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1. Introduction

The contemporary war-time military operations can be divided into the following two stages.
The first and rather short stage includes very active actions with considerable losses.  It is followed by
a much longer stage, during which the events associated with losses occur at a much lower rate.  The
examples of such military operations are the current international military operations in Afghanistan,
Iraq and the recent Russian military actions in Chechnya (whatever their political status is).  Below, an
approach to analysis of the military operations performance during the mentioned above second stage is
suggested.

Because the daily losses during the second stage is much less compared to the first stage, the
military operations during the second stage, from the reliability standpoint, can be considered as a
functioning repairable system, which is rapidly restored after each failure to at least the same condition
as it was just before the failure.

In this paper, an analysis of such military operations is developed in the framework of the so-
called repairable system analysis.  The approach can be applied not only to the system failures, but to
successes (as the respective adversary’s losses) as well.

2. Military Operations as Improving/Deteriorating Repairable Systems

This section begins with introducing some basic notions of repairable system analysis needed for
the following discussion.
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2.1. Point Processes as Models for Repairable Systems

Basic Definitions

A point process can be informally defined as a mathematical model for highly localized events
distributed randomly in time.  The major random variable of interest related to such processes is the
number of failures (or generally speaking events) N(t) observed in the time interval [0, t], which is why
such processes are also referred to as counting processes.  Using the nondecreasing integer-valued
function N(t), the point process {N(t), t 0} is defined as the one satisfying the following conditions:

1. N(t) 0
2. N(0) = 0
3. If t2 > t1, then N(t2) N(t1)
4. If t2 > t1, then [N(t2) - N(t1)] is the number of events (e.g., failures) occurred in the interval (t1,

t2]

A trajectory (sample path) or realization of a point process is the successive failure times
of an item: T1, T2, . . . ,Tk . . . . It is expressed in terms of the integer-valued function N(t) i.e., the
number of events observed in the time interval [0, t].

)max()( tTktN k ≤=       (1)

It is clear that N(t) is a random function. The mean value E(N(t)) of the number of failures N(t)
observed in the time interval (0, t] is called cumulative intensity function (CIF) [Hoyland and Rausand,
1994, Moddares, et al., 1999 ], or mean cumulative function (MCF) [Nelson, 2003]  In the following
the term cumulative intensity function (CIF) is used.  The CIF is usually denoted by W, i.e.,

W(t) = E(N(t))

Another important characteristic of point processes is the rate of occurrence of failures
(ROCOF), which is defined as the derivative of CIF with respect to time, i.e.

td
tWdtw )()( =

Based on the above definition of ROCOF, the CIF is sometimes called cumulative ROCOF.

Most of the processes, which are discussed in the following have monotone ROCOF.  The system
modeled by a point process with an increasing ROCOF is called deteriorating (aging, unhappy, or sad)
system.  Analogously, the system modeled by a point process with a decreasing ROCOF is called
improving (happy or rejuvenating) system.

The distribution of time to the first failure of a point process is called the underlying distribution.
For some point processes this distribution coincides with the distribution of time between successive
failures (which is also called interarrival time), for others it does not.  The underlying distribution is
included in definition of any particular point process used as a model for failure/repair process of
reparable systems.
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2.2 Nonhomogeneous Poisson Process

A point process, having independent increments, is called Nonhomogeneous Poisson Process
(NHPP) with time dependent ROCOF (t) > 0, if the probability that exactly n events (failures) occur in

any interval ( a , b ] has the Poisson distribution with the mean equal to dtt
b
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for n = 0, 1, 2, . . . ,  , and N(0) = 0.

In opposite to some other point processes, the times between successive events (e.g., failures) in
the frame work of the NHPP model are neither independent nor identically distributed.

Based on the above definition, the CIF and ROCOF of NHPP obviously can be written as follows

ττλ dtW
t

)()(
0
∫=      (3)

w(t) = (t)       (4)
The cumulative distribution function (CDF) of time to the first failure (i.e., the CDF of underlying
distribution) for the NHPP can be found as

))(exp(1]0)0()(Pr[1)( tW==N-tN-=tF −−     (5)
where W(t) is given by (3).

