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      Abstract 
 
The paper studies a closed queueing network containing a server station and k  identical client stations. 
The client stations are subject to breakdowns, and a lifetime of each client station is assumed to be a 
random variable independent of all other ones having the probability distribution )(xG . The server 
station is an infinite server queueing system, and client stations are single server queueing systems with 
autonomous service, i.e. every client station serves customers (units) only at random instants generated 
by strictly stationary and ergodic sequence of random variables. The total number of units in the 
network is .N  The service times of units in the server station are independent exponentially distributed 
with parameter .λ  The expected times between departures in client stations are .)( 1−μN  After a service 
completion in the server station a unit is transmitted to the j th client station with equal probability 

l/1 , where kl ≤ is the number of currently available (i.e. not failure) client stations, and being 
processed in the j th client station the unit returns to server station. The parameter N is assumed to be 
large. The aim of this paper is to study the behaviour of bottleneck queues and to find confidence 
intervals associated with increasing a given high level of queue proportional to N in client stations. 
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1. Introduction 
 
Consider a large closed queueing network containing a server station (infinite-server queueing 

system) and k identical single-server client stations. The total number of customers (units) is N , where 
N  is assumed to be a large parameter. The departure process from client stations is assumed to be 
autonomous. Queueing systems with autonomous service mechanism have been introduced and 
originally studied by Borovkov [6, 7]. The formal definition of these systems in the simplest case of 
single arrivals and departures is as follows. Let )(tA  denote an arrival point process, let )(tS denote a 
departure point process, and let )(tQ be a queue-length process, and all these processes are started at 
zero ).0)0()0()0(( === QSA Then the autonomous service mechanism is defined by the equation: 
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     The queueing systems with autonomous service mechanism have been studied in many papers (e.g. 
Abramov [1, 3, 4], Fricker [8, 9], Gelenbe and Iasnogorodski [10]). In the present paper we study a 
closed client/server network (see Figure 1). 
 
 

 
 
Figure 1. An example of client/server 

network 
 

     The arrival process from the server 
to the i th client station is denoted 

)(, tA Ni . The service time of each unit 
in the server station is exponentially 
distributed with parameter λ . 
Therefore, the rate of arrival to client 
stations depends on the number of units 
in the server station. If there is tN  
units in the server station in time ,t  
then the rate of departure of customers 
from the server in time t  is .tNλ  There 
are k  client stations in total, and each 

of client station is a subject to breakdown. The lifetime of each client station is a continuous random 
variable independent of lifetimes of other client stations and has the probability distribution ).(xG  
 
     All client stations are assumed to be identical, and a unit transmitted from the server chooses each 
one with equal probability. (For this reason the network is called symmetric.) Therefore, if there are 
l available client stations in time t , then the rate of arrival to each of these client stations is ./ lNtλ  
 
     The departure instants from the j th client station ),...,2,1( kj =  are 

,...,, 3,,2,,1,,2,,1,,1,, NjNjNjNjNjNj ξξξξξξ +++  where each sequence ,..., .2,,1,, NjNj ξξ  forms a strictly 
stationary and ergodic sequence of random variables ( N is the series parameter). The corresponding 
point process associated with departures from the client station j is denoted 
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Then, the relations between parameters ,λ μ  and k are assumed to be 
 

(1.1)       ,1<
μ
λ

k
 

and 
 

(1.2)        .1>
μ
λ  

 
Condition (1.1)  means that all of the client stations are initially non-bottleneck, i.e. the service rate is 
greater than arrival rate. Condition (1.2)  means that after one or other breakdown all of the client 
stations become bottleneck. Denote 
 

.1:max0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>=

μ
λ
l

ll  

 
the maximum number of available client stations when the client stations all are bottleneck. Then for 
all 0ll ≤  the rest l  client stations will be bottleneck as well. 
 
