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DD OOUU VVEENNOONNSS--NNOOUUSS?? QQUUII SSOOMMMMEESS--NNOOUUSS??
OOÙÙ AALLLLOONNSS--NNOOUUSS??

Igor Ushakov
San Diego, USA

«D où venons-nous? Qui sommes-nous? Où allons-nous?», 1897
Gauguin, Paul (1848-1903)

“Who are we? From where? Where are we going?” –  this is the title of one of the famous paintings by
Paul Gaugin.  However, today we will not discuss an art but try to answer the questions:  Who are we?
From where? Where are we going?

The title of the journal is “Reliability: Theory & Practice”… Is it a good title? Does it reflect the
journal profile? Does reliability still take its place of importance in engineering and applied science?

At the closing banquet of the MMR-2004 Conference (Mathematical Methods in Reliability, Santa Fe,
USA), Professor Nozer Singpurwalla from George Washington University, the moderator, asked the
audience the provocative question:  “Is Reliability Theory still alive?”  He was given a tidal wave of
sharp and nearly angry answers of the kind, “Yes, yes, yes! It is alive!”  However, we should be honest:
Nozer is right (as usual J) or at least very close to being on point:  interest in Reliability Theory is
waning….

Some of us who are counted in the ranks of “reliability dinosaurs” still remember the hullabaloo around
reliability theory in the beginning of the 1950s, last century.
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We recall that in the early phase of the era of reliability, there were many conferences and publications
on the topic.  The IRE (Institute of Radio Engineers) Reliability Conferences and publications of IRE
Transactions on Reliability and Quality Control are just one example.

 In the 1960s we saw a real avalanche of papers on reliability…  And this pace continues today with the
same high intensity!

So, why do we speak about “dying reliability theory?”

The problem, as we see it, is that there is no longer a strong demand for furthering of the theory.  First,
we recall when and why reliability theory started.   It started in the USA just after the Korean War
(1950-1953) when too often failures led to serious problems in combat.  Then it was realized that
analogous problems in reliability existed in civil technical systems.  Even as systems became more and
more complex, the methodology of their design and construction was the same as it had been for
decades before… Thus in the engineering world, reliability became, as it was said at the moment,
“Problem Number One.”   New concepts were needed to develop solutions to this technical problem,
but this was not possible without an understanding of the nature of reliability and the creation of
mathematical methods and tools to bring these concepts into engineering practice.

So, we see that it was necessity (demand) that caused the field of Reliability Theory to flourish.  With
time, constructive reliability methods were implemented in engineering practice and successes were
achieved.  The problem of reliability will exist always, of course; however, we can honestly accept the
fact that now it is not “Problem Number One.”  In addition, so many excellent theoretical approaches
have been developed that the requirements of designing “conventional equipment” surely are covered
for many years to come.

However, probably, principally new systems will require new developments Reliability Theory.

At the same time, there are many areas of human activity in which the accumulated knowledge and
methodology of Reliability Theory can and have to work.
It is almost impossible to describe completely and correctly in what new activities or areas we should
apply Reliability Theory; nevertheless, we will try to describe several important directions where the
brains of the reliability community effectively could be applied.

SURVIVABILITY.

Nowadays, we are faced with a new problem of survivability.  Natural disasters like the recent
hurricane Katrina showed that even a technologically strong country like the USA was
unprepared to deal with consequences of a major natural disaster.  Moreover, it was clear that
preventive measures would be more effective than any measures to help people to evacuate and to
reconstruct destroyed infrastructure.

Perhaps even more pressing is survivability related to terrorist attacks.  Nobody knows when,
where and how those hidden enemies will undertake their evil actions.   It is clear that attempts to
apply standard reliability methods for the evaluation of effectiveness of undertaken counter-
terrorism measures is absolutely unreasonable; though, we note that the methodology of this
approach can be useful.
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SOFTWARE RELIABILITY.

This is one of the most important areas in modern engineering.  Do we need mathematical models
for the prediction of software reliability?  If so, how will we understand or define the meaning of
“failure of software?”  Attempts to use blindly concepts of hardware reliability methods on
software are doomed to failure, first of all because even if failure is defined, there is no “time to
failure” and there is no “probability of failure.”

Moreover, considering hardware we have a set of relatively independent items, which have their
“individuality” and inherited random properties.  Quite a different situation is observed with
software.  Speaking in language of comparisons, in the first case we deal with a flock of sheep
and in the second case we have a set of identical “Mollies”, which are absolutely identical
genetically…

Probably, software is an object that one should create and analyze a prototype than to try to figure
out some mathematical model. We have here the same situation as with unique technical objects,
for which, actually, still there is no adequate mathematical models for prediction of their
reliability properties.

LONGEVITY.

Is a computer with longer longevity better?  Should we spend money to make its longevity 10
years instead of 5?  Let us remember that we change our computers, probably, every 2-3 years.
Would we care about 10 years longevity?

Or consider vehicles:  many of us change cars after 3-5 years, getting a new or newer one to
replace the old one.  Used cars often are repaired.  Thus, a car owner, has a choice: is it better to
buy a new car or a repaired used car or repair the old car?  A new type of industry has appeared:
car renovation.  So, old theoretical approaches in longevity become obsolete.

COMPLEX MULTI-STATE SYSTEMS RELIABILITY.

We are eye-witnesses of yet another period of technological Renaissance:  in the last 15-20 years
computer and telecommunication sciences and industry have advanced dramatically.  We have
the World Wide Web; telecommunications has been revolutionized with mobile users, and
transportation systems have made crossing international borders … Probably, from outside the
manhood is like Stanislav Lem’s Solaris:  a huge monolith organism with multiple
interconnections and coexistence of interdependent units…

We need to survive, so we should study the World we live in; we have to learn how to measure its
survivability and what measures we can undertake to assure continued survival.
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The Workshop will be dedicated to the memory of professor Khaim Kordonsky

Organizers of the Conference:

Transport and Communication Institute, Riga, Latvia
The Kh.Kordonsky Charitable Foundation, Boston, USA

Address of the Organizing Committee:
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Fax: +(371)-7100535
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 Scientific Topics of the Workshop:

1. Multivariate  regression, classification and cluster analysis;
2. Nonparametric and Semiparametric models
3. Intensive computer methods of statistics;
4. Computational Statistics;
5. Statistical models and methods in the  reliability, storage and risk theory
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Co-Chairmans  of the Programme Committee
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Ernst Frenkel (USA)
Eugene Kopytov (Latvia)

Secretary of the Programme Committee

Helen Afanasyeva
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Publication of Papers:
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Transport and Telecommunication Institute “Computer Modelling and New Technologies” (or of the scientific and
research Journal of Transport and Telecommunication Institute “Transport and Telecommunication”).
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detailed information see: http://RelStat.tsi.lv
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The author develops techniques of Universal Generating Function
introduced by I. Ushakov in the middle of 80-e. The book offers a
description of the universal generating function technique and its
applications in Reliability Analysis of binary and multi-state systems and
as well to optimization of series-parallel structures under certain
constraints. The book supplies with a number of examples from
engineering practice.

Many real systems are composed of multi-state components with
different performance levels and several failure modes. These affect the
whole system's performance. Most books on reliability theory cover
binary models that allow a system only to function perfectly or fail
completely. The Universal Generating Function in Reliability Analysis
and Optimization is the first book that gives a comprehensive description
of the universal generating function technique and its applications in
binary and multi-state system reliability analysis. It features: an
introduction to basic tools of multi-state system reliability and
optimization; applications of the universal generating function in widely
used multi-state systems; examples of the adaptation of the universal
generating function to different systems in mechanical, industrial and
software engineering.

This monograph will be of value to anyone interested in system
reliability, performance analysis and optimization in industrial, electrical
and nuclear engineering.

Table of Contents

1. Basic Tools and Techniques
2. Universal Generating Function (UGF) in Reliability Analysis

of Binary Systems
3. Introduction to Multi-state Systems (MSS)
4. UGF in Analysis of Series-parallel MSS

5. UGF in Optimization of Series-parallel MSS

6. UGF in Analysis and Optimization of Special Types of MSS

7. UGF in Analysis and Optimization of Consecutively
Connected Systems and Networks

8. UGF in Analysis and Optimization of Fault-tolerant Software.
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TTWWOO--LLEEVVEELL FFAACCTTOORRIIAALL LLIIFFEE TTEESSTTIINNGG
WWIITTHH TTYYPPEE --IIII CCEENNSSOORREEDD DDAATTAA

Ilya Gertsbakh,
Beer Sheva, Israel

Abstract

We consider two-level factorial designs with the response being the observed item’s lifetime.  For each
factor combination, we put on test n items and stop testing when exactly r items have failed.  Our
principal assumptions are that there exists a monotone transformation of the  random  response  which
belongs  to  a  location-scale  family,  and that  only  the  location  parameter  linearly  depends  on  the
factors  involved. We develop a simple time-saving testing scheme which permits an efficient
computational procedure for estimating the factor effects.

Key words: Orthogonal design; type - II censoring; location-scale family; order statistics; life testing.

1.  Introduction

The idea of this paper is simple:  we want to adjust the standard factorial experiment,  in  which  the
response  is  the  observed  lifetime,  to  the  case  of type-II censored observations.

