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Abstract

The Bayesian approach for certain tasks of queueing systems theory and reliability theory is
introduced. The method provides the randomization of system characteristics with regard of a priori
distributions of input parameters. This approach could be used, for instance, for calculating average
values and for construction of confidential intervals applicable for performance and reliability
characteristics of large groups of systems or devices.

1. Introduction and main assumptions

Theory of queueing systems is a well-developed mathematical discipline. Based on it a substantial
number of positive R&D results have been generated. The results obtained in studying queueing
systems and networks proved to be of significant profundity and importance from mathematical and
practical points of view. In fact queueing systems and networks are able to model a broad class of real
systems, info-telecommunication systems and networks being in the first place. In order to reflect real
processes in a more adequate way, the present development of queueing theory is being carried out
mostly with a focus on studying more complex service disciplines, input flows and service time
distributions with more and more complicated probabilistic characteristics.

One of the directions of generalization of problem formulations is the complication of probabilistic
structure of one or more queueing systems input parameters. Instead of considering traditional input
flows, the researchers study Cox flows, self-similar flows, Markovian and semi-Markovian flows, etc.
Similar generalizations are made regarding service times distributions. To some extent, these
generalizations can be interpreted as the randomization result of these or those parameters of more
“simple” flows and service times distributions. Thus, Cox process is obtained as a result of special
randomization of Poisson flow intensity, etc.

2 This work was supported by the Russian Foundation for Basic Research, grant 05-07-90103
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All these generalized modern formulations assume that stochastic method of randomization “affects”
the parameters of a system precisely during its functioning, meaning that we primarily know the kind
of the system we are “dealing with”, even when the system is rather complicated and then we study
characteristics of this particular “primarily fixed” system. However, in real life often the system under
study is specified in some sense vaguely, or inaccurately. For example, even when we deal with the
simplest systems of M|G|1 type, we may not know a priori the input flow parameter λ  and the service
parameters µ  and 2σ . Such situations can occur studying the whole class of queueing systems when
the only known characteristics are the input flow types the service distribution and the service
discipline, but at the same time the concrete parameters of these flows and distributions, generally
speaking, vary for different queueing systems of a given class. A researcher does not know a priori the
queueing system belonging to the given class he is dealing with. For example, such situation can take
place testing a series of uniformed commutation or transmission devices manufactured by the same
company. Spread in some of their performances can be explained by natural technological deviations
during manufacturing process. In this particular case, since the unknown characteristics are the “initial”
parameters of the flows and service times, a natural thing could be the use of a randomized approach
according to whch the values λ , µ  and 2σ  become the elements of a probabilistic space, but in
general, one can speak about probabilistic space with uniformed queueing systems being its elements.
In this situation it is quite natural that the calculated characteristics of such randomized queueing
system are randomization of similar characteristics of “usual” queueing system of similar type taking
into account a priori distribution of queueing system input parameters.

So, in the same example concerning a M|G|1 queueing system there arise the tasks of “common”
characteristics randomization of such systems with regard for a priori input parameters distributions. In
other words, we can make assumption about exponential, uniform or any other distribution of one or
several values λ , µ  or 2σ  (that become random variables under such approach), about their
dependence or independence, etc. The obtained results could be used, for instance, to calculate “in
general” average values and to construct confidential intervals applicable for these or those
characteristics of the queueing system class under consideration.  Naturally, such approach queueing
models development can be called Bayesian and it was formulated for the first time in [1].

The Bayesian approach can be used also in  problems of reliability estimation. As it is known (see [2]
), the availability factor of the restorable device in a stationary mode can be calculated using the
formula
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where -1 is the average operating time between failures, and -1 is the average restoration time. If we
accept the hypothesis stated above that the device under consideration is randomly selected from some
set of similar devices whose average reliability characteristics vary, then according to the reasonings
presented above, values  and  could be considered as random. Hence, under these assumption the
availability factor k is random, too, and its distribution depends on distributions of  values λ , µ . The
obtained results in this field could be used, for instance, for calculating “in general” average values and
for the construction of confidential intervals  for reliability characteristics of the overall set of
investigated devices.
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2. The Bayesian approach to queuing systems.

In order to explain the essence of the task formulation we present the following example. Let us
consider a situation when an observer deals with rather large series of queueing systems M|M|1|0 that
differ only in service distribution parameter.  In particular, these can be certain devices, commutators,
routers or any other servicing tools. It is known in advance that their functioning  can be modelled by a
system belonging to the above-described type., i.e these systems have identical service discipline,
types of  input flow  and of service times distribution.

This example assumes that the input flow characteristics are also identical for all the systems of a
given series; only numerical characteristics of service are different (i.e. the parameters of exponential
distribution).

