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INTRODUCTION

Software reliability growth is a well studied subject, perhaps starting with the classic work by Jelinski
and Moranda [Jelinski 1972]. Applicability of reliability growth models is well established in where
large (100 KLOC or more) software is written and maintained. Examples of such enterprises are
application software, space exploration,  telecommunication, etc. One can obtain the definition of
standard terms (e.g., fault, failure) and operational summary of most widely used software reliability
models from a document maintained by NASA Software Assurance Technology Center [Wallace].

Software reliability growth models address two important, but related, questions faced by the software
industry: 1) How many remaining bugs are likely to be present in newly developed software and how
much resources are needed for debugging to accepted level, 2) given that it is more expensive to fix a
bug after software is released to the users, when it is economically prudent to release the software.

SOFTWARE RELIABILITY GROWTH MODELS

Software reliability growth models (SGRM) generally assume a finite but random number of initial
faults that are revealed as failures according to a Non Homogeneous Poisson Process (NHPP). Time
dependence of NHPP (see [Ross 2003] for an introduction to stochastic processes) rate is supposed to
capture all underlying effects including learning effects by the debug team [Goel 1979, Ohba 1984,
Pham 1999]. Some models also claim to incorporate effect of introducing new bugs during the actual
debug process. Operationally, most SGRMs resort to estimating the mean value function of the NHPP
using observed failure data and maximum likelihood estimation procedure (see [Hoel 1996] for an
introduction to maximum likelihood estimation).

Observed software failure data tends to be S-shaped. Thus, SGRM applications of NHPP choose an S-
shaped mean value function depending on two or more parameters. Homogeneous Poisson Process
(HPP) is also used as SGRM [Ohba 1984] because of parsimony. However, exponential distribution
arising from HPP does not fit all software failure data. When a software suite is composed of dissimilar
modules, hyperexponential distribution has been used to model software reliability growth [Ohba
1984].

NHPP is not the only family of stochastic models used to model software reliability growth. Weibull
PDF has also been used to model time rate of bug appearance [Kenny 1993]. Weibull model is justified
when debug effort increases with calendar time as a power law and this is the dominant effect in
determining the number of remaining bugs. If the debug effort grows linearly with time, an exponential
model is obtained.
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A common theme in SGRM is to a process or, a distribution and fit some observed time sequence of
failure times to the model. One model may successfully summarize some datasets and fail to
summarize some other datasets. Thus, statistical goodness of fit measure is the only criteria that can be
used to evaluate any given SGRM. Sum of Squared Errors (SSE), Akaike Information Criterion (AIC),
and Chi-square tests have been used in the literature [Pham 1999].

MODELS WITH RANDOM EXECUTION MEDIA

Software reliability growth models, except for the Jelinski-Moranda model [Jelinski 1972], described
above assumes the number of bug to be a random quantity initially. We take the view that initial
number of bugs in a code is fixed by unknown quantity. Execution media for the code provides a
random environment. If different debug teams were to debug the same code, different realizations of
fault detection would be achieved.

Ross has a model for software reliability growth starting with fixed number of bugs [Ross 2003].
However, practical use of the Ross model may be limited because it requires classification of faults
according to the number of failures it causes. Lee et al. has recently attempted to model software
reliability growth by a stochastic equation where random execution environment has been modeled by
ad hoc Gaussian noise source [Lee 2004]. Lee model seems to fit much of the published data on
software failures.

We posit another model for software reliability growth based on analogy with product diffusion of
consumer durable goods. Bass-Niu (BN) formulation attempts to provide a proper stochastic
formulation starting with fixed number of bugs in the code in the spirit of Jelinski et al., Ross and Lee
at al. Bass model also provides interpretation of the parameters (p and q) based on intrinsic complexity
of the code and ability of a debug team. Bass-Niu model also attempts to solve a problem with NHPP
based SGRM. Because NHPP assumes independent increments in disjoint time intervals, it is difficult
to model introduction of new bugs within NHPP setting.

BASS MODEL FOR PRODUCT DIFFUSION

Bass model for was introduced in the marketing research community to model production diffusion
(adoption) of a durable (e.g., VCR) good [Bass 1969]. Let M be the size of the potential market and
N(t) be the number of adoptions by time t. It is assumer that M is large and continuous approximation
of N(.) is justified. Product adoption is parametrized by to real positive constants p (coefficient of
innovation) and q (coefficient of imitation). Bass postulates that time evolution of N, starting with no
adoption at t=0,  is described by the following (non-linear) differential equation.
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Let F(t) be the fraction of adoptions by time t. As M , we have the Bass equation and the Bass
formula (CDF) as its solution. Bass CDF is derived from the Bass equation in Appendix-A.
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Classic Bass solution offers some desirable features observed in production diffusion. F(t)  is S-shaped
and has an inflection point. It also fits observed market data for many durable goods. However,
transition from N(.) to F(.) assumes M . This is difficult to justify in software reliability setting
because it is not possible have infinite number of faults in a software with finite number of LOC (lines
of code).

Not withstanding this apparent difficulty, we will explore the similarities between the process of
production and software reliability growth after introducing stochastic version of the Bass model.

