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Abstract: This paper deals with study of the sufficient condition of approximation of raring process
with mixing by renewal process. We consider use the proved results to practice problem too.

   The limit theorems for raring processes were obtained by many .authors with use the different
technics [1-8] .  In the article [1] it was constructed the first model of Bernoullis’ rarefaction of
renewal process and it was obtained the elegant proof  of approximation of such processes by Poisson
process. The problem of necessary and sufficient conditions of such approximation was solved in the
articles [3, 5]. The  general procedures of construction a raring processes from initial processes were
considered in  works [2, 4, 6, 7, 8, 9].  The authors of articles [2,7, 9, 13] obtained new results for
concrete apllied models with help the proved  theorems of raring processes.

   This article is to some degree a continuation of [9]. In section 1 it is proved the limit theorem.
This proof is self-depended. It does not apply results of other offers.  In section 2 it is considered the
application of obtained results to concrete models.

   If we have a strictly increasing  almost sure sequence  of positive random values }0,{ ≥iiτ ,
0,1 ≥>+ iii ττ  then we can define random flow of points-events on the time axes. The moment

appearance of i -th event coincides with time iτ . Any underflow this flow is named raring flow. Thus
i - th event in raring flow has number )(iβ  in initial flow (it is clear that )(iβ i≥ ). At the beginning
we shall study the sequence )(iβ , 0≥i and then we shall construct this sequence for concrete model
of raring process.
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1. Limit theorem.

 Let us consider the sequence of discrete random values

}....,2,1{)(},,...2,1,0{,)( ∈∈ ttt ξξ

We are going to investigate distribution the following sequence

.1)),(()()1(),0()1( ≥+=+= mmmm βξββξβ

For this purpose, we introduce  the following objects

},)(:1{max)( tmmtv ≤≥= β )(kα
0

sup
≥

=
x kxx FBFA +≥≤ ∈∈ ,

sup |)()/(| BPABP − ,

      here ),)((),,)(( xssFxssF xx ≥=≤= ≥≤ ξσξσ .

 Statement.The following inequality holds for any 0>x

xt
xmP

≤
=< max))(( β )1]([))(( +< x

m
xtP ξ .

Proof. We have by definition of )(mβ

{ )(mβ U
1][

1

)(}
+

= 





 <⊆<

x

i m
xix ξ

from latter one proof follows.

Now we will proof the limit theorem for random values )(mβ  in case when process
)(tξ depends on parameter n . The dependence on n  means , in this case, that sequence processes
)(tnξ  must convergence to infinity (in some sense) at fixed t  under ∞→n . Such situation occurs in

practice problem very often.  The parameter n  is index for all values which are defined by )(tnξ . For
example, the values )(tv  transform to )(tvn .

Let
∞→

⇒
n

 denotes weak convergence of random values or distribution functions. Let )(tN  is equal

to number of renewals on the interval ],0[ T of renewal process








≥∑
=

1,
1

i
i

k
kη . This process has the

following property ( ) ( ) .2),(),( 211 ≥=≤=≤ ixRxPxRxP iηη   Here )(),( 21 ⋅⋅ RR  are  a
distribution function.
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Theorem 1. If sequence of numbers ∞→nc  exists such that the following conditions hold :

1) ( ) =≤−

∞→
xcP nnn

1)0(lim ξ ;)(1 xR

2)
tan ≤≤∞→ δ

suplim | ( ) |)()]([ 2
1 yRyccP nnn −≤−δξ ;0=

δ  -- any positive number, ∞<t , functions )(yRi are continuous distribution functions for
0>y ;

3)
∞→n

lim 0)( =nnn ccα ,

then )()(
n

tNtv nn ∞→
⇒  for every fixed t .

Proof. We denote by 1),( ≥mmkβ the sequence which is defined  by the  sequence )(mβ  under
condition k=)0(ξ . That is ( ) ( )ksmPsmP kk ==== )0(/)()( ξββ .

Further { }tmmtkv k <≥= )(:1max),( β .
We define the following sequence of random values )(mkν :

1)),(()()1(),()1(,0)0( ≥+=+=≡ mmmmk kkkkk νξννξνν .

Further let { }tmmtV kk ≤≥= )(:1max)( ν .
Now we introduce the sequence of random integer numbers 1),(, ≥mmklβ , which have

the following distribution function

( ) ( ) { }kllklsmPkllsmPsmP klkl ==−−======= + )(,)0(/)()(,)0(/)()(, ξξνξξββ .