     The queue-length process in the j th client station is defined as 
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where )(, tA Nj  is the arrival process to the client station .j   
 
     Let 1<α  be a given positive number. We say that the network is at risk if the total number of units 
in client stations exceeds the value .Nα Assuming that at the initial time moment all of the units are in 
the server station, the aim of this paper is to find a confidence interval ),0[ θ  such that with given high 
probability P  (say 95.0=P ) the network will not be at risk during that time interval ).,0[ θ  For 
networks with an arbitrary number of client stations this problem is hard, because the behaviour of 
bottleneck queues is very complicated (see next section for explicit results). Therefore in the present 
paper we study this problem for the case of network with two client stations only. 
 
     A large closed client/server queueing network with bottlenecks has been studied in many papers. 
The bottleneck analysis of Markovian networks has been provided by Kogan and Liptser [11]. 
Abramov [1, 2, 3] has extended the results of [11] to non-Markovian networks. Specifically, [1] has 
studied the variant of network with autonomous service mechanism in client stations. The results of [1] 
have been then extended to networks with two types of node and multiple unit classes in [4]. However, 
the contribution of the aforementioned papers is purely theoretical. All of them provide the bottleneck 
analysis for the particular case of one bottleneck station and under the assumption that at the initial 
time moment all of the units are concentrated at the server station. 
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     The detailed bottleneck analysis of the network including all cases related to bottleneck stations as 
well as initial conditions has been recently done in Abramov [5]. The results of [5] are promising for 
the solution of many applied problems. Specifically, the analysis of [5] is devoted to closed 
client/server networks in semi-Markov environment requiring the study of these networks under most 
general assumptions. The asymptotic solution of the problem of the present paper, as N increases 
indefinitely, is based on the study of [5]. 
 
     It is worth noting that reliability of computer systems themselves has been studied in many papers. 
We refer the book of Xie, Dai and Poh [12], where a reader can find the detailed information related to 
this subject. The confidence intervals that are studied in the present paper are related to reliability of 
information, which heavily depends on reliability of the network. 
 
     The paper is motivated by significant practical problems in telecommunication systems. Support and 
exchange of information is very expansive and often increases the related costs of the equipment itself. 
On the other hand, reliable support of information is derivative from high reliability of equipment and 
directly depends on that reliability. A special circle of practical problems is related to support of large 
databases. Then “units" are associated with units of information (records), and “client stations" are 
associated with users of a database. “Failing station" can be associated with absence of connection or 
very low rate of exchange. Low exchange in certain stations can result in bottleneck of entire network 
leading to destruction of a database.  
 
     The paper is organized as follows. In Section 2 we recall some of the results of [5] which are 
necessary for our purpose and then adapt them to the case of symmetric network considered here. In 
Section 3 we derive the distribution of the normalized queue-length processes in available client 
stations. In Section 4 we establish results for confidence intervals in the particular case of two client 
stations. In Section 5 we give a simple numerical example. In Section 6 we conclude the paper. 
 

2. Bottleneck client stations 
 
     In this section we recall some results of bottleneck analysis of [5] corresponding to the cases 
considered in the present paper. We start from the elementary case of l  equivalent bottleneck stations 
exactly, i.e. the case that at the initial time moment 0=t there are l  bottleneck stations is discussed. 
For simplicity, assume that all of these l  stations are absolutely reliable, and at the initial time moment 

0=t  there are N)1( β−  units in the server station, 10 ≤< β , and the rest Nβ are distributed between 
l client stations. So, because the network is symmetric, the assumption that there are approximately 

lN /β units in each client station in time 0=t , according to the law of large numbers, is reasonable. 
The assumption that the client stations are bottleneck means that μβλ l>− )1( . 
 
     The result on asymptotic behaviour of normalized queue-length in client stations follows from 
Proposition 5.3 of [5] which related to an asymmetric network with bottleneck stations and arbitrary 
initial queue-length. Recall this result. 
 
Lemma 2.1.  Assume that all client stations are initially bottleneck, and the initial queue-lengths in 
client stations are asymptotically equivalent to kNNN βββ ,...,, 21  correspondingly 

),1...( 21 ≤+++ kβββ   as .∞→N  Then, the normalized queue-length in the j th client station in limit 
as ∞→N is determined as 
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where )(tq j  denotes the normalized queue-length process in the j th client station in limit, i.e. )(tq j  is 
the limit in probability of  NtQ Nj /)(, as N increases indefinitely. 
 
