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ABsSTRACT. In this paper, we study a k-out-of-n system with single server who
provides service to external customers also. The system consists of two parts:(i)
a main queue consisting of customers (failed components of the k-out-of-n
system) and (ii) a pool (of finite capacity M) of external customers together
with an orbit for external customers who find the pool full. An external
customer who finds the pool full on arrival, joins the orbit with probability
~ and with probability 1 — v leave the system forever. An orbital customer,
who finds the pool full, at an epoch of repeated attempt, returns to orbit
with probability 6 (< 1) and with probability 1 —¢ leaves the system forever.
We compute hte steady starts system size probability. Several performance
measures are computed, numerical illustrations are provided.

1. INTRODUCTION

We study a k-out-of-n system with single server who provides service to external
customers also as described in the following paragraphs.

The system consists of two parts:(i) a main queue consisting of customers (failed
components of the k-out-of-n system) and (i) a pool (of finite capacity M) of
external customers together with an orbit for external customers who find the pool
full. An external customer who finds the pool full on arrival, joins the orbit with
probability v and with probability 1 — + leave the system forever. An orbital

customer, who finds the pool full, at an epoch of repeated attempt, returns to orbit
with probability 4 (< 1) and with probability 1 —d leaves the system forever.

The arrival process : Arrival of main customers have interoccurence time expo-
nentially distributed with parameter A; when the number of operational components
of the k-out-of-n system is 7. By taking A\; = % we notice that the cumulative failure
rate is a constant A. We assume that the k-out-of-n system is COLD (components
fail only when system is operational). The case of WARM and HOT system can be
studied on the same lines (see Krishnamoorthy and Ushakumari [4]). External cus-
tomers arrive according to a Markovian Arrival Process (MAP) with representation
(Do, Dy) where Dy and D; are assumed to be matrices of order m. Fundamental
arrival rate A\, = —wDpe

The service process: Service to the failed components of the main system is
governed by the N-policy. That is each epoch the system starts with all components
operational (ie., all n components are in operation), the server starts attending one
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by one the customers from the pool (if there is any). The moment the number of
failed components of the main system reaches N, no more customer from the pool is
taken for service until there is no components of the main system waiting for repair.
However service of the external customer, if there is any. will not be disrupted even
when N components accumulate in the main queue (that is the external customer
in service will not get pre-empted on realization of the event that N components
of the main system failed and got accumulated; instead the moment the service of
the present external customer is completed, the server is switched to the service of
main customers).

Service time of main customers follow PH distribution or order ny and represen-
tation (e, S7) and that of external customers have PH distribution of order ng with
representation (3, Ss):

SY and S§ are such that S;e + s = 0, i = 1,2 where e is column vector of
ones. The two service times are independent of each other and also independent
of the failure of components of the main system as well as the arrival of external
custorers.

Objective : To utilize server idle time without affecting the system reliability.

Krishnamoorthy and Ushakumari [4] deals with the study of the reliability of
a k-out-of-n system with repairs by server in a retrial queue. They do not give
any priority to the failed components of the main system nor do they investigate
any control policy. Krishnamoorthy, Ushakumari and Lakshmi [5] introduced the
repair of failed components of a k-out-of-n system under the N-policy. For further
details one may refer to the paper and references therein as well as Ushakumari
and Krishnamoorthy [7] Bocharov et al [1] examine an M/G/1/r retrial queue
with priority of primary customers. They obtain the stationary distribution of the
primary queue size, an algorithm for the factorial moments of the number of retrial
customers and an expression for the expected number of customers in the system.
Nevertheless, we wish to emphasise that their paper does not distinguish between
the priority and ordinary customers. This is distinctly done in this paper (our
priority customers are the failed components of the k-out-of-n system):

We also consider an intermediate pool of finite capacity to which external cus-
tomers join after seeing a busy server on arrival or after a successful retrial from the
orbit. We expect that this intermediate pool from which an external customer can
he selected for service, whenever the server becomes idle, will help us to decrease
the server idle time.

The steady state distribution is derived. Note that the non-persistence of orbital
customers together with the fact that an external customer, finding the pool full,
may not join the pool ensures that even under very heavy traffic the system can
attain stability. Several performance measures are obtained.

One can refer Deepak, Joshua, and Krishnamoorthy [3] for a detailed analysis of
queues with pooled customers (postponed work).