Many industrial experiments are aimed‘ at finding the factor combination that provides the longest
lifetime.  Since experiments of this sort take usually a long time and are very expensive, it is desirable
to use lifetime acceleration methods  (e.g.,  by applying  higher stresses  than in  normal operating
conditions , see e.g. Nelson (1990)), and/or to stop the experiment after prescribed time or after
prescribed number of failures has been observed.  This paper is devoted  to  the  statistical
methodology  of  lifetime  testing  with  type-II  censored lifetime observations.

Papers of Hamada (1995), Hamada and Wu (1991) and Bullington et al (1993) present methods and
examples of processing incomplete lifetime data in the framework of factorial life testing experiments.
Their methodology is based on introducing a parametric model for the logarithms of the observed
lifetimes and on using the maximum likelihood method (MLM) for parameter estimation.   The  MLM
is  computationally  involved,  especially  when  a large  number  of  parameters  is  present  in  the
model,  e.g.  in a  screening  experiment for studying the influence of many factors on lifetime.  Even if
the MLM  software  produces  a  numerical  solution  to  the  maximum  likelihood equations, it might
be not the desired solution, see the discussion in Hamada and  Tse  (1992).   There are also difficulties
in establishing the significance of the maximum likelihood estimates because this issue involves
asymptotics which might be not accurate.  Hamada (1995) demonstrates that the MLM may provide a
disappointing result, e.g.  all factors involved seem to be significant, see Table 8 in the above paper.
Probably, in the experiments with type-I  censored  data,  the  MLM  remains  the  only  way  to
extract  information from data.

If, however, for all factor combinations the lifetime data are type-II censored, i.e. are  censored  after
observing r  2  failures,  then  under reasonable assumptions, for two-level factorial experiments,
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there exists an extremely simple and computationally efficient method of estimating the factor effects.

In  Section  2  we  describe  our  method  and  the  basic  assumptions.  If  for each  factor  combination
we  observe r failures  then  our  method  uses  as  a response an ”optimal” convex combination of the
appropriately transformed first r order statistics.

In Section 3 we apply our method to the Thermostat Test data described in  Burlington  et  al  (1993).
In  this  experiment, n similar  thermostats  were tested under identical conditions until the appearance
of r failures.

We discuss the properties of our method in terms of estimation accuracy and testing duration.

2. Basic Assumptions. Description of the testing procedure. Parameter estimation.

Suppose that the experiment consists of N runs.  Each run j, j = 1, 2, ..., N, corresponds  to  a  fixed
combination  of  the  factors  involved.   We denote by capital letters A, B, C, ..., K these factors.

We make the following assumptions.

(i)  In the j-th run,  a random sample of n items is tested until r, r  2 failures are observed.  All
items in the sample are statistically identical and are tested under the same conditions.  Denote
by )( j

iτ , i = 1, 2, ...r, the item lifetimes observed in the j-th run.

(ii)  There exists a monotone transformation ψ (·) of )( jτ  into )( jY , )( )()( jjY τψ= , such that )( jY
belongs to a location-scale family, in which only the location parameter depends on the factors
involved:

( ) .,...,,,)()( ZKCBAY jj βα +=
(1)

  Here Z is a ”standard” parameter-free random variable.

(iii)  The location term in (1) linearly depends on the factors involved:

)()()( ... j
K

j
A

j WKWA ⋅++⋅+= θα (2)

For simplicity, the letters A, B, ..., K in (2) denote the numerical contribution of  the
corresponding  factors; is  a  constant,  the  same  for  all  runs  and  all factor combinations.

(iv)  The experiment has as a two-level factorial orthogonal design, i.e. the coefficients )( j
AW , ...,

)( j
KW  equal tp ±1, and the column- vectors WA = [ )1(

AW , ..., )( N
AW ], ...,WK = [ )1(

KW , ..., )( N
KW ]

are pair wise orthogonal.

Remark 1.  If the lifetime for each run has a lognormal distribution with only location parameter
depending on the factors involved, then (x) = log x, and Z will have a standard Normal distribution.
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Another assumption widely used in practice is that )( jτ  has a Weibull distribution, with only the scale
parameter depending on the experimental factors. Then the logarithmic transformation also produces
the desired form (1) with Z being distributed according to the standard extreme-value distribution
Extr(0, 1) : P(Z > t) = exp( et). (For the proofs see e.g. Gertsbakh (1989), Ch. 2)

Since (1) is a location-scale family, it follows from our assumptions that for each j we observe the first
r order statistics of the corresponding sample, and this is the same as observing, for each j,

.,...,2,1,:
)()(

: riZY ni
jj

ni =+= βα (3)

Here Zi:n is the i-th order statistic from a sample of n random variables Zs, s = 1, ..., n.

Remark 2.  Add and subtract from the right-hand side of (3) the term [ ] nini mZE :: ββ = .  Then we can
assume that (3) takes the form

.,...,2,1,:
)(

0
)(

: riY ni
jj

ni =+= βεα (4)

where ni:ε  is a zero-mean error term, and )(
0

jα  differs from )( jα  by a constant absorbed into the θ -term
(see (2)). Note that this constant is the same for all runs j = 1, ..., N.

In order to use all information observed in the j-th run, we suggest to consider as the response a convex
combination of the first r order statistics:

∑
=

=
r

i

j
nii

j Y
1

)(
:

)( α , (5)

where ∑ =
=

r

i i1
1α , 0≥iα .

Now the response of the j-th run takes the form:

jjj ZaX β+= )()( , (6)

where Zj is a zero-mean error term, and a(j) differs from the expression in (2) by a constant

∑ =

r

i niim1 :αβ .

It is desirable to choose the coefficients iα  to provide the minimal variance of the response, as the
following claim states.

Claim 1.

(i)  Minimal variance of ∑ =

r

i niiZ1 :α  subject to 0,1
1

≥=∑ = i
r

i i αα  is attained at
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[ ]**
1 ,..., rαα =V-1 ⋅⋅1 , (7)

where V is the covariance matrix of [Z1:n, ...,Zr:n], C = (1T ·V 1 · 1) 1, and 1 is a column matrix
with all elements being equal 1.

(ii)  The minimum of the variance equals to C.

The proof is based on the Extended Cauchy-Schwarz inequality, see Johnson and Wichern (1982),
p.66. (Use (2.49) there and put d = 1.) #

Estimation of parameters A, B, ..., K.

From now on, let us assume that the iα  values are always equal to the optimal *
iα . Our model (6) now

takes the following form:

)()()()(

)1()1()1()1(

...
.....................................................

...

NN
K

N
A

N

KA

ZWKWAX

ZWKWAX

βθ

βθ

+⋅++⋅+=

+⋅++⋅+=

Now multiply the j-th row by njW j
A ,...,1,)( =  and sum up all rows.

Due to the orthogonality of WA, ..., WK, we obtain

βε+⋅=∑
=

ANXW
N

j

jj
A

1

)()( , (8)

where ε  is a zero-mean error-term. Now the unbiased estimator of A equals

µ ( ) ( )

1
/

N
j j

A
j

A W X N
=

= ∑ (9)

Similarly we obtain estimators for B, C, ..., K. By (9) and (6) their variance equals

µ 1 2 ( ) 1 2jVar A N Var Z N Cβ β− −   = =   , (10)

where C is determined by (i) in Claim 1.

It is easy to prove that that all estimators of the factor coefficients are pair wise uncorrelated, e.g.
µ µ, 0Co A Kυ   =  . This follows from the properties of Z(j) and from the fact that vectors W(·) have equal

number of positive and negative terms.
Simplified estimator of .
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Let us return to the principal relationship (3), fix two integers s, s ≤ r, and m ≤  r, s < m, and write (3)
for i = m and i = s. Subtracting one from another, the )( jα  term cancels and we arrive at the formula

( )( ) ( )
: : : : , 1, 2,..., .j j

m n s n m n s nY Y Z Z j Nβ− = = (11)

It follows from (11) that

[ ] [ ] [ ] [ ]( )nsnm
j

ns
j
nm ZEZEYEYE ::

)(
:

)(
: −=− β (12)

Replace in (12) the expectations in the left-hand side by the corresponding averages and consider the
following simplified estimator for :

( )
: :

: :

m n s n

m n s n

y y
E Z E Z

β
−

=
   −   

 . (13)

Here ( )1
:: 1

N j
s ns n j

y N ψ τ−
=

= ∑ .  (The simplification is in replacing Zm:n  Zs:n by its expectation).

From (12) it follows that

µ [ ] [ ] [ ]
[ ] [ ]( )

: : : :
2

: :

2 ,
.m n s n m n s n

m n s n

Var Y Var Y Co Y Y
Var

N E Z E Z

υ
β

+ −  =  ⋅ −
(14)

By (3), Var[Yi:n] = β 2Var[Zi:n], and this results in

µ
[ ] [ ] [ ]

[ ] [ ]( )

2
: : : :

2
: :

2 ,
.m n s n m n s n

m n s n

Var Z Var Z Co Z Z
Var

N E Z E Z

β υ
β

 + −   =  ⋅ −
(15)

We state without proof that the smallest value of µVar β 
   is attained when m = r and s = 1.

3.  Example:  Thermostat Life Cycle Test.

Burlington et al (1993) describe a screening life testing experiment of thermostats aimed at finding the
best combination of design parameters (factors) which would provide the longest thermostat life.

