observed risk corresponds to the observed significance level in statistics [5]. 
 
Observed risks may be determined in the both cases: acceptance and rejection. If we wish make the 
consumer's and producer's planned risks equal (α β= ), the above-mentioned decision rule 
[corresponding with (1a,b)] may be formulated also without using the acceptability constant C by 
comparing the observed risks as follows: 
 
α β>  - acceptance, α β<  - rejection 
 
(see Example 1 and Theorems 3 and 4 below). In other words, we choose the decision, which 
corresponds to the smaller observed risks.  
 
 
 

Example 1 
 
Consider the acceptance sampling with inspection by attributes and let the accepting and rejection 
levels be q0 = 0.05 and q1 = 0.15, respectively. We assume Poisson distribution for the defective 
number d: 
 

{ }Pr ; exp ( )( ) !nd n q Nq Nq n= = − , 
 
where N is sample size, q is actual number of defects. 
 
If N = 40, acceptance number A = 3, rejection number R = A + 1 = 4, then α  = 0.143 and β  = 0.151. 
 
The observed producer's risk α  when the observed number of defects is d* defines as the probability 
to have not less defectives than d* under the fraction defective q0. 
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The observed consumer's risk β  is the probability to have not greater than d* defectives under the 
fraction defective q1. 
 
Therefore  *

01 Pr( 1, )d Nqα = − − , *
1Pr( , )d Nqβ = . 

 
Table 1 contains the observed risk for this example. 
 

TABLE 1  
Observed risks for Example 1 

 
d* 0 1 2 3 4 5 6 7 8 

α  1.000 0.865 0.594 0.323 0.143 0.053 0.017 0.005 0.001 

β  0.002 0.017 0.062 0.151 0.285 0.446 0.606 0.744 0.847 
 

The observed producer's risk α  equals the planned producer's risk α  when d* = R = 4 (R is the 
minimal number of defects in the rejected lot); when d* is increasing α  is rapidly decreasing. 
 
The observed consumer's risk β  equals the planned consumer's risk β  when d* = Ac = 3 (Ac is the 

maximum number of defects in the accepted lot); β  is rapidly decreasing with decreasing d*. 
 
 
 

4. MAIN PROPERTIES OF OBSERVED RISKS 
 
 
Theorem 1. If *

1x X∈ , then *( )xα α≤ ; if *
0x X∈ , then *( )xβ β≤ . 

Proof. (we provide proofs only for one of the risks, for another risk they are analogous): 
Let *

1x X∈ . From (1b) *( )S x C<  and { } { }*: ( ) ( ) : ( )x S x S x x S x C≤ ⊂ < ,  

so { } { }*Pr ( ) ( ) Pr ( )S x S x S x C≤ ≤ < . 

Thus from (3a) and (2a) *( )xα α≤ . 
 
Theorem 2. 

1

sup ( )
x X

xα α
∈

= , 
0

sup ( )
x X

xβ β
∈

= . 

Proof: Let 
1

sup ( )
x X

S xα
∈

= . If there exists *
1x X∈  so that *( )S x α= , than { }*

1 : ( ) ( )X x S x S x= ≤  and 

{ } { }* *
1 0 0Pr ; Pr ( ) ( ); ( )X H S x S x H xα α= = ≤ = . 

If there does not exist such x*, then there exists a sequence 1nx X∈  so that ( )nS x α↑ . Then sequence 

of sets { }' : ( ) ( )n nX x S x S x= ≤  is increasing and '
1nX X=∪ , so { } { }'

1Pr PrnX X→ . 

Therefore { } { }'
0 1 0( ) Pr ; Pr ;n nx X H X Hα α= → = . 
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Theorem 3. Let α β= . Then * *( ) ( )x xβ α<  for *
0x X∈ , * *( ) ( )x xα β≤  for *

1x X∈ . 
Proof:  
If *

0x X∈  then *( )S x C≥  and { } { }* * *
0 0( ) Pr ( ) ; Pr ( ) ( ); ( )x S x C H S x S x H xβ β α α≤ = = < ≤ ≤ = . 

 
Theorem 4. Let α β= . If * *( ) ( )x xβ α<  then *

0x X∈ ; if * *( ) ( )x xα β≤  then *
1x X∈ . 

Proof: The assumption that *
1x X∈  when * *( ) ( )x xβ α<  involves a contradiction, because in this case 

* * *( ) ( ) ( )x x xα β α≤ < . Thus *
0x X∈ . 