We will denote by { }.)(:2max)( ,, tmmtv klkl ≤≥= β
 By the definition of )(tv  and ),( tlv we have stochastic equalities (right and left parts have the

same distribution function)

( )( ),1),()0()(
][

1

+== ∑
=

tlvlItv
t

l

ξ ( )( ),1)()0(/)(),( ,

][

1

+=== ∑
−

=

tvlklItlv kl

lt

k

ξξ

here the function )(⋅I   is indicator function of sets.

Applying indicator identity

( ),1)(1)( −⋅+=⋅ xxI sIs
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we get

( )( ),1)0(1 1),(
][

1

)( −=+= +

=
∑ tlv

t

l

tv slIMsM ξ

( )( ),1)0(/)(1 1)(
][

1

),( , −==+= +
−

=
∑ tv

lt

k

tlv klslklIMsM ξξ

here )1,0(∈s .

If the )(tξ  depends on the parameter n , then latter equalities have the following forms.

Put

),(),,( ,
)()( , stcfsMstcgsM nkn

tcV
nn

tcv nknnn == .

Further

( ) stPstcg nnn +≤−= )0(1),( ξ ( )∑
=

=
][

1

)0(
t

l
n lIM ξ ),( tclv nns ,

( ) ( ) )(
][

1

),( ,,)0(/)()0(/)(1 tcv
ltc

k
nnnnn

tclv nkln
n

nn slklIMsltclPsM ∑
−

=

==+=≤−= ξξξξ  .     (1)

We will divide  the sums in the right parts equalities  (1) into two sums:

∑∑
+

+
][

1][

][

1

tc

c

c n

n

n

δ

δ

                                                            (2)

The first sum we can make less than given number. This follows from the conditions 1,2 and
continuous of functions )(⋅iR  in zero.

The second sum consists of the expectations of two random factors. These factors are bounded by
one and measured with respect to σ -algebras xF≤ , δncxF +≥  respectively. The latter one enables us to
change every summand of second part of (2) by factor of expectations of the  given random values
with error less than )(2 δα n  (look for example (20.29)[10]):

We have the following  estimates under δncl ≥

| ( )lMI n =)0(ξ ),( tclv nns  - ( )lMI n =)0(ξ ),( tclv nnsM | ≤ )(2 δα nn c ,
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),( tclv nnsM = ∑
−

=

ltc

d

d
n

s
][

0

( )( ±=−>+−≤ lltcdltcdP nnlnnln )0(/)1(,)( ,, ξνν

( )) ,
)(

,,
,)1(,)( n

ltcV
nlnnln

nlnsMltcdltcdP πνν +=−>+−≤± −

here ∞<≤ KcK nnn ),(|| δαπ .

( ) ( ) )()()0(/)( δαξξξ nnnnnnn ctclPltclP ≤≤−=≤ .

Further we have estimates in case δnck ≥ :

( ) ( ) )(2|)0(/)()0(/)(| )()( ,,,, δαξξξξ nn
tcv

nn
tcv

nn csMlklMIslklMI nklnnkln ≤==−== ;

∞<≤− −−+

11
)()( ),(|| ,,, KcKsMsM nn

kltcVtcv nklnnkln δα .

Now we can rewrite of (1) in the following form

( ) ( ) ,),()0()()0(1),( ,

][

1][
1,1, sltcflPsbatPstcg nln

tc
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nnnnnnn

n

n

−=+++≤−= ∑
+= δ

ξδξ

=− )(, ltcf nln

( ) ( ) ],[),,()()()(1 ,

][

1][
2,2, δξδξ

δ
nnkln
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nnnnn clskltcfklPsbatclP
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≥−−=+++≤− +
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∑

here

( ),)0(0)(;2,1,),(|| 1,, δξδδα nnninniin Paikckb ≤<≤=∞<≤

( )δξδ
δ

nn
cq

n qPa
n

≤<≤
≥

)(0sup)(
][

2, .

Further we introduce a sequence of independence random values with
the same distribution function { }1),,( ≥knk δη under fixed δ . The distribution function

is defined by the following equality

( ) ( )xcPxnP nn ≤=≤ )(),(1 δξδη .