Eleven  most  important  design  factors A, B, ..., K were  selected  by  an expert team, e.g. the current
density B, Beryllium Copper grain size E and heat treatment H .  For each factor, two levels were
chosen, the lower and the upper, denoted by 1 and +1, respectively - see Table 1.  For E, for example,
the grain sizes of 0.008” and 0.018” were chosen for the low and high level, respectively.
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Table 1
Thermostat test results, n = 10, r = 2

Factor
Run A B C D E F G H I J K 1:10 2:10

1
2
3
4
5
6
7
8
9
10
11
12

1
1
1
1
1
1

+1
+1
+1
+1
+1
+1

1
1
1

+1
+1
+1

1
1
1

+1
+1
+1

1
1

+1
1

+1
+1
+1
+1

1
+1

1
1

1
1

+1
+1

1
+1
+1

1
+1

1
+1

1

1
1

+1
+1
+1

1
1

+1
+1

1
1

+1

1
+1

1
1

+1
+1

1
+1
+1

1
+1

1

1
+1

1
+1

1
+1
+1
+1

1
1
1

+1

1
+1

1
+1
+1

1
+1
+1
+1
+1

1
1

1
+1
+1

1
1

+1
1
1

+1
+1

1
+1

1
+1
+1

1
+1

1
+1

1
1
1

+1
+1

1
+1
+1
+1

1
1
1

+1
1

+1
+1

1

957
206
63
76
92
490
232
206
142
259
381
56

2486
284
113
104
126
971
326
284
144
266
420
62

The experiment consisted of N = 12 runs with the factors being arranged according to the PLackett-
Burman resolution IV design, see Table 1.  For each factor  combination, n =  10  thermostats  were
subjected  to  heating  cycles under  identical  conditions  until  they  fail. The  duration  of  the  whole
test was 7,342 thermal kilocycles.  At the end of the test only two failures were observed in the first and
eleventh run (trials), four failures in the fourth trial, and ten failures in all other trials.  Table 1 presents
the test results for the two smallest observed lifetimes, for each factor combinations.

In our analysis we will ignore the presence of other observed lifetime data. In spite of a seeming loss of
information we demonstrate that our results are identical to those obtained by Burlington et al from
”complete” data.

In  the  notation  of  the  previous  section,  we  have r =  2,  the  observed lifetimes are 1:10, 2:10.  Our
function (x) = log(x) and this means that we assume that thermostat lifetime has either lognormal or
Weibull distribution. In  our  analysis,  the  observed  response  in j-th  run  will  be,  according  to
Section 2, 10:2210:11 loglog τατα ⋅+⋅=jx .

Our first choice is to assume that the thermostat lifetime has a lognormal distribution. Then Z in  (1)
is Normal(0, 1). Table 2 prescribes to  take 1α  = 0.199, 2α  = 0.801.  Using (9) and similar
formulas, we obtain now the estimates of the effects for all factors.  They are:

µA = 0.32. µB = 0.09, µC  = 0.12, µD  = 0.06, µE  = 0.92, µF   = 0.005, µG  = 0.25, µH  = 0.21, I$

= 0.27, µJ  = 0.27, µK  = 0.31

The normal plot of these estimates, see Fig. 1, clearly indicates that the only significant factor is E, and
its sign says that the grain size must be kept on its lower level 0.008”.  This coincides with Burlington’s
conclusion.

[For using normal plot to identify the significant factors see e.g.  Box and Draper (1987), Ch.4]
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Table 2
Optimal weights *

iα  for the convex combinations of the first r order statistics
and their variances (n = 10)

Extreme-value distribution Normal distribution

r *
1α *

2α *
3α *

4α *
5α γ Var *

1α *
2α *

3α *
4α *

5α γ Var
2 0.148 0.852    0.94 0.61 0.199 0.801    0.96 0.20
3 0.045 0.205 0.750    0.93 0.37 0.161 0.154 0.685   0.92 0.16
4 0.023 0.080 0.0216 0.681  0.92 0.26 0.140 0.135 0.135 0.590  0.88 0.14
5 0.016 0.047 0.096  0.217 0.624 0.90 0.17 0.126 0.124 0.125 0.118 0.507 0.83 0.12

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

0.02

0.04
0.06
0.08
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

0.9
0.92
0.94
0.96

0.98

0.99

Normal Probability Paper

Figure1. Normal plot of factor effects

After  some  modification  of  the  model  by  including  into  it  interactions, Hamada (1995) found that
that two factors E and H and their interaction EH are significant and that both factors must be kept
on their lower level. Our normal plot does not confirm the significance of the H factor. We may,
however estimate the interaction effect of EH.  Assume that all effects except E equal zero.  Multiply
the response column [x1, ..., xN ] by the product of E and H columns.  We will find that ·E H⋅  = 0.42,
which may be considered as  an  evidence  that  the  interaction  is  significant.  Then  both  factors, E,
H should be kept on their upper level. This also coincides with the Hamada’s conclusion (1995).

Let us estimate and the standard error of its estimate.  For this purpose we  use  formulas  (13)  and
(15)  and  the  expected  values,  and  variances  and covariances  of  the  order  statistics Z1:N and Z2:N

given  in  Tables  3a,b.  For the normal case µβ  = 0.59 and
µ
β

σ = 0.15.

E
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Table 3a
The covariance matrix of order statistics for n = 10, r = 9, Z ~ )1,0(Extr .

i 1 2 3 4 5 6 7 8 9
1 1.645 0.436 0.275 0.193 0.144 0.111 0.086 0.067 0.051
2  0.646 0.290 0.204 0.152 0.117 0.091 0.071 0.054
3 0.397 0.217 0.162 0.124 0.097 0.076 0.058
4 0.287 0.174 0.137 0.104 0.081 0.062
5 0.227 0.145 0.113 0.088 0.067
6 0.190 0.125 0.098 0.074
7 0.166 0.111 0.085
8 0.152 0.100
9 0.149

Table 3 b
Mean values of the order statistics, n = 10

m(1) m(2) m(3) m(4) m(5)
2.800 1.826 1.267 0.868 0.544

m(6) m(7) m(8) m(9) m(10)
0.257 0.012 0.284  0.585  0.990

All the above analysis can be carried out also for the assumption that the lifetime has Weibull
distribution.  Then Z ~ Extr(0, 1).  Practically all results  will  be  very  similar  to  the  above  normal
case.  The  only  difference appears in the estimate of :  now µβ  = 0.33 and

µ
β

σ = 0.12.

Remark 1.

In a preliminary trial to process the data in Table 1, we took as a response only the logarithm of a single
order statistic 2:10.  The results were  essentially  the  same  as  for  the  case  of  using  optimally  two
first  order statistics.  An  explanation  might  be  the  fact  that  including 1:10  adds very little to the
accuracy of the estimates of factor effects.

The columns named γ in Table 1 show the value of the ratio γ = C/Var[Zr:n]. Surprisingly, for r
1,2,3,4,5 and n = 10, for Z ~ N (0, 1) and Z ~ Extr(0, 1) the -values are quite close to 1.  Therefore,  the
r-th  order  statistic  contains practically the same information as the whole set of  the first r order
statistics.

Remark 2.

How much we gain in the accuracy of the estimates of factor effects if we increase r?  The columns
Var display the variances of the optimal convex combinations of the first r order statistics.  For the
normal case, we may gain almost twice in the decrease of the variance by increasing r from 2  to  6.
Interestingly,  a  complete  sample  of n =  10  for  the  lognormal  case would give the variance equal
to 0.1, a reduction of variance by factor of 2, comparing to r = 2.
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Assume that Z ~ Extr(0, 1), r = 5.  Then the variance would decrease by a factor of three, and a
complete sample would result in variance reduction by a factor of 3.7, comparing to r=2.

Remark  3:  gain  in  test  duration.

In practice, the variance reduction achieved by the increase of the r value must be weighted against the
increase of the duration of the whole life testing experiment.

Let us discuss this issue in more detail.  Returning to (1) and using the logarithmic  transformation,  let
us  present  the k-th  smallest  observation  in the j-th run as

j
nk

jj
nk Z ::log βατ += , (16)

and, taking expectations,

[ ] j
nk

jj
nm mE ::log βατ += . (17)

Now put in (17) k = g and k = s and approximate the mean of the logarithm by the logarithm of the
mean.  Then we obtain

[ ] [ ] ( )nsng
j
ns

j
ng mmEE :::: loglog −≈− βττ (18)

or

[ ] [ ] ( )[ ]nsng
i
ns

i
ng mmEE :::: exp/ −≈ βττ (19)

Example.   Suppose that the logarithm of the observed lifetime is normally distributed,  the  sample
size n =  10  and  we  want  compare  the  increase  of test duration arising from the increase of k from
2 to 5.  From Table 4 b we see that [m5:10  m3:10 ] = 0.123 + 1.00 = 0.877.  For = 0.59,  we obtain
that  the  means  of  the  test  duration  increase  approximately  by  a  factor  of exp[0.59 * 0.877] =
1.68.  Suppose  now that  we  observe  all n = 10  failures, i.e. g =  10. Then the test duration
increases approximately by a factor exp[0.59(1.54 + 1.00)] 4.5.