Let’s consider a series of failures occurring according to the NHPP with ROCOF (t).  Let tk  be time to
kth failure, so, at this moment, the ROCOF is equal to (tk).  The probability that no failure occurs in
interval (tk, t], where t > tk , can be written as
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which is the conditional reliability function of a system having age tk.  In other words, we can consider
NHPP as a process in which each failed system is instantaneously replaced by identical one having the
same age as the failed one.  This type of restoration model is referred to same as old (or minimal
repair) condition.

Another very important property of NHPP under the given assumptions follows from Equation (6).  If
tk is equal to zero, Equation (6) takes on the following form

)))(exp()(
0

d=tR
t

ττλ∫− ,                 (7)

which means that the ROCOF of NHPP coincides with the failure (hazard) rate function of the
underlying distribution.  In other words, all future behavior of repairable system is completely defined
by this distribution.  It also means that just after any repair/maintenance action carried out at time t, the
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ROCOF is equal to the failure rate of the TTFF distribution λ(t).  So, we can also consider NHPP as a
process, in which each failed system is instantaneously replaced by identical one having the same
failure rate as the failed one.

Is “same as old” restoration a realistic assumption?  The answer depends on a given application.
Applied to a one-component system, it is definitely not a realistic assumption.  For a complex system,
composed of many components having close reliability functions, this assumption is rather realistic,
because only a small fraction of the system components is repaired or replaced, which results in a small
change of the system failure rate (Hoyland and Rausand, 1994).  This can be definitely applied to the
military operations considered in the following.

An important particular case of NHPP is the case when the CIF a power function of time, i.e,
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with the respective ROCOF given by
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which obviously results in the Weibull time to the first failure (underlying) distribution.  Accordingly,
the NHPP process with ROCOF given by (9) is sometimes referred to as the Weibull process, the
power law NHPP process, or the “Crow-AMSAA model”.  It is clear that, if  > 1 the system is
improving, and in the case of < 1, the system is deteriorating.

Statistical procedures for this model were developed by Crow (1974, 1982), based on suggestions of
Duane (1964).  These procedures can also be found in MIL-HDBK-781, IEC Standard 1164 (1995).
The main applications of the power law model are associated with reliability monitoring (which is
optimistically called “reliability growth”) of repairable products and as well as for non-reparable ones.

3. Case Study: US Military Operations in Iraq after Fall of Baghdad

3.1 Data Source

The data used for this case study are available from the website http://icasualties.org/oif/Details.aspx,
which is called Iraq Coalition Casualties.  According to the website, the data are being accumulated
using the information from the following U.S. government sources:

1. CENTCOM (the United States Central Command in Tampa, FL ), which news releases are
published regularly on the Internet at http://www.centcom.mil/

2. News releases from the U.S. Department of Defense, that can be found on the Internet at
http://www.defenselink.mil/releases/

3.2 Data Analysis

The above suggested approach to risk analysis of military operations is illustrated by an analysis of the
US military operations in Iraq (the system).  The performance of this system is considered with respect

http://icasualties.org/oif/Details.aspx
http://www.centcom.mil/
http://www.defenselink.mil/releases/
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of two failure modes – fatalities (the weekly number of US soldiers killed) and accidents.  In the first
part of this case study, the system is analyzed with respect of the fatalities.

In the given context, the data related to fatalities include the following four causes of death:

1. Hostile fire
2. Accidents
3. Friendly fire
4. Other

In the second part of our case study, the system performance with respect to the failure mode called
accidents is analyzed.  Using the respective data analysis, it will be shown that in spite of slowly
improving system performance with respect of the second failure mode (accidents), the system is
slowly deteriorating with respect to the first failure mode (fatalities), which definition includes
accidents as well.

3.2.1 Fatalities after Fall of Baghdad

Figure 1 below depicts the cumulative number (ECIF) of fatalities during first 10 weeks of military
operations.

Cumulative Number of Events
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Figure 1.  Cumulative Number of Fatalities during First 10 Weeks of Military Operations

The ECIF increases rapidly during first 4 weeks, and afterwards it slows down.  The 4th week (04/06/03
– 04/12/03) includes the fall of Baghdad, so the first four weeks is the period of very active military
operations with inevitably high losses (i.e., it is the first phase discussed in Introduction).  The
following case study is going to cover the military operations after this 4 week interval.