STOCHASTIC BASS-NIU MODEL

Niu has provided a stochastic framework of the Bass model [Niu 2002]. Bass-Niu formulation of
product diffusion is a pure-birth model (see [Ross 2003] for an introduction to pure-birth models) with
birth rates:
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Coefficients p and q have same interpretation as in the classic Bass Model. Note that deterministic Bass
equation involved M is the denominator of its RHS. However, difference of M and (M-1) is negligible
as M . Additionally, Niu has shown that
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Time dependence of RHS arises from taking expectation with respect to time dependent probability.
Thus, the BN model converges in the mean to the Bass formula and this equation exhibits the
connection between the two models. Everyone adopts the product by t  and F )=1. This justifies
calling the Bass fraction as a Cumulative Distribution Function (CDF). Niu also provides a differential
equation for FM(t), F(t) with finite M. We will not quote Niu’s derivation here for brevity. Instead, we
will provide an elementary derivation for FM(t) in Appendix-B.

Niu has found exact expressions for the asymptotic (M ) of variance M [Niu 2005].
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Expression for asymptotic variance involves the Bass CDF and complement. It also involves
contribution  from the covariance of indicator function (denoting jth adoption by time t; see [Niu 2005]
for details). Expressions of mean and variance of adoptions can be used to adapt the BN model product
diffusion to software reliability growth.

BASS-NIU MODEL FOR SOFTWARE RELIABILITY GROWTH

Bass-Niu model for software reliability growth adapts the BN model for product diffusion with a
different interpretation of parameters n, M, p and q. We will rewrite the BN birth rates for ease of
reading.
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M is interpreted to be the number of bugs initially present in the software. Here M is assumed to be
fixed (not random) but unknown.  denotes the time rate of bug appearance and n denotes the number
of bugs found (assuming no new introduction).

We would like to solve the Bass-Niu equation for finite (but moderately large) M without further
assumption on p or, q. An approximate solution is presented in Appendix-C. Another scheme to find a
better solution, based on backward Kolmogorov equations, is presented in the section describing future
work.

INTERPRETATION OF PARAMETERS P AND Q

Parameter p is a measure of intrinsic complexity of the code (for given M, because number of initial
bugs and effective software complexity are likely to correlate with LOC). Effect of p can be understood
by assuming q=0. If q=0, there is no debugging, and each bug reveals itself independently with mean
time 1/p. Bugs in a more complex software take longer to reveal themselves. (Exponential duration
between two successive revelations is an approximation of the execution environment.)

Parameter q is a measure of learning by a particular debug team. Let’s note that time of bug appearance
increases initially (small value of n). Starting with no knowledge about the software, the debug team
learns more about the software as another bug is isolated and eliminated. Let us also note that learning
contribution to bug appearance rate enters a region of diminishing returns after enough (about M)
bugs have been fixed. This implies onset of learning saturation.
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INTERPRETATION OF TIME DEPENDENT VARIANCE

Let (t) be the intensity (rate) of a Non Homogeneous Poisson Process. It is well known [Ross 2003]
that number of events in time interval (0, t) is given by a Poisson distribution with mean

∫
t

duu
0

).(λ .

Moreover, the variance of a Poisson distribution is equal to the mean. This presents a problem for
NHPP based SGRM. Let us assume no new bugs are introduced while debugging. Then, we expect all
the bugs to be revealed in the time interval (0, ). If software reliability is modeled as a Poisson
process, variance of the number of bugs must be interpreted as the variance of initial number of bugs.
Second, why should the variance grow as more bugs are observed? These present conceptual
difficulties.

In contrast, Bass-Niu model assumes fixed number of initial bugs and physically plausible behavior for
time dependent variance. Niu has calculated the expression for variance as M  [Niu 2005].
Asymptotic variance of number of observed bugs is zero at t=0 and t . No bugs have been observed
at t=0, with certainty; no bugs remain at t=0, also with certainty.

FITTING PUBLISHED SOFTWARE RELIABILITY DATA
TO BASS-NIU MODEL

NHPP based models have been reasonably successful in modeling software reliability growth [Goel
1979, Ohba 1984, Pham 1999]. Further evidence comes from adoption of these models by NASA
[Wallace]. Primary focus of this work is to address some theoretical questions presented by NHPP
based SGRM, while not compromising on practical applicability.

It is easy to reinterpret asymptotic (M ) Bass CDF as the “inflection S-shaped growth function h(t)
of NHPP” (compare with Eq. 8 of [Ohba 1984] with proper scaling by M).
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We expect asymptotic solution of Bass-Niu model to be numerically close to FM(t) when M is
moderately large. Thus, Bass-Niu model automatically fits observed software failure data fitted by
inflection S-shaped NHPP-SGRM. As an example, Project 2 data of Rome Air Development Project
[Brooks 1980] is fitted by p = 0.0084 and q = 0.213 or, (p+q) = 0.221 and (q/p) = 25.3. Fitted value of
M is 1315.9 in this example. We note, magnitude of q is much bigger that that of p for this dataset.
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FUTURE WORK BASED COAGULATION ANALOGY

We have found it difficult to solve the Bass-Niu equation by quadrature for large values of the learning
parameter q because of non-linearity in the BN differential equation. This mathematical issue limits the
applicability of the BN model to software reliability. There is another promising technique based on
solving the backward Kolmogorov equation (see [Ross 2003] for an introduction to Kolmogorov
equations) for the BN pure-birth model.