Table 4 a
The covariance matrix of order statistics for n = 10, Z ~ N(0, 1)

i  1  2  3  4  5  6  7  8  9  10
1  0.344 0.171 0.116 0.088 0.071 0.058 0.049 0.041 0.034 0.027
2 0.214 0.147 0.112 0.090 0.074 0.062 0.052 0.043 0.034
3 0.175 0.134 0.108 0.089 0.075 0.063 0.052 0.041
4 0.158 0.128 0.106 0.089 0.075 0.062 0.049
5 0.151 0.126 0.106 0.089 0.074 0.058
6 0.151 0.128 0.108 0.090 0.071
7 0.158 0.138 0.112 0.088
8 0.175 0.147 0.116
9 0.214 0.171
10          0.344
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Table 4 b
Mean values of the order statistics (normal case)

m(1) m(2) m(3) m(4) m(5)
1.5388 1.0014 0.6561 0.3758 0.1227
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ABSTRACT

The paper introduces a method of Bayesian probability papers for estimating the reliability function of
popular in reliability analysis location-scale life time distributions.  We use simulation examples to
validate the method and a real engineering data example to illustrate its practical application.

Key words: Bayesian regression, Bayesian estimation, probability paper.

1. INTRODUCTION

A Bayes’ approach to reliability (survivor) function estimation is introduced.  This Bayes’ approach is
similar to the widely used probability papers, which can be considered as the respective classical
analog.

The traditional probability paper technique is applied to the distributions, whose cumulative
distribution functions (or reliability functions) can be linearized in the way that the distribution
parameters are estimated through the simple linear regression model y = ax + b.  The family of such
distributions includes such popular distributions as the Weibull, exponential, normal, log-normal, and
log-logistic.  The estimates obtained using the probability papers are considered as the initial estimates
(for the subsequent nonlinear estimation), but in reliability engineering practice, they often turn out to
be the final ones as well.

In this paper, the basic assumptions related to the simple normal linear regression model are discussed
in the framework of the probability papers procedures, and the basic violations of these assumptions are
specified.

Analogously, the probability papers procedures are considered from the standpoint of Bayesian simple
linear regression model.  It is shown that the Bayesian simple regression model can be applied to the
probability paper procedures with approximately the same number of violations of the respective

2 Corresponding author. E-mail address: VKrivtso@Ford.com

mailto:VKrivtso@Ford.com
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Bayesian assumptions as the classical probability papers procedures have with respect to classical
simple regression model.

The discussion below is limited to the respective point estimation procedures.

2. CLASSICAL PROBABILITY PAPERS AND SIMPLE LINEAR REGRESSION

The above mentioned linearization is applicable to those lifetime (time to failure) distributions for
which some transform of lifetime has a location-scale parameter distribution.  The location-scale
distribution for a lifetime random variable t is defined as the distribution having the probability density
function (PDF), which can be written in the following form [Lawless, 2003]:







 −

=
b

utf
b

tf 0
1)(   - ∞ < t < ∞  (1)

where u (- ∞ < u < ∞) and b > 0 are location and scale parameters, and f0(x) is a specified PDF on (- ∞,
∞).

2.1 Classical Simple Linear Regression

Consider the basic assumptions associated with the simple normal linear regression model.  Let’s
assume that a random response variable y fluctuates about an unknown nonrandom response function
η(x) of nonrandom known explanatory variable x, that is y = η(x)  + ε, where ε is the random
fluctuation or error.  In the following, we consider η(x) in the simple linear form, so that it can be
written as

y(x)= β0 +β1x + ε, (2)

or as

y(x)= β0x0 +β1x1 + ε, (2-1)

where β0 and β1 are unknown parameters to be estimated; x0 ≡ 1, and x1 ≡ x.  The data related to model
(2) are the pairs composed of observations yi(xi) and the respective values xi  (i= 1, 2, . . ., n), n ≥ 2.

For these observations, it is assumed that

yi(xi) = β0 x0 +β1xi + εi        (3)

where errors εi (i= 1, 2, . . ., n) are independent normally distributed with mean 0 and variance σ2.  In
other words, the observations yi(xi) are independent normally distributed with mean β0 x0 +β1xi  and
variance σ 2.

For the following discussion, let us consider Equation (3) in its matrix form, which is given by

Y = XB +      (3-1)
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where
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,

where is the vector of errors with zero means and the following matrix of variances

Var ( ) = 2I,

and I is the (n x n) unit (identity) matrix, i.e.,



















=

1000
....
0010
0001

I

The matrix form (3-1) is used below in Example 1 and in the further discussion.

The estimates of parameters β0 and β1 are found as

^

0 =β −
_
y

^

1β
_
x ,      (4)

^

1β = 2_

__

)(

)()(

xx

yyxx

i

ii

−Σ

−−Σ ,

where
_
y = n-1Σyi and

_
x = n-1Σxi .

The estimates (4) can be written in the matrix form as

YXXXB ')'( 1
^

1

^

0
^

−=













=

β

β ,    (4-1)

where is the transpose of matrix X, and ( X)-1 is the inverse of the matrix product of and X.

A more general case of model (3) is the so-called weighted regression when errors εi are still
independent but have different variances σ2

i (i= 1, 2,  .  .  ., n).  This model, which is called weighted
linear regression, will be discussed in the following, so we need to write it here as

yi(xi) = β0 x0 +β1xi + εi    (5)
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where errors εi are independent normally distributed with mean 0 and different variances σ2
i(xi) (i= 1,

2, . . ., n).  In the matrix form, the model (5) can be written as

Y = XB + ,     (3-2)

where  is the vector of independent errors with zero means and (in opposite to (3-1)) the following
symmetric positively defined diagonal (n x n) matrix of variances Var ( ) = ,





















=Σ

2

2
2

2
1

000
....
000
000

nσ

σ
σ

The above variance matrix  can be represented in the form needed for the following consideration







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



=Σ

2
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....
00/10
000/1

w

w
w

σ ,

where w1, w2. . . , wn are the so-called weights. It is obvious, the greater variance, the smaller the
respective weight is.  The matrix of weights is defined as



















=Σ −−

2
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21
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....
000
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w

w
w

σ

The estimates of parameters β0 and β1 for model (5) can be found as

YXXXB 111
^

1

^

0
^

')'( −−− ΣΣ=













=

β

β    (4-2)

2.2 Classical Probability Papers

Without loss of generality, consider the Weibull probability paper estimation procedure, which is one
most popular in life data analysis.  Let the cumulative distribution function (CDF) of the Weibull time
to failure (TTF) distribution F(t) be given in the following form

















−−=

β

α
ttF exp1)(     (6)
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where t is TTF,  and  are the scale and shape parameters, respectively.  Applying the logarithmic
transformation twice, the above CDF is transformed to the following expression

( )( ) αββ lnln)(1lnln −=−− ttF (6-1)

Introducing the following notation y(t) = ln(- ln(1 – F(t)), ln t = x, 0 = ln( ), Equation (6-1) takes on
the simple linear response function form (2-1):

y(x)= β0x0 +β1x1 + ε
(6-2)

It should be noted that there is no guarantee that the errors  are independent and normally distributed
with mean 0 and variance σ2 anymore.  Nevertheless, the simple linear regression technique is widely
applied to Equation 6-1, which is known as the Weibull probability plotting.  The corresponding
procedure also includes estimation of CDF F(t) using order statistic, which is illustrated in the
framework of the following example.

Example 1. 100 identical components were put on a life test.  The test data are Type II censored: the test
was terminated at the time of the fifth failure.  Failure times t(i) (in hours) of the 5 failed components
were 11.96, 39.10, 71.52, 74.90, 123.14.

The traditional estimates )( )(

^

itF of CDF F(t), used in the Weibull probability papers is given by the
following formulae [1]:

n
itF i

5.0)( )(

^ −
= (7)

where t(i) (i = 1, 2, . . , r; and r n) are the ordered failure times.  In our example r = 5 and n = 100.

Calculating these estimates for our data and applying double logarithmic transformation (6-1) results in
the following table (vector) of observations y’s

























=

3.07816-
3.33465-
3.67625-
4.19216-
5.29581-

Y

The explanatory variable x1 is obviously the logarithm of the failure times, so that our explanatory
variable matrix X is evaluated as
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
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


















=

4.81332
.4.31620

4.27004
3.66605
2.48196

1
1
1
1
1

X

Now we can find the estimates of the parameters and 0 = ln( ) using Equations (4) or (4-1) as
^
β =

0.971 (the estimate of the shape parameter) and 0

^
β = -7.712, so that the estimate of the scale parameter

is
^

α = 2809.852.

At this point, it must be mentioned that the test data in this example are simulated from the Weibull
distribution with the scale parameter α = 1000 and the shape parameter β = 1.5.  It is clear that the
estimates obtained are rather biased.

3. BAYESIAN SIMPLE LINEAR REGRESSION AND BAYESIAN PROBABILITY PAPERS

3.1 Bayesian Interpretation of Classical Simple Linear Regression

Consider simple normal linear regression (3).  In Bayesian context, it is assumed that the parameters of
model β0 , β1 and logσ  are uniformly and independently distributed, i.e.,

p(β0 , β1, σ) ∝ 1/σ  (8)

Note that it is an extra assumption, i.e., the assumptions about the observations yi(xi) are not changed.

Assumption (8) is a convenient form of the so-called, noninformative prior distribution.