 
 
 

5. INSPECTION WITH THE USE OF CONFIDENCE LIMITS 
 
 
The decision rule in the case of inspection with the use of confidence limits is [2, 4, 6]: 
 

*
* 1 0( ,1 ) ,  ( ,1 )Q x Q Q x Qβ α− ≥ − >  – acceptance;       (4a) 

*
* 1 0( ,1 ) ,  ( ,1 )Q x Q Q x Qβ α− < − ≤  – rejection.       (4b) 

 
 
Under some natural constraints we can choose the extent of test to ensure the fulfillment of one of 
these two conditions for acceptance or rejection [2, 4, 6]. 
 
Usually, the confidence limits are built on the base of some statistic ( )xξ  [6] so that  
 

*
*( , ) ( ( ), ),  ( , ) ( ( ), )Q x A x Q x B xγ ξ γ γ ξ γ= = , 

 
where A(·) and B(·) are some functions. In this situation the decision rule (4a,b) is equivalent to the 
decision rule corresponding (1a,b) with ( ) ( )S x xξ=  and some acceptability constant C [6]. 
 
In the case of inspection with the use of confidence limits the observed risks *( )xα and *( )xβ  are 
determined from the equations 
 

* *
0( ,1 )Q x Qα− = , (5a) 

*
* 1( ,1 )Q x Qβ− = . (5b) 

 
Sometimes the extent of the test depends on external circumstances. For example, the duration of field 
test often equals a standard time period: a month, a quarter, a year. In these cases we can not plan the 
test to ensure required risks α  and β  beforehand, so the inspection by means of confidence limits is 
very suitable. 
 
After obtaining all possible data x we determine the confidence limits *

1( , )Q x γ  and * 2 ( , )Q x γ  to 
satisfy one of the following conditions: 
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*

1 0 * 2 1( , ) ,  ( , )Q x Q Q x Qγ γ> = ; (6a) 
*

* 2 1 1 0( , ) ,  ( , )Q x Q Q x Qγ γ< = . (6b) 
 
It can be attained by choosing appropriate values of 1γ  and 2γ  with some predetermined relationship 
between them (it may be recommended 1γ  = 2γ ). 
 
In the case of (6a) we make a decision about acceptance with the consumer's risk 21β γ= − . In the 

case of (6b) we make a decision about rejection with the producer's risk 11α γ= − . 
 
 

Example 2 
 
Consider the field test of an item. We check its MTBF and the acceptance and rejection levels of 
MTBF are T0 and T1 = 0.5T0 respectively. The test duration is limited and equals t = 4T0. Let the 
distribution of time between failures be exponential. In this case we can not guarantee the planned 
risks α  and β  less than 0.2. These risks satisfy neither producer nor consumer. However, the test was 
carried out and its data was fixed. 
 
The confidence limits for MTBF are [4] 
 

2 1

*
* 1 ( ),  ( 1)T t r T t rγ γ−= Δ = Δ − , 

 
 
where t = 4T0 is duration of the test, r is the number of failures during this time and ( )nγΔ  is the 
percentile of the Poisson distribution, i.e. the root of the equation Pr( , ( ))n nγ γΔ = .  
 
Choosing 1γ  and 2γ  to satisfy (6a) or (6b), we obtain the results presented in Table 2. 
 
The maximum values of observed risks α  and β  equal 0.2, but they correspond only with r = 5 and 
r = 6. For other test results,  the observed risks are less than 0.2. Therefore if, for example, the number 
of failures r = 2, then the item will be accepted with observed risk β  = 0.015 and the consumer will 
not be afraid that his risk is too great. 
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TABLE 2 
Decisions and Risks for Example 2 

 
Number 

of 
failures 

Decision 
Observed risk:  
α for acceptance,  
β  for rejection 

0 < 0.001 
1 0.005 
2 0.015 
3 0.05 
4 0.10 
5 

acceptance 

0.20 
6  0.20 
7  0.13 
8 rejection 0.05 

…  … 
   

 
 

6. CONCLUSION 
 
It seems to the authors that the suggested approach solves the following problems: 
 

• The problem of experiment's error estimation in statistical inspection is solved in a natural way: 
after the test completion with taking its results into account. This decision deserves to be 
included in textbooks, handbooks, standards etc. in order to complete the traditional approach 
using only planned risks. 

 
• The long-standing question how confidence limits can be used in statistical inspection (i.e. 

about the connection between determination and check test) is solved for the case of two-level 
quality or reliability inspection. 

 
The suggested approach allows: 
 

• To determine the observed risks and to make more precise and realistic decision making. 
 

• To check quality and reliability directly using confidence limits of the checked index itself and 
not using indirect measures connected with this index (number of failures, defects etc.). It 
enables to check complex indices such as availability and efficiency ratios. 

 
• To introduce into the results of check test some quantitative appraisal of quality, for example to 

divide accepted items into quality levels according to the values of observed risks fixed, when 
the appropriate lots were tested. 

 
• In spite of absence of preliminary test planning it is possible to make decision based on all 

obtained statistical data and indicating the observed risks. 
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