Dispersion in characteristics  of service is due to technological (design) reasons and the main aspect of
the problem statement is the fact that the researcher does not know what the real value of service
parameter of the system belonging to a given series under study that was selected by him at random.
The only thing that he knows is “a priori” distribution of this parameter (since the series is supposed to
be large, one can consider stochastic phenomena in relation with that series and introduce probabilistic
distributions). The researcher is interested in finding out service characteristics for a series as a whole
(or characteristics of the system “selected at random”). Obviously, along with traditional factors of
stochasticity that occur in queueing systems (stochasticity of input flow and service processes), there
appears one more factor of stochasticity related to randomized selection of the system under study.

Let us assume that the service parameter µ  of the systems under study can take only two values: 1µ
and 2µ  with probability 1p  and 2p , respectively. In “physical terms” it means that among the system
series under study (routers, machine tools, etc.) only two “varieties” of servicing devices occur.
Devices belonging to the first variety provide the service with parameters 1µ , while devices of the
second variety provide the service with parameter 2µ .  Then the loading factor of the system “selected
at random” becomes the random variable that takes the values 1/ µλ  with probability 1p  and 2/ µλ
with probability 2p . The steady-state probability of blocking the “selected” system due to the
interference of the random factor of selecting a concrete system becomes “random” itself and takes the
values )/( 1µλλ +  with probability 1p  (it is the probability that a system belonging to the first variety
has “fallen into the researcher’s hands”) and )/( 2µλλ + with probability 2p  (meaning that a system of
the second variety “has fallen into the researcher’s hands”). It is natural that the “averaged” blocking
probability of such “Bayesian” queueing system is equal to )/()/( 2211 µλλµλλ +++ pp .

As we can see, there is no need to use the methods of queueing theory for studying the Bayesian
queueing systems. Bayesian system is “randomization” of a certain “ordinary” queueing system,
meaning that the Bayesian queueing system characteristics can be calculated by means of randomizing
subsequent averaging (by a priori distribution of the parameter or parameters) of the “ordinary”
queueing system characteristics that have been calculated earlier by using the methods of queueing
theory. In other words, the mathematical part of the job comes to this particular randomization and
averaging. At the same time, it is an expedient from both technological and conceptual points of view
to accomplish randomization of stationary characteristics of “ordinary” queueing systems and obtain
the steady-state characteristics of Bayesian queueing systems.
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We would like to point out one more substantial model that can be described mathematically with the
help of Bayesian queueing system. Let’s assume that a researcher considers not a series of systems
with quantitative parameters that change with the time. For example, there exists a servicing device,
one of its elements being replaced by another one at the moments that we do not know beforehand,
then being replaced by the third one, etc. Such a system can be the frontier post at the airport, where an
officer on duty is relieved from time to time at the moments not known by the observers (passengers).
The only things an observer knows are the probability that he will have “come upon” a certain concrete
frontier officer and an average time of passport checking by each frontier.

Under such approach the system structure and service discipline do not change with the time while
only quantitative parameter of distribution of service changes (e.g. intensity).  The input flow
parameter can change in a similar way. There is no information about the moment when changes
occur. The researcher is aware only of distribution of the values of “changeable”, random parameters
he “comes across” while examining the system at a “random” moment of time.

Since it is assumed that the researcher does not have any information about the moments of the system
“reorganization”, and even about distribution of these moments, it is impossible to describe transient
processes within such kind of a system. Therefore, it is possible to carry out analysis (and subsequent
randomization) of only steady-state distributions of the queueing system under analysis. In order to
give  meaning to this problem statement, it is necessary to make an assumption that the system changes
quite “rarely” so that at each interval of constancy of the parameters, the queueing system “had time”
to reach steady-state condition. Of course, the results of such analysis will be rough because steady-
state condition, strictly speaking, cannot be reached in real life.

3. Simple models of “ Bayesian” queueing systems

Below two more simplest models of “Bayesian” queueing systems are presented in order to provide
further elucidation of specific character of the problems that emerge under such an approach and of the
obtained obtained results.

Uniform distribution of λ  and µ : loading factor

Let us consider an arbitrary queueing system with input flow intensity λ  and service intensity µ . The
loading of such system is equal to µλρ /= . As it is generally known, the availability of steady-state
mode of the system under consideration depends on the value ρ  which apperas in many formulae that
describe characteristics of different queueing systems. Hence, the study of the value ρ  should be
considered within the frames Bayesian theory of queueing systems.