It can be shown [2] that under the given assumptions, the conditional posterior probability density

function for β0 and β1 has the bivariate normal form with mean (
^

,0β
^

1β ), which are given by
^

0 =β −
_
y

^

1β
_
x ,      (9)

^

1β = 2_

__

)(

)()(

xx

yyxx

i

ii

−Σ

−−Σ

where
_
y = n-1Σyi and

_
x = n-1Σxi.  The above expressions for

^

0β and
^

1β are the easily recognizable
classical least squares estimates (4) for the simple linear regression (3)
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3.2 Including Prior Information about Model Parameters

In the framework of Bayesian linear regression analysis, the prior information can be added to one or
several regression parameters.  Let’s begin with including prior information about a single regression
parameter, say β1.  It is supposed that the information can be expressed as the normal distribution with
known mean β1pr and variance 2

β1pr [3], i.e.,

β1 pr ~N(β1, 2
β1pr)

Note that this prior distribution is similar to classical assumptions about observations yi(xi) (i = 1, 2, . . .
, n), introduced in Section 1.

Based on this similarity, the prior information on parameter β1 is interpreted as an additional (pseudo)
“data point” in the regression data set, and the posterior point estimates are calculated using the same
Equations (4) or (9).  For the case considered, this “observed” value of y corresponds to x0 = 0 and x1 =
1.

Including prior information about a set of regression parameter is performed in the similar way.  For
example, the prior information about the other regression parameter, β0 is included as a “data point”
having the prior β0 pr ~N(β0, 2

β0pr).  This “observed” value of y corresponds to x0 = 1 and x1 = 0.

Because, for the time being, we consider the case of independent observations with equal variances, we
are expand this assumption to the priors, i.e., it is assumed that the priors are independently and
normally distributed with equal variances, i.e.,

2
β0pr = 2

β1pr = 2     (10)

The following example illustrates the issues discussed in the given section.

Example 2. The data from Example 1 are used.  The prior information about the unknown
parameters is incorporated as follows.

Example 2.1
The prior shape parameter of the Weibull distribution β pr  = 1.5, and the prior scale parameter  pr  =
1000.  Note that we use the true values of the parameters of the Weibull distribution, from which the
data were generated, so that to an extent, our prior information is ideal.

In terms of the regression model (6-2), parameter β1 as an additional (pseudo) “data point” is 1.5 with
corresponding x0 = 0 and x1 = 1.  The parameter βo as another additional point is β ln( ) = -10.36 with
corresponding x0 = 1 and x1 = 0.  The table (vector) of observations y’ with these two new point now is
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1.5000
10.3616-
3.07816-
3.33465-
3.67625-
4.19216-
5.29581-

=Y

The respective explanatory variable matrix X is now

1.000000
00000.01

4.813321
4.316201
4.270041
3.666051
2.481961

=X

As in Example 1, the estimates of the posterior estimates of parameters and 0 = ln( ) are calculated

using Equations (4) or (4-1), which gives post1

^
β = 1.512 (the estimate of the shape parameter) and 0

^
β =

-9.915, so that the posterior estimate of the scale parameter is post

^
α = 705.294.  See Figure 1 for a

graphical interpretation of Example 2.
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Figure 1. Weibull probability Plot of Prior & Posterior Distributions.

Classical estimates:
β =0.971, α = 2810

Posterior (equal weights):
β =1.512, α = 705
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The above example represents a case when the pseudo data points are assumed having the same
variances as the real data points (observations).  In the framework of the weighted regression, this case
corresponds to the equal weights situation.  From Bayesian standpoint, it is the situation when the prior
information has as much value as the real data.

Now consider the following two extreme cases.

Example 2.2

In the first case, the prior information has a negligible value.  This case can be realized using very small
weights (large variances) related to the pseudo data points on the Weibull plot.  Let’s consider the data
of Example 2 with the following variance matrix:





























=Σ

1000000000
0100000001
0010000
0001000
0000100
0000010
0000001

Applying Equation (4-2) for the weighted linear regression, results in post1

^
β = 0.975 (the estimate of the

shape parameter) and 0

^
β = -7.726, so that the estimate of the scale parameter of the Weibull

Distribution is post

^
α = 2772.408.  It is clear that, the posterior estimates are close to the classical ones

(see Example 1).  The result shows that the prior information does not play a significant role in the
estimation.

Example 2.3

Now consider the opposite case.  Let’s select very large weights (very small variances) related to the
pseudo data points on the Weibull plot.  Let’s consider the data of Example 2 with the following
variance matrix:




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























=Σ

001.0000000
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0010000
0001000
0000100
0000010
0000001
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Applying the same Equation (4-2) for the weighted linear regression, gives the following estimates:

post1

^
β = 1.509 (the estimate of the shape parameter) and 0

^
β = -10.359, so that the estimate of the scale

parameter is post

^
α = 958.276.  It is clear that, the posterior estimates are close to the true values of the

Weibull distribution, from which the data were generated.  This result reveals that in the considered
case, the prior information does play a dominant role in estimation.

Example 2.4

Now consider the case close to real practical application of the given Bayesian procedure.  One can
assume that the data points on the Weibull probability plot have equal variances (standard deviations).
Let’s assume that they are equal to 1.  A degree of belief in the prior information about the Weibull
distribution parameters can be expressed in the same terms of standard deviations.  It is reasonable to
assume that the standard deviations related to the respective pseudo data points are, say, 3 times larger
compared to the real data points, e.g., three times larger.  Let's consider this case using the same
example.  The respective variance matrix for this case is





























=Σ

000.9000000
0000.900001

0010000
0001000
0000100
0000010
0000001

Applying the same Equation (4-2), gives the following estimates: the estimate of the shape parameter

post1

^
β = 1.934, and the estimate of the scale parameter is

^
α = 1356.920.  It is clear that, the posterior

estimates are based on both types of data – the real observations and the prior information.

3.3 Including Prior Information about Reliability or Cumulative Distribution Function

It is clear that prior information about the reliability function or the CDF can be included in data set
using a similar approach.  That is, treating the prior knowledge about the reliability function at some
given times as additional data points, and expressing the degree of belief in terms of standard
deviations of prior reliability function estimates, which can be obtained using either expert opinion
elicitation, or appropriate data (e.g., data on the predecessor product, alpha version testing etc.)



Reliability: Theory & Applications No.2, April 2006

- 43 -

ss tt
uu dd

yy

Table 1.  Summary of Examples.

True values of the Weibull distribution parameters are:  = 1000,  = 1.5.

Example Estimation Procedure and Data Estimate of  Estimate of
Example 1 Classical procedure.  Real data only 2810 0.971
Example 2.1 Bayes’ procedure with equal weights based on

real data and ideal prior estimates, i.e., pr =
1000, pr = 1.5.

705 1.512

Example 2.2 Bayes’ procedure with negligible prior
information, i.e., prior estimates have very
small weights (large variances)

2772 0.975

Example 2.3 Bayes’ procedure with prior information
strongly dominating real data, i.e., prior
estimates have very large weights (small
variances)

958 1.509

Example 2.4 Bayes’ procedure with prior information
comparable with real data information

1357 1.934

4. ACCELERATED FATIGUE TEST DATA

A sample of 12 induction-hardened steel ball joints underwent an accelerated fatigue life test with the
following cycles to failure (in 1000s): 150, 170, 180, 200, 200, 215, 220, 220, 250, 260, 265, 300.
Based on long-term history of such tests, the underlying life distribution was assumed to be lognormal.
The CDF of the lognormal distribution with location parameter µ, and scale parameter σ is linearized
using the following simple transformation:

σ
µ

σ
Φ −=− )tln()]t(F[ 11 ,

where Φ-1[.] is the inverse of the standard normal cumulative distribution function.  The classical least-
square estimates of the location and scale parameters in this case are found to be 12.279 and 0.204,
respectively.  Historical data suggested that the scale parameter should be 0.160.  Using the procedure
similar to that outlined in Example 2.1 (equal weights), the Bayesian posterior estimate of the scale
parameter was found to be 0.171.  The analysis is graphically summarized in Figure 2.
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Figure 2. Lognormal Probability Plot of Ball Joint Fatigue Life Data.
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OOPPTTIIMMAALL UUNNIIFFOORRMM--LLIIKKEE
SSCCHHEEDDUULLIINNGG OOFF MMAAIINNTTEENNAANNCCEE

Yakov Genis3

New York, USA

Igor Ushakov4

San Diego, USA

The algorithm for the optimal scheduling of work performance is suggested. The every work’s
maintenance cannot be interrupted and it has an acceptable interval to be performed. The maintenance
resources are limited. The optimal maintenance means that the distribution of the total sum of the rates
of the works’ maintenance should be made more uniform-like.

1. FORMULATION OF THE SCHEDULING PROBLEM

There are some “works” with volumes v1, v2, …, vn (see an example in Fig.1).  Each work, k, has to be
fulfilled during interval  [sk, ek], which lies between is the allowed start moment, Sk, and permissible
end moments, Ek, that are given in advance, i.e.

[sk, ek] ⊆[Sk, Ek].                                                    (1)

Fig. 1 The initial intervals and the volumes

3 Yakov Genis <yashag5@yahoo.com>
4 Igor Ushakov <iushakov2000@yahoo.com>
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During its performance each work cannot be interrupted and rate of its performance must be constant.