The plot of time dependence of cumulative number of fatalities during the time interval between the 5th

and 151st week (04/13/2003 -- 02/04/2006) is presented in Figure 2.  The data were fitted using the
NHPP power low model (Equation (8).  The fitted model for CIF is given by the following equation:

5,)4(622.4)( 224.1 ≥−= tttN                                               (10)
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The fitted cumulative number of fatalities (CIF) is shown as a continuous curve depicted in Figure 2
below.

Cumulative Number of Events N(t) = 4.6217t1.2241

R2 = 0.998
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Figure 2.  Cumulative number of fatalities during the time interval
between the fifth and 151st week (04/13/2003 - 02/04/2006)

The squared correlation coefficient R2 (proportion of the variance of N(t) explained by t) is 0.998,
which shows that the fitted model is adequate enough.

The parameter  of model (10) shows that the ROCOF of fatalities is not even constant, but slowly
increasing (  > 1), which means that the system of military operation is slowly deteriorating with
respect to the “fatalities” failure mode.  Being on an optimistic side (in spite of the 2 sigma interval of
(1.216, 1.232) on ), one can state with a very high confidence that the system performance with
respect to the given failure mode (fatalities) is not improving.

The reader can notice a slight jump in ECIF at some time about 87th – 88th weeks.   This increase might
be explained by the emerging insurgent activity in September – October 2004.  This could suggest
breaking down the data into two subsets – before 87th week and after it, for a further analysis.  The
respective analysis is beyond the given paper scope.

3.2.2 Accidents from the Beginning of Military Operations

Now we are going to analyze the system performance with respect to the accidents only, which
constitute one out four failure modes related to the fatalities considered in the previous section.

Figure 3 below depicts the cumulative number (ECIF) of accidents during the complete time interval
between the first week of operations (03/16/2003 - 03/22/2003) and 151st week (01/29/2006 -
02/04/2006).  The 98th week is definitely a “discontinuity point.”  During this week, there were 43
accidental fatalities.  Most of the respective causes were identified as "non-hostile – helicopter crash."
There were two helicopter crashes during this week.
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Cumulative Number of  Accidents
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Figure 3.  Cumulative number of fatalities during the time interval between the first week of operations (03/16/2003 -
03/22/2003) up to 151st week (01/29/2006 - 02/04/2006)

Due to the discontinuity point at 98th week, it is reasonable to break the data down into two subsets –
before 98th week and after it.  The plots of the respective ECIFs are shown in Figure 4 and in Figure 5
respectively.  The fitted curves of the cumulative number of accidents (CIF) are shown as the
continuous curves in the figures.

For the first time interval, the fitted model for CIF is given by the following equation:

884.0917.4)( ttN = ,                                                 (11)

The squared correlation coefficient R2 (proportion of the variance of N(t) explained by t) is 0.962,
which shows that the fitted model is rather adequate.  The parameter  = 0.884 indicates that the
system is slowly improving with respect to the “accidents” failure mode.

Cumulative Number of Accidents, before 98th Week
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Figure 4.  Cumulative number of accidents from the beginning the military operations
up to 97th week (01/16/2005 - 01/22/2005)
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Cumulative Number of Accidents, after 97th Week
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Figure 5.  Cumulative number of accidents from the beginning the military operations after 97th week

For the second time interval (after the 97th week), the fitted model for CIF is given by the following
equation:

834.0445.3)( ttN =                                                                (12)

The equation reveals that the system continues to improve with a possible slight decrease in the
accidence rate of occurrence, compared to the one related to the first interval, which might indicate that
some safety improvements have been done.

The squared correlation coefficient R2 for model (12) is the same as the one related to model (11),
which shows that both models have approximately the same accuracy.  Both models have the parameter

< 1.

Based on the above analysis one can come to the following conclusion.  In spite of slowly improving
system performance with respect to the “accidents“, as a failure mode, the system is slowly
deteriorating with respect to the “fatalities” failure mode, which definition includes accidents as a
specific case.

4. Concluding Remarks

The considered case study shows that the risk analysis of military operations can be performed in the
framework of traditional repairable system data analysis using the notions of improving and
deteriorating systems.  This approach can be suggested as a potentially useful tool among other
decision making support tools and techniques.
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