We will denote
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d
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δ === ∑
∞

=

We will estimate of difference of δnnln clsltcf ≥− ),,(,    and ),(, sltcF nn −δ .
The definition leads to

( )∑
−

=

−>+−≤=−
][

0
,,, )1(,)(),(

ltc

d
nlnnln

d
nln

n

ltcdltcdPssltcf νν .

Further we get  for 0=d  by condition  2

( ) ( ) ( )ltccPltccPltclP nnnnnnnnn −≥+=−≥±−≥ )()()( δξθδξξ .

Here and after the designation nθ  means that we have some sequence of numbers such that it
convergences to zero under ∞→n  and the following condition holds

( ) |)()]([|supsup2|| 2
1 yRyccP nnn
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n −<∆≤ −

≤∆≤≤
ξθ

δ
.

We have for ( ) =−>−≤= ltcltcPd nlnnln )2(,)1(:1 ,, νν
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ltc
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δ δ

δηξ ( ) =−−= kltcnP n),(2 δη       (3)

( ) 1,, 1)( nnn ltcDP πδ +=−= .
Here

( ) ( ) )(2||max,)(2|| ,,1,2,1,,1, δαθδαπ δδδ nnnininnnnnn craaca ==++≤
=

.

We used the Abel's transformation ([12], Chapter XI , Sec.383),  for sum of pair factors of (3).
Similar considerations apply to the case 2=d . Thus applying (3) we get

( ) ++=−>−≤ 2,,,, )3(,)2( nnnlnnln raltcltcP δνν
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=
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)(
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ξ ( ) =−−>−−≤ ++ kltckltcP nklnnkln )2(,)1( ,, νν

( ) −=−++++= 2)(,,1,,2,, ltcDPra nnnnnn δδδδ πθ

( ) ( )( ) ( ) ( )( )==−−−=−−−=−=− ∑ ∑
−

= =

1)(1)1(),()( ,,

][

][ ][
1 kltcDPkltcDPsnPslP nnnn

ltc

ck

k
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n

n

n n

δδ
δ δ

δηξ

( ) 2,, 2)( nnn ltcDP πδ +=−= .

For the latter one we used the Abel's transformation too and the following equality which is
checked easy.

( ) ( ) ==−−−=−−− 1)(1)1( ,, kltcDPkltcDP nnnn δδ

( ) ( )kltcnPkltcnSP nn −−=+−−== ][),(][),( 12 δηδ .

The implicit introduced sequences have obvious sense and the following estimates take place
)(2|| ,2, δαδ nnn cr ≤ , ( )nnnnn ca θδαπ δ ++≤ )(4|| ,2, . It is no difficult to show with help

induction that we have for pd =  the following formulas

( ) =−>+−≤ ltcpltcpP nlnnln )1(,)( ,, νν

( ) ( )nnnnpnpnnn cappltcDP θδαππ δδ ++≤+=−= )(2||,)( ,,,, .

Thus we obtained next representations for fixed )1,0(∈s

=− ),(, sltcf nln ( ))1()(||,),( ,,,, nnnnnnnn ocaLLLsltcF ++≤+− δαδδδδ , ∞<L .

( ) ( ) ),,()0()0(1),( ,

][

1][
, sltcFlPsKtPstcg nn

tc

cl
nnnnnn

n

n

−=++≤−= ∑
+=

δ
δ

δ ξξ

( ) ++−≤−=− δδ δξ ,, )(1),( nnnnnn ZltccPsltcF

( ) ][),,()( ,

][

1][

δδξ δ
δ

nnn

tc

cl
nn clskltcFkcPs

n

n

≥−−=+ ∑
+=

.

Here the constructions of δ,nK  and δ,nZ  lead to the following relations

( ) ∞≤==
∞→∞→ 212,1, ,max;lim;lim llZlZKlK nnnn δδδδ ,
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and ( ) ( ))0()(2||,)0()(2|| 2211 RRZRRK −≤−≤ δδ δδ .
Combining construction of ),(, stcF nn δ , condition 2 and continuity of convolution
we conclude that the following limit exists

),(),(limlim ,0
stFstcF nnn

=
∞→→ δδ

as this limit is unique solution the following equation

),,()()(1),( 22 stFRstRstF ∗⋅++=         (4)

here symbol ∗  denotes of convolution of two functions.