The rate rk of performance of work k within the interval [sk, ek]  is equal to:








 −∈
−=

otherwise,0

][if
)(

kk
kk

k

k

set
se

v

tr .                                                           (2)

It is clear that the total rate of work performance for a given allocation of works is equal to

R(t) = ∑
∈Gk

k tr )( .                                                          (3)

where G is the chosen allocation of works.  Notice that for any chosen schedule function R(t) is a step-
function of the type presented in the Fig.2.

Fig. 2 The initial distribution of the work rates.

The problem is to find such subintervals [sk, ek] that

a) the maximums of the sum of work rates should be minimal
)(maxmin tR

tg
                                                                   (4)

and/or the minimum(s) of the sum of work rates should be maximum

g
max

t
min R(t) ,                                                                   (5)

where g is allocation of works, under the condition that all the works have been fulfilled ;
b) the distribution of the total work rate R(t) has to be the most uniform-like on the whole

maintenance interval.

Note:  The obtained schedule is not unique because the (4) and the (5) may give different results due to
discrete nature of the time quanta .
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2. VERBAL DESCRIPTION OF THE ALGORITHM FV&CH

The title of the algorithm FV & CH is the abbreviation of its whole name “FILL THE VALLEYS &
CUT THE HILLS”. It is funny but the literal verbal description of this algorithm is given in the next
words of the Gospel: “Every valley shall be filled, and every mountain and hill shall be brought down”
(Saint Luke, Chapter 3, Verse 5).

But let us go from the Bible  mathematics, and give the strict (though a verbal) description of the
algorithm that was implemented on Visual Basic.

We should find such set g of subintervals (1) to deliver (4) and/or (5), and to make R(t) as uniformly
distributed as it possible under the given restrictions. The developed FV&CH Visual Basic program has
two subprograms: “Cut Hills” and “Fill Valleys”. The sequential switch from one program to another
allows finding the optimal solution in an interactive regime.

Explain the algorithm on an illustrative example. Let there be five works with volumes vk and
corresponding admissible time intervals [Sk, Ek], k= 5,1 . These data are given in the Table 1. We
measure the time with accuracy of the discrete quantum (slot). It may be for example hour, or 15
minutes, or one minute, etc. In Table 1 values d1,  d2,  d3,  d4, and d5 are some slots. For example, the
work #1 initially may be started at the beginning of the slot d1 and has to be finished at the end of the
slot d4.

Table 1. The initial works distribution

Work # Volume d1 d2 d3 d4 d5

1 8 2 2 2 2
2 9 3 3 3
3 15  5 5 5
4 12   4 4 4
5 3  1 1 1

9.4opt 5 11 15* 12 4*

The value on the bottom of the column “Volume” gives the optimal rate for the ideal case when it
would be permissible to perform each work during entire given interval (from d1 to d5), i.e. at any time
the sum of work rates is constant. In the lower row the superscript asterisk denotes the maximum rate
and the subscript asterisk denotes the minimum rate for the initial works’ distribution. The initial works
distribution is given in the Fig.3.
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Fig. 3. The initial total work rate distribution.

The Table 1 and the Fig. 3 show that the maximum total rate for initial work distribution locates at slot
d3.  Let us find what works to be fulfilled in slot d3 according to the initial distribution: shifting them to
the left or to the right may decrease the maximum rate.

Step 1. Let us begin with work #1. Since any work has to be fulfilled with no interruptions, we
can move the beginning of this work to slot d4 or move it to the left, so it will be started at
moment S1 and have fulfilled before slot d3. In this concrete case, the only possibility to make
shift to the left.

Note: At the step 1, one may start with moving any work that covers slot d3 (maximum total
rate), however for the algorithm description some ordering of works is necessary

The new distribution is given in the Table 2.

Table 2. Step 1: Distribution after moving work #1

Work # Volume d1 d2 d3 d4 d5 Action
1 8 4 4    Move “left”
2 9 3 3 3
3 15  5 5 5
4 12   4 4 4
5 3  1 1 1

9.4 7 13* 13* 10 4*

The computer algorithm at Step 1 tried to move other works and remember the best solution ( a
champion) of all of them before moving to Step 2.
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In this example (doing actions manually) we select the work #4 for moving to the right. Moreover,
avoiding intermediate steps, we move entire this work to slot d5 (we call this move conditionally as
“right-right”). This action decreases the peak rate and also improves the rate’s distribution. Indeed this
action is now the best (see the Table 3).

Table 3. Step 2: Distribution after moving work #4 .

Work # Volume d1 d2 d3 d4 d5 Action
1 8 2 2 2 2
2 9 3 3 3
3 15  5 5 5
4 12   0 0 12 Move “right-right”
5 3  1 1 1

9.4 5* 11 11 8 12*

Step 3. This step should “fill the hole” in slot d1. Entire work #1 is moved to this slot (we call this move
conditionally as “left-left”). The result is shown in Table 4.

Table 4. Step 3: Distribution after moving work #1.

Work # Volume d1 d2 d3 d4 d5 Action
1 8  8 Move “left-left”
2 9 3 3 3
3 15  5 5 5
4 12   0 0 12
5 3  1 1 1

9.4 11 9 9 6* 12*

By this action we simultaneously “killed two birds with one stone”: we increased the minimum rate and
did the rate’s distribution more uniform-like.

Step 4. Move entire work #5 to the d4. The result is shown in the Table 5.

Table 5. Step 4: : Distribution after moving work #5.

Work # Volume d1 d2 d3 d4 d5 Action
1 8  8
2 9 3 3 3
3 15   5  5  5
4 12   0 0 12
5 3  0 0 3  Move “right-right”

9.4 11 8 8 8* 12*

This step is final.
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The comparison of the initial distribution with the distribution after optimization is shown in Fig. 4.

Fig. 4. The comparison of the initial distribution with the distribution after the optimization

SUMMARY

1. The suggested algorithm FV&CH gives the strict decision of the problem in the sense of finding
of the optimal uniform-like maintenance’s scheduling.

2. The obtained result is optimal (in mentioned above terms), though is not unique.
3. The described algorithm is simple for programming.
4. There is developed a program on Visual Basic that uses this algorithm. The program has a

simple and convenient interface and permits to work with unlimited number of works with slots
that may be as small as user needs. Everybody interested in the program, please ask the authors.
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 Visual Basic.
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EESSTTIIMMAATTIIOONN AANNDD PPRREEDDIICCTTIIOONN

Oleg Abramov
Vladivostok, Russia
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Abstract: A problem of the state prediction and condition-based maintenance of
complex engineering systems is considered. An approach to solving this problem
is based on the construction of the special minimax and robust algorithms, which
can be used in the case when inspection data are incomplete and insufficient. The
method for individual robust prediction based on the extremal properties of Karlin
polynomials and the ideas of minimax estimation is proposed.

1.INTRODUCTION

For complex engineering systems under heavy-duty service the failure of which leads to heavy losses
or disastrous consequences the main problem of system monitoring and diagnostics becomes not the
identification and isolation of failure, but prevention of them. The solution of this task can be based on
individual maintenance.  Predicting and estimating the state of an engineering system forms an
information base for individual (condition-based) maintenance.
The difficulty in solving the problem of individual status prediction is largely caused by the lack or
shortage of statistic information on field variation of system parameters. In this case the application of
classical methods of mathematical statistics to the solution of status estimation and prediction problem
may cause serious errors.

The paper states and solves a problem of adopting optimal estimation and prediction strategies when
the stochastic properties of measurement errors and errors of status model are unavailable. We use a
technique of individual robust prediction which is based on the extremely properties of Karlin
polynomials (Karlin and Studden, 1966) and the ideas of minimax estimation. This technique makes a
prediction even if the number of test measurements is small.   It does not need any stochastic properties
of measurement errors and other noises (it is only necessary to know their limits), obtains not only a
simple average, but also secures bounds in which an actual value of measurement parameter would lie
in future. This technique has adaptive properties improving the prediction accuracy in an instable
situation.
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2. PREDICTION TECHNIQUE

Let the availability of an engineering system be determined by the value of a certain performance
parameter x(t),  with the availability condition  given  in the form

A(t) ≤  x( t) ≥ B(t)

where A(t) and B(t) are lower and upper bounds on  the  variable parameter, respectively. A parameter
variation is considered  to be a realization of the random function of the following form

X t x u tk k
k

m

( ) ( )=
=
∑

0
(1)

where  xk  is a random  variable, { }u tk k

m( )
=0

  are deterministic functions of time.

The engineering system serves at  the time  interval  [0,  T] during which the parameter may be
inspected or adjusted.  Measurement errors (as well as errors of process identification, mistakes caused
by fluctuation, etc.) are regarded  as  noise Ψ(t)  added to a particular realization of the stochastic
process (1). We only know about the noise that

Ψ(t) ≤ δ , t ∈[0,T], (2)

where δ   is the extreme error.

The problem consists in specifying such instants of inspection that the parameter x, for  certain,  lies  in
the  allowed bounds A(t) and B(t) for a time period T. Suppose that we  would obtain a section of
process realization θ(t)  on  the  interval  [t0 ,tµ ].   Then

θ(t) - δ ≤ x(t) ≤ θ(t) + δ , t ∈ [t0 ,tµ ].