2. MODELLING AND ANALYSIS

The following notations are used in the equal:
Ni(t) = # orbital customers at time ¢
Na(t) = # customers in the pool (including the one getting service, if any,) at time
t.
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Nj3(t) = # failed components (including the one under repair, if any) at time ¢

0 if the server is idle
1 if the server is busy with repair
of a failed component of the main system

2 if the server is attending an external customer at time ¢.

N5(t) = Phase of the arrival process,

;\'76 (t) —

Phase of service of the customer, if any, in service at t
0, if no service is going on at time .

It follows that {X (t): t = 0} where
X{(t) = (N1(t), Na(t), Na(t), Na(t), N5(t), Ne(t))
is a continuous time Markov chain on the state space

S =1{(41,0,73,0,45,0)71 2 0: 0 < j3 < N —1; 1 < j5 <m}
{1, d2,d3. Lo ds de)|gn = 0,0 < jo < M: 1 <jz<n—k+1;
1<js<ml<jg<mn}
I J2, 93,2, Js, J6)|d1 = 00 1 < ja < M
O<jssn—k+1L1<js<m; 1 <js<naf

Arranging the states lexicographically, and then partitioning the state space into
levels ¢, where each level i correspond to the collection of states with ¢ customers
in the orbit, we get the infinitesimal generator of the above chain as

A Ao 0 0...
Asr A Ag 0...
Q= 0 Aasa A Ap. ..

where

Wo Wi

I.,{_,-'g W_:l H,%
Wy Wi W

Ao =

W’:i W’H ”'6
I-’T/';l I-’VQ ]
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where
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By By, B
B By By
By
- B7
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Bo—DD—)\Iﬁz-,Bl_|: 00 DO—SI—AI:|

By = Dy &5 _)\Imm: By = Dp & 51

0

- ! = — Q0
By = er ® 59] ,Bs = [0 I (S?QJ Be=[0 I, (50%)]

Br = In @ (S{a), Bs = [Mu 0], By = My,

Byg = { \] ( a):| s Biw = An,
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Wy = Y
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with W = { 0 (1 =)Dy 1,,)
Wi 0 0
Wy = 0 In_1 9 Wy 0
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where
Wag = I, © S5, Way = L— 9 50 8]
mo= 2 m(ni+na)xm(ny+na)
, [ 0
Wap = o (GO }
_Iﬁz = (520.) m(ni+na)xmni
[ Lo 0 0
Wi= |0 In-10E) 0
i 0 0 I-nfka+2 © Fa
0 0
Eo =1, ©(593), E; = [ a0 }
0 Iﬁz ® (52 d) mi(ni+mnz)xm(ni+nz)
0 0
b2 = LTm ® (S30) o}
Fyp 0 0
Ws=10 F;y 0
0 0 £
_ o - T o [ 0 Dl ® &'3
F() = D1 QCIJ, F1 o IN_1 x) FI' F1 = [Dl chm 0 }
Fy=1In pyo-n©Fy, Fy=[Di@I, 0
W = |10 X
O 0 L o Hy
- ) | Dy @y, 0
Ho =Dy © I, Hy [ 0 D1Mn2]
and
zilh- = 5110 — Ah‘_ for i Z 1
where
i b, 0
S0 8L =6)y, |
Where
Li=(n—Fk+2)ymna2+ (n—k+ 1)mny
Lo=Nm+(n—k+1)mn; + (M —1)L4
0 Z; 0
Agp = {0 0 illpro1yp, |, 121
0 0 H(1—-0)lr,
AR 0 0
Zi = 0 I.N'—l ® ZQ?' 0 Zl?' = Im, & (7-9‘3)
0 0

L —k—Nt2y @ Z3;

i = |:591ﬂ1311 0 - [iejmnl O]

0 0
‘4[] - |:0 ‘40:|

0 I @ ( ate;a')] 7
- 3 3i
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iy = | 1PV) ® In, 0 i _ [(0D1) © T, 0
- 0 L k+1 & 4(1) 0 0 (f}’Dl) ® Inz

3. SYSTEM STABILITY

Theorem 1. The assumption that after each retrial a customer may leave the

system with probability 1 — & makes the system stable irrespective of the parameter

values.