The variety of possible and interesting distributions of variables λ  and µ  for their joint applications is
rather wide. We consider one of the simplest but at the same time very common in practice cases when
the values λ  and µ  are independent and uniformly distributed on some certain pre-determined
segments. Such model is good for describing situations when some legitimate interval of values  have
been assigned for both values λ  and µ  (or for any of them), but the real value λ  or/and µ  can vary
within such limits.
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Assume that the random variable λ  has a uniform distribution on the segment [ ]λλ ba , , the random
variable µ  has a uniform distribution on [ ]µµ ba , , with λλ ba ≤≤0 , µµ ba ≤≤0 .

In this case, the cumulative function of the random variable µλρ /=  distribution can be written down
as follows:

{ } µλρ
µλ µµλλ

dd
abab
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x
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Subsequent calculations depend essentially on relation between the values µλ aa /  and µλ bb / . Let us
suppose for the sake of definiteness that µλµλ bbaa // ≤ .  Then:
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Let us derive the density of random variable ρ :
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Through accomplished elementary calculations, we derive the average value and the second moment of
random variable ρ , that are respectively equal to:
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It is evident that if 0→− λλ ab  and 0→− µµ ab , i.e. contracting the range of the random variable λ

to some fixed point 0λ , and the range of the random variable µ  to some fixed point 0µ , the value
ρ , as it should be, tends to 00 / µλ , and the value 2ρ  tends to 2

0
2
0 / µλ .

Moreover, we note that the dependence of the average value of ρ  on distribution λ  is reduced to
dependence on the mathematical expectation λ . At the same time, dependence of ρ  on parameters
of distribution µ  has a more complex look.

In the case µλµλ bbaa // ≥  , the formulae for calculating the ummulative  and density functions of
the random variable ρ  are similar. The mathematical expectation and the second moment of the
random variable ρ  in this particular case coincide with the values that have been calculated previously.

Based on the obtained results, it would be easy to calculate other necessary characteristics of value ρ .

It is worthwhile to observe that the examined model allows to study an important situation when
µλ <  has the probability 1.  In this case 1<ρ , which is the condition of ergodicity of the systems

having one servicing device. By virtue of postulated independence of random values λ  and µ , and the
condition for µλ <  is satisfied only if the condition µµλλ baba ≤≤≤≤0 holds.

Exponential λ  and µ  distribution: loading factor, probability of losses in the system  M|M|1|0
and avalaibility factor
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Let us consider another probabilistic model for the values λ  and µ . In a situation when there is no a
priori information about their mean values, it we can consider as a “first approximation” a model
where λ  and µ  are exponentially distributed with known averages, 1/l and 1/m respecticely).
Assumption about λ  and µ  has been retained.

So, the cummulative function of the random variable λ  distribution is equal to )exp(1 lu−−  and the
cummulative  function of the random variable µ  distribution is equal to )exp(1 mu−− .  As we did in
the previous section, le us first of all consider µλρ /= . Obviously, for 0≥x  we get

{ } { } { } { } [ ] =−−−=<<=<=< ∫∫
∞∞

dymymlxyydPxyPxPxP
00

)exp()exp(1µλµλρ

lxm
lx
+

=

Hence, it follows in particular that the random variable ρ  in this case does not have any moments of
the first and higher orders, as distinct from the situation described in the previous section. However,
some other characteristics of Bayesian queueing systems, depending on random variable µλρ /= ,
can have finite moments. Let us consider, for example, the queueing system of M|M|1|0 type. The
probability that a signal has been received by the system will not be lost in a steady-state mode is equal
to ( )ρπ += 1/1  according to Erlangian formulae. As for the Bayesian problem statement, this
probability becomes “random” by itself. Let us consider the distribution of the random variable π
under the conditions of the model under study.
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Correspondingly, the random variable π  density is equal to
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probability that the call is not lost looks as follows

π  =
[ ] ( ) 






 −+

−
=

−+∫ 1ln
)1( 2

1

0
2 m

l
l
m

lm
mldy

ylmy
mly .

It would be easy to calculate also the second moment of the random variable π  as well as its other
characteristics. Let us note hat for m=l

π  = 1/2.

The value
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is equal to value of the avalaibility factor k (see above). Hence, the distribution of the random
avalaibility factor in case of exponentially distributed λ  and µ  is presented above as the distribution
of random value π .

4. Conclusions

The results presented in this article, related to Bayesian approach for queueing systems’ and reliability
problems, are very preliminary, or “trial” ones. It is obvious that further advancement will require
consideration of such a priori distributions of the values λ , µ  and other traditional queueing systems
as well restorable devices input parameters that can be of practical interest. The distributions of the
variables that characterize the functioning of different system types can be calculated after they have
been randomized taking into account of the given a priori distributions.
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