The backward Kolmogorov equation was solved exactly for a mathematically related problem of
stochastic death model of droplet coagulation [Arciapiani 1980]. Arciapiani’s method involves solving
the backward Kolmogorov equations in matrix form by finding the eigenvalues and eigenvectors of the
matrix of “death coefficients.” Coefficient matrices for Arciapiani as well as BN models are bi-
diagonal with quadratic terms (in number of droplets or, software bugs detected). Thus, eigenvalues
can be found almost by inspection. BN birth rates turn out to be the eigen-values of the coefficient
matrix for backward Kolmogorov equations.

Identification of eigenvalues leads to valuable insight into the system. As the Kolmogorov equations
from a system of linear differential equations, the solution (state probabilities) is a linear combination
of exp{- nt}, n = 0, 1, …, (M-1). Let us observe that birth-rates of the Bass-Niu model may be rewritten
as

qp
qp

qpM
Mp

M

M
q

M

+=

++=

+−=
=

−−

λ

λ

λ
λ

1
2

1

1

0

)(2

...
)1(

Thus, birth rates for higher states (  with large values of sub-script) tend to independent of M whereas,
birth rates for low states tend to grow with M. Thus, only higher states contribute when M becomes
large (with p, q and t fixed). However, finding the eigenvectors requires significant effort and this may
be a topic for future work.

CONCLUSION

We have introduced NHPP based software reliability growth model. These models suffer from some
theoretical problems even though they are able to fit observed failure data reasonably well. We have
also introduced the Bass-Niu  model for market diffusion of durable goods. We have mapped a
particular (inflection S-shaped) NHPP based SGRM to the asymptotic solution Bass-Niu model. This
provides empirical validation for Bass-Niu model in software reliability. We have provided
approximate solution for the Bass-Niu model for large (but finite) M in Appendix-C. Finding an exact
solution to the Bass-Niu model may be a project for the future.
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APPENDIX-A: Derivation of Bass Formula

We start with the Bass differential equation
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Initial condition F(0)=0 implies const2=(q/p).
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Inflection point of Bass CDF can be found computing its second derivative. We start with the Bass
differential equation.
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We note that inflection point of Bass CDF exists only if q>p.
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APPENDIX-B: Derivation of Bass-Niu equation

Finite state, pure-birth BN model is defined by the birth rates
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Forward Kolmogorov equations for this model (dash denotes time derivative), together with probability
normalization and initial conditions are
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We can see that state-M is an absorbing state from the evolution equation for pM. Fractional penetration
(average number of bugs revealed) by time t is
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We may use the forward Kolmogorov equations to derive a system of differential equations for the
cumulative probability.
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Differentiating the expression for FM(t) on both sides with respect to t, we get a (formal) differential
equation get after some algebraic manipulations using the forward equations for cumulative
probability.
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Using the definition of birth rates, we finally have
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Asymptotic expression for the variance can be obtained from [Niu 2005].
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APPENDIX-C: Reducing asymptotic Bass-Niu equation to quadrature

Bass-Niu differential involves the variance. Exact expression for variance for finite M is unknown at
time. We will use asymptotic expression for variance found by Niu to find an approximate differential
equation for large M. This approximation is justified when q/(M-1)<<1. Faced with a practical software
reliability growth problem of complex software, we expect large number of undiscovered bugs initially
(moderate to large M).

Even after the asymptotic expression for variance is substituted, we are unable to solve the resulting
nonlinear differential equation. Hence, a further linearizing approximation becomes necessary. In the
following, we will use work with the complimentary CDF

GM(t)=1- FM(t)

And we will linearize the asymptotic differential equation by approximating GM(t)=G(t)+ (t). From the
Bass-Niu differential equations we have

[ ]

[ ] [ ])()().(
1

)(.).()(

)(.).()(

/

/

ttGtF
M

qtGqqptGtG

tGqqptGtG

MMM ψ−
−

+−+=−

−+=−
.

Bass CDF and CCDF are linearized in the following way
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This give to the following linearized differential equation for the correction term
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When M.q. )/(M-1)<<1, the differential equation reduces to
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Finally, approximate solution for the Bass-Niu equation is given by
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We illustrate the usefulness of this approximation with an example.

Approximate Bass CCDF for finite M
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We have chosen M=3, p=1 and q=5 in this example. The plot shows exact expressions for the CCDF
for M=2 and 3 [Niu 2002]. It also shows the Bass formula corresponding to M= . Source term in the
linearized differential equation, C ) [Niu 2005], is also plotted.

Integration of the linearized differential equation was performed in MS Excel with variable step
Simpson method. This led to numerical evaluation of M ). Distortion around =0 (t= ) is an artifact
of this Excel based integration scheme. Let’s note that approximate expression almost coincides with
the exact expression for this illustrative example.