Proof. To prove the theorem we use a result due to Tweedie [6]. For the model
under consideration we consider the following Lyapunov function:

@(s) =1 if s is a state belonging to level i
The mean drift y, for an s belonging to level ¢ > 1 is given by

s =Y dup(d(p) — o(s))

pFs

_Zq“ (o(s") — (s +qua (CJ —Q*’(S))
+an (05" = 6(s))

where s’, 5", 5" varies over the states belonging to levels ¢ — 1,4, + 1 respectively.
Then by definition of ¢, ¢(s) =i, ¢(s') =i — 1, &(s") =1, H(s") =i+ 1
So that

Ys = — Zq.ss’ + Z Gss'

—if+ qu, if s eI,

Ys = .
) 726'170 +ZQM , ifsel;

where [; denotes the collection of states in level i which corresponds to Na(t) < M,
and I; denotes the collection of states in level i which correspond to Na(t) = M.
We note that }” ., geer is bounded by some fixed constant for any s in any level
i > 1. S0, let 3", qesnr < K, for some real number x > 0, for all states s belonging
tolevel 7 > 1. Also since 1 —é > 0, for any € > 0, we can find N/ large enough that
ys < —e¢ for any s belonging to level i > N'.
Hence by Tweedie’s result, the theorem follows. O

4. STEADY STATE DISTRIBUTION

Since the process under consideration is an LDQBD), to calculate the steady
state distribution, we use the methods described in Bright and Taylor [2].
By partitioning the steady state vector x as x = (20,21, T2,...) We can write

Ik:i’UHR{ for k > 1
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where the family of matrices { Ry, k > 0} are minimal non-negative solutions to the
system of equations:

(1) Ao+ RpAy jyr + Bi[Rpr1 A 2] =0, £ 20
xp is calculated by solving
(2) xo[A1p + RoAa] =0

such that

o0

k—1
(3) rge+rgZ[HRz]e<;x
k=1 1=0

The calculation of the above infinite sums does not seem to be practical, so we
approximate xps by x,(K*)s where (;rk(fx“))j, 0 < k < K~ is defined as the

stationary probability that X (f) is in the j* state of level k., conditional on X (1)
being in level 7, 0 < ¢ < K=,
Then 1, (K™*), 0 < k < K* is given by

k—1
@) () = oK) T] i
[=0

where xy(K*) satisfies (2) and

K* k-1
(5) ID(K*)eHD(K*){Z[HRIHezl
k=1 [=0

Here we have that for all i > 1, and for all k, there exists j such that [Ag;]z; > 0.

So we can construct a dominating process X (t) of X (¢) and can use it to find the
truncation level K™ in the same way as in (2], as follows. The dominating process

X (t) has generator
A Ao 0 00
0 Au A 0 0
0

O= 10 Ax r’:lm {’_10 ¢
0 0 Aoz Az Ao
Wllere B )
(A0)i.s = B[(A0)mad, (Aze)iy = E((Azp-r)e)  for k =2, (Au)y = (Au)y,

j# i, k>1and C = Nm+ (M +1)(n—Fk+ Lymny + M(n —k + 2)mns is the
dimension of a level 7 > 1.

5. PERFORMANCE MEASURES

We partition the steady state vector x as x = (xg,x1,22,...) where the sub-
vectors x;,s are again partitioned as x; = x(j1,ja. j3, ja) which correspond to
A’T,'(lf) =i, 1 <i<4

(1) Fraction of time the system is down is given by

-

K M 2
Paown = Z Z Zir(jlan-n*k‘Fl.j;L)e.

J1=072=0j,=1
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(2) System reliability, defined as the probability that atleast k components are
operational, P, is given by

prel =1- pdown-

(3) Average no. of external units waiting in the pool is given by

M K* n—k+1
pool Z.?,E Z Z l(jl J2. 3, J—
j2=1 j1=0 ja=1
M K™ n—k+1
+ Y (G- 1) Z > 2(j1.d2. 53, 2)e
J2=2 J1=0 ja=0

(4) Average no. of external units in the orbit is given by

o
Nowrie = Y [z (j1)e]

Jj1=1

(5) Average no. of failed components is given by

n—k+1 K* M
-"'\"'tfaic = Z jg(z Z ]1 J2 ]3 2)
ja=1 J1=07j2=1
K* M N_1 Kt
+ZZ x(j1, j2, js, 1)e +ngz 1.0, j3, 0)e
j1=0j2=0 ja=1 j1=0

(6) The probability that an external unit, on its arrival joins the queue in the
pool is given by

K* M—1n—k+1 2
’Pqueue = {Z Z Z Z (jl 32 ,]3 jr.l)[Dl 2 Inu}e
J1=0ja=1 ja=1 js=1
K* n—k+1

e 0 (Dr @ Iy }

J1=0 ja=1
(7) The probability that an external unit, on its arrival gets service directly is
given by
K* N-
{ > Z x(j1, 0, s, 0)D1e}
J1=073=0