The sequence of generating functions ),( stcg nn  has limit too

),(),(limlim
0

stgstcg nnn
=

∞→→δ

This limit is solution of the following equation

),()()(1),( 21 stFRstRstg ∗⋅++= .

The latter one and  (4) lead to proof of theorem.

Remark 1. We consider the extension of theorem 1. It consists in definition more weakly the
mixing coefficient than )(⋅α .

Suppose that sequence 1, ≥ncn  from theorem1 is defined. Now we take any sequence 1, ≥nrn ,
which satisfies the following condition ,∞→nr )( nn cor =  under ∞→n .

Further we construct truncated process:

nξ )(t




−≥−
−≤

=
.)(,

,)(),(

nnnnn

nnnn

rctrc
rctt

ξ
ξξ

and construct the σ - algebra ( )xttrF nnx ≤=≤ ),()( ξσ  too.

Now we define new mixing coefficient

( ) ( ){ }
ncxnx

x
nnn FBrFABPABPcr +≥≤

≥
∈∈−= ),(:|/|supsup),(

0
α .

Thus this coefficient is constructed only on those events from xF≤  on which the process )(tnξ  is
less of value nn rc −    under xt ≤ . Such coefficient is useful in those cases when time dependence  of
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researched  events is controlled by values of process )(tnξ . For example, if the event { }kxn =)(ξ
restricts of   investigation of such events by  interval ],0[ kx + .

Now we divide second sum of   (2)  in this way:

∑∑∑
+−

−

++

+=
][

1])([

])([

1][

][

1][

tc

trc

trc

c

tc

c

n

nn

nn

n

n

n δδ

 .                      (5)

We can do second sum from (5) less any given value due to continuity of ( )⋅iR .

Further we apply the transformation from the proof of theorem 1 to first sum with use coefficient
),( nnn crα .

Thus we can replace the condition 3 of theorem 1 the following condition

3' it exists such sequence 1, ≥nrn : ,∞→nr )( nn cor =  under ∞→n  that

0),(
∞→

→
nnnnn crc α  .

Remark 2.If the sequence { }0, ≥iiτ   be such that

..,.,lim 11 constsai ii
== −−

∞→
µµτ ,

then we get the following convergence under conditions theorem 1

( ) )()1(
21)( µτ β xRRxcP i

nnin

−∗

∞→
∗⇒≤ .

It follows from the known theorems of transfer (look, for example [11]).

2. Interaction of two renewal processes.

The model of raring process which is considered below is result interaction two renewal
processes. This model was offered in   [13] as the mathematical model of practice problem.

    Let us denote by Z  and H  two renewal processes : { } { }1,,1, ≥=≥= iHiZ ii ης .

We define stochastic characteristics of HZ , :

K,2,1,,
11

=== ∑∑
==

i
i

l
li

i

l
li ςϑητ  ; { } { },:sup)(,:sup)( 21 tntNtntN n <=<= ϑτ

0,)(,)( 1)(21)(1 21
>−=−= +

+
+

+ ttttt tNtN ϑγτγ  .
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The moments of time 1,, ≥iii ϑτ  are named renewal points processes H  and Z  respectively.
If we have a renewal points of the process Z  in interval ],( 1 nn ττ −   then we will say that the

renewal point nτ  is marked by process Z . The process H  marks a renewal  points of process Z
analogy.

Let us denote by L,,0 10
″=″ TT renewal points of H  which were marked by Z   and L,, 21

′′ TT
renewal points of Z  which were marked by H . It is clear that the following inequalities

L≤′≤″≤′<=″
2110 0 TTTT  take place. It is shown in [4] that sequence random values

K,2,1,,1 =′−″=″−′= − nTTUTTV nnnnnn ,

be Markov's chain. This chain is defined by transition probabilities

( ) ( )xPxVP <=< 11 ς , ( ) ( ) .,2,1,/,/ 1 K==<=< + nyUxVPyVxUP nnnn

It is easy to see that for investigation nn UV ,  it is necessary simultaneously to observe two raring
processes:

{ } { }LL ,,,,,,0 1211210
′−′′=′″−″″=″=′′ TTTTTTTTT  .

We will investigate these raring processes separately. We will use that the processes TT ′′′ ,  are
raring processes respect to processes ZH ,  respectively.