The actual realization x(t)  on interval [t0,tµ]  is enclosed in  a  "tube",  bounded  by  the functions
f(t)=θ(t)-δ    and g(t)=θ(t)+δ (Fig.1).  In the tube there are  many  realizations  in  the form ∑ xk uk

(t)  which are referred to as tolerable. In  predicting  the behavior of the process for t>tµ  we take the
"worst"  realizations,  i.e. the realizations that at  t ∈ (tµ ,T]   go  above  or below the rest. We have
proved that on imposing certain restrictions on the set of  functions { }m

kk tu 0)( = ,  Karlin  polynomials L-

(t) and L+(t) are the worst  realizations (Abramov  and  Rozenbaum,1990).

 The following theorems establish for continuous function (realization of the random process) the
existence of two special polynomials processing  certain  extremal properties.

Theorem 1. Let { }m
k tu 0)(  be a Tchebycheff system (T-system) and f and g  two continuous functions

on  [a,  b]  such that there exists a polynomial )(tν  being between f and g i.  e., ),()()( tgttf <<ν
],[ bat ∈ .

a)  There exists a unique polynomial )(tL−  satisfying the properties:
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),()()()( tgtLtfi ≤≤ − ],,[ bat ∈

and

(ii)  there  exist   m+1   points )(...)( 121 bttta m ≤<<≤ +  such that

(*)




=
=

=
−+

−+
−+

−

....,5,3,1),(
...,4,2,0),(

)(
1

1
1 itf

itg
tL

im

im
im

b)  Let condition (ii) be replaced by )( ′ii  from (*) by interchanging the functions f  and g. Then there
exists a unique polynomial )(tL+  satisfying (i) and )( ′ii .

Theorem 2.  Let { }m
kk tu 0)( =  be a T-system on ],[ NM  and in accordance with Theorem 1 for continuos

functions f(t), g(t) we constructed two polynomials )(),( tLtL −+  on [a, b], where M<a<b<N. Then for
an arbitrary polynomial u(t) satisfies conditions

),()()( tgtutf ≤≤

we   have

)},(),(max{)()}(),(min{ tLtLtutLtL +−+− << ].,(),[ NbaMt ∪∈∀

The curves of L-(t) and L+(t)  define so called "prediction cone" (Fig. 1)  in the sense that the actual
realization  of  the process under study is for certain within the cone at t∈( tµ, , T].

Fig.1. Tube of admissible realizations and prediction cone
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We have synthesized algorithms for finding extreme realizations and investigated their properties.
Usually, we have the discrete measurement results of system state parameters. In the case of discrete
inspection  measurements form a sequence j} j=0 , at t0  t1  tj  t .    Measurement errors satisfy
conditions .

Then the actual realization x(t)  at t=tj   is enclosed in the   “windows”      [ j , j + ],.  j=1,  , ..
The set  of realizations which belong at t0, t1,    ,t to all windows is the set of admissible (tolerable)
realizations.

It is not difficult to shown that in the case of discrete inspections  the solution for L-(t)  and L+(t)  is
reduced to the solution of the two problems of  linear  programming

1. max ( *)
x k k

k

N

k

x u t
=

∑
0

2. min ( *), *
x k k

k

N

k

x u t t t
=

∑ >
0

µ

subject to θj - δ ≤ x u tk k
k

N

( *)
=

∑
0

≤ θj + δ, j=0,1,...,m ,

where t* - arbitrary selected time from ( tµ, , T].

3. MAIN PROPERTIES AND APPLICATION

The approach under discussion meets general requirements to any prediction  procedure. Estimates
found are  unique,  optimal and unbiased. In addition to  measurement errors,  the  approach allows one
to take into account some other  mistakes  caused  by the difference of real processes of parameter
variation  from  a mathematical model adopted. Models of the form (1)  sufficiently well describe
processes  of  “irreversible”  parameter  variation during  system aging or wear. Reversible changes
caused by fluctuation in supply voltage, loads, ambient temperature, etc.  are usually regarded as
certain high-frequency noise imposed on  the basic trend of parameter variation. The stochastic
properties of the noise are usually unknown. A more real  situation  is  that we know  restrictions on the
values of reversible  fluctuations. This corresponds to the application of  additional  restrictions in the
form (2) and, consequently, the  reversible  fluctuations do not influence, in principle, to the  procedure
of  building  a prediction cone. But if the basic model contains an error,  then a special-purpose
adaptation  algorithm  is proposed to improve  prediction accuracy. The algorithm is based on the ideas
used in the technique of moving average  or  exponential  smoothing  and consists in weighing
measurement data.

By using prediction  data we can, in optimal way, solve the problem of specifying the time of next
inspection or preventive maintenance.

Crossing the bounds A(t) and B(t) of tolerance range by the extreme realizations L-(t)  and L+(t)
determines two  values  the minimum of which should advantageously be taken as the  time  of the next
µ+1-th  inspection
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tµ+1   = min (τ1, τ2 )
where τ1  and τ2  are  solutions  o f the  equations L-(t)=B(t)    and L+(t)=A(t), respectively.
Evidently,  the  inspected  parameter will, for certain, lie in  the  tolerance  range  for  the  time interval
tc  = tµ+1 - tµ .   The µ+1-th  measurement is used to find the next time interval during which the
parameter does not leave the tolerance range. If the time interval (we call it  the  interval of dependable
service) appears to be less than a certain minimum  interval tc

min :

( tµ+2 - tµ+1 )  < tc
min

then  we  must carry out preventive adjustment  of  the  parameter x(t).

We can easily extend the proposed approach  on  the  case where the working state of an engineering
system is described by several parameters.

If a set to which possible  measurement  errors  belong  is determined with a certain probability (say,
the  inequality  (2) is fulfilled with probability Pr), then the approach  allows  one to find margins in
which a parameter will lie the in future with probability no less than Pr.

The approach has been implemented as a program module PROGNOSIS which runs on  PC under the
MS Widows  operating system.  Windows application PROGNOSIS is intended to predict the state of
observable complex engineering systems and to schedule their condition-based maintenance. The
software is most advantageous to be used within computer  aided  control (measuring) systems of
heavy-duty objects, e.g. ship and aircraft engines, power stations. Besides that PROGNOSIS system
may also be applied for operational-life accelerated tests of high-reliable equipment.

The techniques applied are oriented onto conditions of initial data shortage and require neither knowing
stochastic properties of measurement errors  and disturbances nor large amount of the observation
results.

An efficiency of the software implementation is proved by failure prevention along with reducing
repair and maintenance expenses.

4.CONCLUSION

Condition-based maintenance of engineering systems considerably improves their functionality.
Preventing both failure and unnecessary  maintaining operations, such a strategy is the most favorable
one heavy –duty systems. Scheduling the condition-based maintenance is based on systems state
estimation and prediction.

The method for individual secure(robust) prediction based on the extremal properties of Karlin
polynomials and the ideas of minimax estimation is proposed.

This technique makes a prediction even if the number of test measurements is small.   It does not need
any stochastic properties of measurement errors and other noises (it is only necessary to know their
limits), obtains not only a simple average, but also secures bounds in which an actual value of
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measurement parameter would lie in future. This technique has adaptive properties improving the
prediction accuracy in an unstable situation.
It is advantageous to apply the technique to the design of servicing schedules for high-duty complex
engineering systems which failure may cause heavy manufacturing losses or grave consequences.
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PPRROOTTEECCTTIIOONN RREESSOOUURRCCEESS AALLLLOOCCAATTIIOONN

Igor Ushakov
San Diego, USA

PART I.  MINIMAX CRITERION

Abstract

A concept of optimal resources allocation to protect an object against terrorists attack is
presented. Under assumption of uncertainty of terrorists’ intentions, minmax criterion is
suggested. Goal functions for cost-effectiveness analysis are given.

I.  INTRODUCTION

For decades, the United States has focused its military and intelligence capabilities on potential
enemies beyond its own borders. After September 11th, 2001, it has become increasingly clear that our
enemies have the ability and determination to reach through our defenses and strike at critical assets
here at home.

Modern terrorism has gone from the frame of simple intimidation to the active destruction of the
chosen country: terrorists’ attacks goal is to cause the maximum possible material damage and/or
human casualties.  It is obvious that the terrorist activity is getting more and more organized and
modern counter-terrorism is a real war with an invisible enemy.

The problem of protection of human beings, material values and political/historical subjects of possible
terrorists’ attacks arose.  A defender usually spends more resources then terrorists, so optimal
allocation of these resources is very important.  It is clear that terrorists have many advantages:  they
choose the time of their attack, they choose the object for the attack, and they choose the weapon of
destruction.  In general, a defender does not know what are terrorists’ intentions.

The proposed mathematical model is developed for optimal allocation of defender’s resources for best
protection of the defended objects.

This approach is based on [Ushakov, 2005].  and [Gnedenko & Ushakov, 1995].
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II. VERBAL DESCRIPTION OF THE PROBLEM

Types of counter-terrorism actions

What kind of actions of the country protection against terrorists do we suppose to consider?  They are
in general as follows:

1. Safety: complex of measures permitting to create “counter-terrorist environment” in the
country.

2. Survivability: complex of measures permitting to develop special measures to minimize the loss
if the strike has been done.

3. Pre-emptive measures for destroying the terrorist’s abilities to attack.

Safety includes a set of measures permitting to prevent terrorist’s acts (check points at airports,
checking cargo, profiled visa control, registration of foreign visitors and control of their staying in the
country, control the purchase of dangerous components for composing bombs, etc.).  Objective of these
measures is to prevent the possibility of organizing the terrorists acts by limiting penetrating suspicious
people in the country and by eliminating a possibility of collection/creation WMD.