(8) The probability that an external unit, on its arrival enters orbit is given by

K
Porbit = %{EI(U;’IUE}
9 " i=0

(9) Fraction of time the server is busy with external customers is given by

K* M n—k+1

e\cbusv = Z Z Z ,]1 ,]2 j3 2)6

j1=0j2=1 jz=0
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(10) Probability that the server is found idle is given by

K* N—1

ICIIE_ZZ 310320

J1=0j2=0
(11) Probability that the server is found busy is given by

Pbusy =1- {pidle
(12) Expected loss rate of external customers is given by

K* n—k+1
Aloss = Z Z 31 ’u' 72, l)( )(Dl 2 Inl)e
7J1=0 gja=1
K* n—k+1
N Z > (i M, 2, 2)(1 =) (D1 © L, Je
J1=0 jo=0
K* n—k+1
=3 ST (1= 0)ba(is, Mo Ve
Ji=1 ja=1
K' n—k+1

+Z Z (1 —8)710x(j1, M, j2,2)e

Ji=1 j2=0

(13) We construct a cost function as where €' is the holding cost per unit time
per customer waiting in the pool, C'y is the loss per unit time due to the
system becoming down, C'3 is the loss per unit time due to a customer
leaves the system without taking service, Cj is the holding cost per unit
time per failed component in the system, C5 is the loss per unit time due
to the server becoming idle and Cf is the profit per unit time due to the
server becoming busy with an external customer.

6. NUMERICAL ILLUSTRATION

Set 8 =150, A=1.0,vy=07,0=07,n=11, k=4 M =5 N =4

—6.5 4.0 —5.06  2.06 2.5 3.0 o
L [ ’-5] %2 = [ 4.0 —6.5] 5S¢ = {30} 53 = [5_.5} a = (0.5,0.5)
3 =(0.5,0.5)

Cy = 10. 0 Co = 1500.0, C'y = 100.0, Cy = 20.0, C5 = 50.0, Cg = 200.0.

Effect of correlation : The additional parameters for table 1 are the following

—55 3.5 1.0 1.0
(A1) DU_[LO —3.5} D“L.o 1.5}

average arrival rate = 2.34615, correlation =-0.00029

s | —4.05 1.55 ~ 12,05 0.45
(42) Do= [ 3.5 5.5] Di= L.o 1.0}
average arrival rate = 2.34615, correlation =0.00029

65 40 15 1.0
(B1) DO_[LS —4.5} DI_L.O 2.0}
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average arrival rate = 2.83333, correlation =-0.00042

. - |—5.06 2.06 - 1256 0.44
(B2) Do = { 4.0 —6.5] D1 = {1.0 1.5}
average arrival rate = 2.83333., correlation =0.00042

. —6.6 4.05 1.55 1.0
(D) Do = L.ss —4.6} D1 = L.o 2.05}
average arrival rate = 2.88224, correlation =-0.00041

‘ =515 21 2.6 045
(€2) Do = {4.05 —6.6} Di = L.o 1.55}

average arrival rate = 2.88224, correlation =0.00041
In the above correlation is between two inter-arrival times.

TABLE 1

=

Pdown J"\"Ipool J'\-‘"’orbit J"\-‘rfaic- Pexbusy P, idle Cost
Al 2805 x 1072 3.262  0.1204 22281 0.5620 0.0842 37.8228
A2 2803 x 1072 3.2572 0.1207 2.2278 0.5612 0.0850 38.1696
Bl 2923 x 102 3.6689 0.1822 2.2431 0.5940 0.0522 68.2556
B2 2922 x 1072 3.6647 0.1824 2.2429 0.5935 0.0526 68.4537
Cl 2932 x 1072 3.7031 0.1888 2.2442 0.5964 0.0497 71.6377
(2 2931 x 1072 3.6992 0.1890 2.2440 0.5960 0.0502 71.8214

The table 1 shows that as the external arrival rate increases the system down
probability increases; but this increase is narrow as compared to the decrease in
server idle probability. Also as expected, the expected number in the pool, in the
orbit and the expected number of failed components and the fraction of time the
server is found busy with an external customer increases as the external arrival rate
increases. The table also shows that as the correlation changes from negative to
positive, there is a slight increase in cost and in the server idle probability. Also
when correlation changes from negative to positive, the expected number of pooled
customers and failed components decrease while the expected number in the orbit
increases. The increase in probability Pexpusy being small compared to the increase
in other parameters can be thought of as the reason behind increase in cost. But all
these changes are narrow as the difference between negative and positive correlation
is small.