We take, for example, T ′′ . The T ′′ , as underflow of H , defines the following indicators



 ′′−

=
,

otherwise.0,
Tint,1

)(
tobelongsHofporenewalthiif

iχ

{ } .0,1)(:1inf)( ≥=+≥= ljljl χξ

Thus 1)),1(()1()( ≥−+−= iiii βξββ be number of the i -th event from H  which belongs
toT ′′ . The moment )(iβτ  is moment of appearance this event. We shall suppose that processes H  and
Z  depend on a parameter ∞→nn,  such that { } { }1,,1, ,, ≥=≥= iZiH inninn ςη  . Now the characteristics

these processes have forms: K,2,1,, ,, =iinin ϑτ , 2,1),(, =+ ktknγ .

Theorem 2. If the following conditions:

1) there are a positive numbers ∞→nc  and distribution function 0),( ≥xxG  guaranteeing the
following limit
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( ) ,0|)()(|suplim ][,2,
0

=−<+

≥∞→
xGtP nxnn

tn
τγ

here x  is continuous point of )(xG ;

2) ..,lim ,
1 constc

ncnnn
==−

∞→
µµτ

hold then ( ) 







→<

∞→ µ
τ β

xGxcP k

nnkn

*
)( .

Proof. We will check all conditions of Theorem 1 for process )(lnξ . We calculate the probability
( )mlP =)(ξ :

( ) ( )12, )(1)( +
+ <== llnPlP ητγξ .

( ) ( )212,12, )(,)(2)( ++
+

+
+ +<≥== lllnllnPlP ηητγητγξ =

= ( ) ( )12,212, )()( +
+

++
+ <−+< llnllln PP ητγηητγ .

…
( ) ( )klllnPklP ++

+ ++<== ηητγξ L12, )()( ( )112, )( −++
+ ++<− klllnP ηητγ L .

Thus

( ) ( )∑
=

===≤
m

k
klPmlP

1

)()( ξξ ( )mlllnP ++
+ ++< ηητγ L12, )( .           (6)

The latter one and condition 1 lead to the following convergence

( ) ( ) ( ) K,2,1,0),()()( ,
0

][,2, =→∈<=<
∞→

∞
+∫ lxGdtPtPxclP

nlnxcnnnn n
ττγξ  .

here 0>x  is continuous point of )(xG .

We have the following equality when it is considered that (6) holds

( ) ( ) ,0)()(/)( =≤+−≤≤+ srlPmlsrlP ξξξ    if rm < .

Now we have for any sequences of numbers nr  such that 0,, ≥<∞→ ncrr nnn

0,0),( ≥= ncr nnnα .
Thus all conditions of theorem 1 hold respect to process )(tnξ . Now the statement of theorem 2

becomes apparent if it is remembered the theorem of transfer.
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Example. Now we consider example of definition of sequence nc  and  limits'  function
)(xG from
Theorem 2. We shall suppose  that process Z  is Poisson process with parameter nλ   such that
0→nλ  under ∞→n . The process H  don't depends on parameter n . The renewal interval of H   has

finite expectation ∞<= 1ηµ M .

All these suppositions led to formula

( ) ( ) )(:)(
0

12, mGdyyPeP nm
y

nmllln
n =>=++< ∫

∞
−

++
+ τληητγ λL .

If we put ][ xcm n=  and make change of variables zyn =λ  then we get

( )dzzPexcG xcn
y

nn n

n∫
∞

− >=
0

][])([ τλλ .

Put 1: −= nnc λ . The indicator of set A  will be denoted by )(AI . The following convergences are
based on strong law of large numbers.

( ) xz

n
n

xz
nn edzzxIedzz

x
xPexcG n µλ µ

λ

τ
−

∞
−

∞→

∞

−
− −=>→










>= ∫∫

−

1
][

])([
00

1
][ 1

.

and

..lim sa
n

n

n
µ

τ
=

∞→

Thus we checked all conditions of Theorem 2. The function )(xG  (from condition 1 of theorem
2) be limit for the functions ])([ 1−

nn xG λ . In this example the moment of appearance k -th event in

flow ″
nT  has the following limit distribution function ( ) ( ) 0),()exp(1 *1

)( ≥⋅−→<
∞→

− xxxP k

n
nkn

λτ β .

It  is clear that similar example we may consider for process T ′ . In this case the process
H  must be Poisson with "rare" events and the process Z  must be a simple renewal process with

bounded expectation of time between neighboring  renewal point.
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