Examples:
(1) A soft visa control in the USA  permitted a number of 9/11 terrorists to enter the country and to

stay within it easily.
(2) Absence of document control permitted a group of foreign terrorists to get training in jet piloting

that led to hijacking civil planes and directed them to Twin Towers in New York and Pentagon in
Washington.

(3) Lack of control for purchasing of suspicious materials give to Americans McVeigh and Nichols a
possibility to make an extremely destructive bomb and blast a Governmental building in
Oklahoma City, killing many innocent people including children in a kindergarten.

Survivability includes a set of measures, which help the society to lose fewer lives, to get less loss, to
prevent public panic.

Examples: In October of 2002, when Chechen terrorists hold hostages at the Moscow theater, Russian
counter-terrorists forces using poisonous gas against them but did not supply the scene with
the anti-dots that led to severe loss of hostages.

Pre-emptive measures include political steps and economical steps.

Examples:

(1) UN inspections of countries with possible cradling of terrorists,
(2) embargo for states supporting terrorism,
(3)  direct military attacks on terrorists  bases like it has been done against  Al-Qaeda in Afganistan.

Of course, some unjustified actions (like Bush s war in Iraq) could even increase terrorists  activity.

Our belief is that all these sides of the terror-fighting problem must be combined in an aggregated
model, which can be used by decision makers of various positions.
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Here, at the first step of modeling of counter-terrorism resources allocation, we will focus on the
measure of protection of a single object, i.e. on the safety problem. For this problem, one can formulate
the following problems:

Direct Problem:
Optimally allocate available limited resources that guarantee the maximum possible level of safety of
defended objects against terrorists’ attacks.

Inverse Problem:
Optimally allocate resources that guarantee the desirable level of safety of defended objects against
terrorists’ attacks with minimum possible expenses.

Thus, there are two objective functions:

• Cost of protective measures, and
• Guarantee level of the object safety.

Different objects have different priorities (or values).  For instance, a terrorists’ attack on a stadium
during performance might lead to huge human lives loss; an attack on a large bridge might create a
serious communication problem for a relatively long time; a destruction of a National symbol might be
a strong hit on the country prestige.

 It is assumed that counter-terrorism experts are able to formulate measures of priority, or “weights” of
defended objects because without such priority objects defense is rather amorphous.

III. DEFINITION AND NOTATIONS

Let us assume that there are three distinct layers of objects safety protection: Federal, State and Local
(individual). All input data are assumed to be given by counter-terrorism experts. Introduce the
following notations:

Fi (ϕ i) – subjective probability that an object within the country will be protected against terrorists’
attack  of type i under condition that on Federal layer one spends ϕ i resources. (Notice that this type of
protection might be not applicable to all objects. For instance, increasing control of purchasing
chemical materials for WMD design has no relations to possible hijacking.);

Si
(k) (σ i

(k)) – subjective probability that an object within State k will be protected against terrorists’
attack of type i under condition that on the layer of this particular State one spends σ i

(k) resources;

Li
(k , j) (λ i

(k , j)) – subjective probability that particular object j within State k (denoted as pair “k, j”) will
be protected against terrorists’ attack of type i under condition that one spends λ i

(k , j) resources;

W(k , j) – “weight” (or “measure of priority”) of  object (j, k).
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IV. MATHEMATICAL MODEL: Evaluation of expected loss

On this stage, we consider a single object j, located in State k.  Assume that only set Gk,j of possible
types of terrorists’ attacks is possible against object (k,j). Under condition of uncertainty, we have to
assume that terrorists choose the most vulnerable type of strike.  In this case, Federal protection
delivers to this particular object the level of safety is equal to:

F(k , j) = min { Fi , i∈ Gk,j}.

Now consider State k layer. Using the same arguments, we can write for object  (k,j) the level of
protection delivered by the protective measures on the State layer:

S(k , j) = min { Si , i∈ Gk,j}.

Assume that on a local layer object (k,j) protection is equal to L(k , j). (Postpone for a while, how this
value is obtained.)  Then we can assume that measures of protection on all three layers (Federal, State
and local) influence independently.

Let us, for the sake of concreteness, consider safety of a stadium:  Federal measures are usually
relatively rough and non-specific (like general visa control, etc.), State measures are more specific
(traffic control, attention to local communities behavior, etc.), and local measures are focused on
specific sides (police blocking of transportation, stronger patrolling, using dynamite sniffing dogs,
etc.).  It is possible to say that Federal layer nets “large fish”, State layer can net “smaller fish”, and,
finally, local layer nets even smaller though “very poisonous fish”. So, the total probability of possible
terrorists attack will be lessened by all three layers practically independently, i.e. the probability of
successful protection of object (k, j) can be found as:

P(k, j) = 1– (1– F(k , j)) ⋅ (1– S(k , j)) ⋅ (1– L(k , j)).

Hence, the expected loss, w(k, j),of possible attack in this case is equal to

w(k, j) = W(k, j) (1 – P(k, j)).

V. MATHEMATICAL MODEL: Algorithm of resources allocation

Now we return to calculation of L(k ,  j) and to the problem of optimal allocation of resources for object
(k, j) protection.

Consider Gk,j , a set of possible terrorists actions against object (k, j). Let on the local layer we know
functions Li (λ i) – subjective probability of protection of object

(j, k) depending on spent resources λ i  for all possible types of terrorists’ attacks, where superscripts
(k, j) are omitted, for the sake of simplicity .  These functions are presented in the figure below where
for illustration purposes only we depicts only three such functions. (They should be defined by counter-
terrorism experts.)
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First, consider the Inverse Problem: obtaining the desired level of safety due to measures on the local
layer.  If the chosen level is L*, then each of functions L1(λ1), L2(λ2), and L3(λ3) has to have its value
not less than L* because inequality

min{ L1(λ1), L2(λ2), L3(λ3)}≥ L*

has to be held.

It is obvious that for the minmax criterion to have any Li (λ i) larger than L* has no sense. So, the
problem of protection resources allocation is solved: the local safety level L* can be reached if all Li (λ
i) = L*, and in this case one spends total

λ* = λ1* + λ2* + λ3*

resources. This amount of resources is minimum for reaching safety level L* .

In analogous way, if one needs to reach the safety level L**, the expenses related to this level of safety
are

λ** = λ1** + λ2** + λ3**

and also are minimum for this case.

Direct problem (maximization safety under limited total resources) can be solved with the use an
iterative process of numerical extrapolation.  For instance, let total resources λ° be given.  One can find
two arbitrary solutions of the Inverse Problem, say, L* and L** with corresponding values λ* and λ**.
Let all three values satisfy condition

λ* ≤ λ° ≤ λ**.
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Applying linear extrapolation, one finds value L(1) and then, having solved the Inverse Problem for this
value, finds a new value λ(1) , which is used on the 2nd step of the iterative process instead of  value λ*
, used at the beginning (see figure below).

If initially found values λ* and λ** satisfy conditions λ* ≤ λ** ≤ λ°  or λ° ≤λ* ≤ λ**, obviously, the
iterative process is absolutely similar.

EXAMPLE.

For the sake of transparency, consider a conditional example with a stadium safety that give us a
possibility to explain everything not so abstractly.  Assume that protection measures on Federal and
State layers (for instance, attentive visa issuing with profiling nationality and country of applicant,
checking pilot schools attendees, observation abnormal activity within specific communities, etc.) have
been already undertaken.
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Assume that three possible types of terrorists attacks are considered:

(A) Suicide bombing;
(B) Track with explosive entering the stadium zone;
(C) Crash of a private plane.

Assume that there are the following protection measures:

A1 – Visual checking suspicious bags, dresses, etc;
A2 – Sample checking suspicious persons;
A3 – Using explosive-sniffing dogs;
B1 – Police block up of traffic on neighbor streets;
C1 – Copter, armed with anti-plane missiles, barraging in the stadium area.

Fictional numerical input data (expenses of these protective measures) used in this illustrative example
are given in the table below.

LEVEL OF PROTECTION
0.9 0.95 0.99 0.995 0.999

A1 1 2 5 8 12
A2 5 10 25 40 60
A3 - 2 - 5 10
B1 1 - 10 - 20
C1 50 75 125 200 300

Here symbol “-“ means that the protection level is absent, i.e. for instance, if one begins to use measure
A3 , after applying 2 cost units the protection level jump to 0.95, though there is no level 0.9 at all.

For given example, expenses related to the protection level 0.95 are equal to  2+10+2+10+75=99
conditional units (numbers in the table are taken from up to down). Expenses related to level 0.995 are
equal to 8+40+5+20+200=273 conditional units. Here bold fonts denote “jumps” described above, i.e.
one is forced to “overkill” protection since otherwise the required protection is not delivered.
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CONCLUSIONS

We have outlined very general theoretical approach that can be used for the assessing, planning,
modeling, and managing of cost-effective counter-terrorism measures. The second phase of the
proposed approach deals with aggregated model for sets of defended objects within the states and in the
country as whole.  Of course, due to terribly increasing dimension of the problem on the higher layer it
is possible to make only computer model.

Having that computer model, one can formulate much more complex and realistic problems to include
various “what-if” scenarios and additional information: known gaps in security system, counter-
terrorism intelligence, impact of preemptive strike against terrorist groups, fuzzy (or not enough
reliable) information about terrorist plans and capabilities, etc.
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