Effect of component failure rate : Take 0 = 20.0, v = 0.7, § = 0.7, n = 11,
k=4, M =5 N=4.

Arrival process is according to (Al).

Table 2 shows that when the component failure rate A increases, the system down
probability as well as expected number of failed components increase and the idle
time probahility of the server decreases, as expected. But note that as A increases,
the fraction of time the server is found busy with an external customer, decreases

and as a result the expected pool size increases. Also note that the expected orbit
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TABLE 2. Effect of component failure rate

A Paown J'\‘:rpool J‘\"I:)rbit J'\':Ffain.'. P, exbusy Pidle Cost
0.05 .196 x 10~%  2.1163 0.0285 1.5266 0.7513 0.2310 -67.3177
0.1 5933 % 10=7 21765 0.0311 1.5538 0.7432 0.2213 -63.3658
1.0 .2801 x 102 3.2399 0.0907 2.2276 0.5607 0.0855 38.4979
2.0 0.04702 4.2095 0.1748 3.5505 0.3029 0.0208 261.502
3.0 0.17207 4.7390 0.2362 5.1091 0.1149 0.0038 580.397

size is small, which shows that the orbital customers are either transfered to the
pool (when A is small) or leaves the system forever (when A is large). Since the
probability Pyown increases and the probability Pecpusy decreases, as A increases,
the cost also increases.

Effect of N policy level: 0 =200, A\=20,n=13, k=4 M =5
The other parameters are same as for table 2.
Table 3 shows that the system performance measure which is most affected by

TaBLE 3. Effect of N-policy level

N /Pclown -f"\':’;)ool Jl\'i}rbit J;\':’faic. rpexbusy P, idle Cost

4 0.02245 4.2521 0.1802 3.8666 0.2866 0.01969 203.559
5 0.02795 4.2249 0.1801 4.2456 0.2869 0.02325 219.258
6 0.03528 4.1968 0.1796 4.6087 0.2882 0.02717 237.002
7 0.04509 4.1658 0.1787 4.9473 0.2910 0.03135 257.358
8 0.05830 4.1300 0.1771 5.2518 0.2959 0.03577 281.200

the N-policy level is the expected number of failed components; which is expected
because as N increases, time for the service of failed components to be started.
once the system started with all components operational, increases so that during
this time more components may fail. For the same reason a pooled customer has a
better chance of getting service and as a result Peypusy increases, Npoor and Nomie
decreases. Also note that the server idle probability is small. The increase in N
might be the reason behind the increase in cost.

Effect of retrial rate : Take A=1.0,n=11, k=4, M =5 N =14

The other parameters are the same as in table 2.

Table 4 shows that as # increases, expected number in the orbit decreases but
the expected pool size also decreases which tells that retrying customers may be

TABLE 4. Effect of retrial rate

=

v Paown Npool  Nowvit  Naic  Pexbusy  Pidle  cost
5.0 2832 x 1072 3.3908 0.3501 2.2315 0.5704 0.07579 33.688
10.0 2813 x 1072 3.3008 0.1790 2.2290 0.5644 0.08176 36.612
15.0 .2805 x 1072 3.2620 0.1204 2.2281 0.5620 0.08415 37.823
20.0 2801 x 10~2 3.2399 0.0907 22276 0.5607 0.08546 38.498
25.0 2798 x 10~2 3.2255 0.0728 22272 0.5598 0.08630 38.932
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leaving the system. Note that the idle probability of the server is very small and
the expected pool size is also close to the maximum pool capacity so that retrying
customers may choose to leave the system after a failed retrial. Also this can be
thought of as the reason behind the decrease in the fraction of time the server is
found busy with an external customer and the increase in cost as € increases.

Effect of pool size M : 8 =10.0, A =1.0
The other parameters are same as for table 2.

TaBLE 5. Effect of pool size

M P, down J"\';’])ool —’.’\'I.,l.)l‘])it J'\".Ffa,iu P, exbusy P, idle cost
3 .2655 x 1072 1.9658 0.2155 2.2090 0.5084 0.1377 65.402
42743 x 1072 2.6238 0.1942 2.2201 0.5410 0.1051 55.047

2813 x 1072 3.3008 0.1790 2.2290 0.5644 0.0818 36.612

o

Table 5 shows that as M, the pool size, increases, expected number of pooled
customers increases and as a result the expected number of failed components, the
system down probability and the fraction of time the server is found busy with
and external customer increases. But the expected number in the orbit decreases,
which is expected because as M increases more customers can join the pool. As
expected, the idle probability of the server decreases as M increases.

Comparison with the case where no external customers are allowed :
Below we compare the k-out-of-n-system with a k-out-of-n system where no external
customers are allowed.
Case 1: k-out-of-n system where no external customers are allowed,
Case 2: k-out-of-n system

=100, A=10,v=07,6=07,n=11, k=4, N =4

Dy— 733 .3‘..;} DIZ[;.O 1.0}

1.0 35 1.0 1.5
~75 2.0 ~5.06 2.06
S1= {2.1 —7.7} 2= [ 4.0 —6.5}

TABLE 6. Comparison with the k-out-of-n system where no external customers are allowed

A=0.1 A=05 A=1.0 A=15 A =2.0 A=25

P Case T <1077 3956 x 105 91241070 2081 x 10=7 1822 x 10=F 9335 1077
Vo1 down Case2 1291077 2379 x 1071 4320 x 1077 2039 < 1072 5728 x 1072 01237
’ P Case I 0.0180 0.0901 0.1802 0.2703 0.3603 0.4501
P Case2 05347 0.5336 0.6415 0.6958 0.7458 0.7914

P Case I <1077 3956 x 10° 9124 x 107° 2081 x 10~T 1822 x 10~7 9335 x 1077

M =2 dowm o Case 21801 % 1077 3289 x 107* 5052 x 1073 2782 x 1073 7689 x 10-2 1616 x 10!
) » Case I 0.0180 0.0901 0.1802 0.2703 0.3603 0.4501
P Case2  0.7500 0.7941 0.8434 0.8848 0.9179 0.9433
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TABLE 7. Variation in ID_ ..

1D cost A=0.1 A=05 A=1.0 A=15 A=20 A=25
Cpp =100 Case 1 —0.1800 —0.9010 —1.8019 —2.7009 —3.5848 —4.4077

Cg =10 Case 2 —5.3470  —5.8336 —6.3717 —6.7541 —6.8852 —6.677
M1 Cyp = 1000  Case I  —0.1800 —0.9010 —1.8911 —2.6822 —3.4208 —13.5ﬁ75
C2 =10 Case 2 —53470 —5.8122 59821 —49190 —1.7300 4.45G0
(11 =10000 Case I —0.1800 —0.9010 —1.7929 —2.4949 —1.7810 4.8340
C2 =10 Case 2 —206.7349 —289421 —27.7460 —14.4000 19.9900 84.1300
Cpp =100 Case 1 —0.1800 —0.9010 —1.8019 —2.7009 —3.5848 —4.4077
Cia =10 Case 2 —7.5000 —=7.9377 —8.3745 —8.5698 —8.4101 —7.8170
M -4 Cpp =1000 Case1 —0.1800 —0.9010 —1.8011 —2.6822 —3.4208 —3.5675
Cio =10 Case 2 —7.5000 —7.9081 —7.8388 —6.0660 —1.4900 6.7270

Cpp =10000 Case 1 —0.1800 —0.9010 —1.7929 —2.4949 —1.7810 4.8340
Cia =10 Case —7.4998  —T7.6121 —2.4820 18,9720  67.7110 152.167

)

Table 6 shows that compared to the increase in the fraction of time the server is
found busy, the increase in the system down probability is not high, if we provide
service to external customers in a k-out-of-n system To make these statements more
clear we consider the cost function

IDL'DSt = Cvll : ,})down - 012 . Ipbusy

where C'11 is the loss per unit time the system being down and C'i5 is the profit per
unit time due to the server heing busy.

Table 7 shows that when M = 1 and A < 1.5, ID_ost is smaller in case 2 than
case 1, even when 'y is 1000 times bigger than Cio. But when A = 2.0 and 2.5,
ID ot is larger in case 2 than case 1, when Cyq is 100 times larger than 2. When
M =4 and A < 1.0, the table shows that ID..s is smaller in case 2 than in case 1,
even when ¢ is 1000 times bigger than C'o. But when A = 2.0 and 2.5, ID o« is
larger in case 2 than case 1, when Cqq is 100 times larger than C's.

Table 7 proves atleast numerically that we are able to utilize server idle time
without much effecting system reliability.
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