In the notation of this lemma Nj )0(λ denotes the instantaneous rate of units to the j th client station in 
time 0=t , and Njμ denotes the service rate in the j th client station. In our particular case the number 
of nodes is ,l the instantaneous rate of units to each client station is lN /)1( λβ−  and the service rate is 

Nμ and all )(tq j  are equal, i.e. )()( tgtq j ≡  for all .,...,2,1 lj =  Therefore in our case from this Lemma 
2.1 we have the following statement. 
 
Proposition 3.2. We have: 
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3. Limiting normalized cumulative queue-length process 

 
     In this section we study the limiting (as ∞→N ) normalized cumulative queue-length process in 
client station. The limiting normalized cumulative queue-length process is denoted ).(tq At the initial 
time 0=t there are k  available client stations. Let kτττ ,...,, 21  be the moments of their breakdown, 

....0 21 kτττ ≤≤≤≤ The above moments of breakdown are associated with the behaviour of the time-
dependent network which can be considered as a network in semi-Markov environment. Therefore one 
can apply Theorem 5.4 of [5]. 
 
     The random time interval [0, kτ ] is the lifetime of the entire system. Therefore )(tq is to be 
considered during the aforementioned random interval [0, kτ ]. Recall that 

( ).1)/(:max0 >= μλ lll Therefore, according to Theorem 5.4 of [5] we obtain that in the random 
interval [0, 

0lk−τ ), .0)( =tq  Next, in the random interval [ 100
, +−− lklk ττ ) the equation for )(tq  is 
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where )(tr  is given by (2.4). Equation (3.1) follows from (2.1) and (2.2) as follows. Setting 0=β , 

0ll =  and replacing t  with )(
0lkt −−τ  from (2.1) we obtain: 
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Hence, taking into account that )()( 0 tgltq = we arrive at (3.1). 
 
     In the next interval [ 21 00

, +−+− lklk ττ ) , ,10 >l we have the following equation: 
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Therefore, in the time interval [ 21 00

, +−+− lklk ττ ) 
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In an arbitrary time interval [ 1, +ii ττ ), ,1,...,1, 00 −+−−= klklki  we have: 
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In the last endpoint kτ  we set .1)( =tq            
 

4. Confidence intervals 
 
     The formulae for the limiting normalized cumulated queue-length process are complicated. 
Therefore in this section we obtain confidence intervals for the particular case of two client stations. In 
this case only simple representation (3.1) is used, which in the case of two client stations looks as 
follows: 
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The confidence interval is structured from two intervals. The first one is [0, 1τ ), where the limiting 
normalized cumulative queue-length is zero. The second interval is [ 1τ , θ ], where θ  is a point where 

.)( αθ ≤q  Equations (4.1) and \(4.2) are defined for ,2τ<t  where 2τ  is a random breakdown point of 
the second client station. 
 
     Let *θ  be a point where .)( * αθ =q  The point *θ  is a random point depending on .1τ  However, 
under the assumption that one or other client station is active, the length of the interval [ *

1 ,θτ ] is fixed 
and uniquely defined from (4.1) and (4.2). 
 
     Let us derive probability distribution of the process ).(tq  Clearly, that the probability that 

0)( =tq coincides with the probability that the length of the interval [0, 1τ ) is greater than .t  Therefore, 
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Equations \(4.3) and (4.4) are easily obtained by standard arguments of probability theory. 
 
     Then the probability that the limiting normalized cumulated queue will reach the value γ before 
absorbing at 1 is 
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The problem is to find the value αγ ≤ such that 
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It is written the inequality rather then equality because the exact equality can be reached for 

,αγ > while for all αγ ≤ there must be inequality (4.6). 
 

5. Numerical example 
 
     Consider the following example. Let ,4=λ ,3=μ ,2.0=α  ,95.0=P  .1)( 2xexG −−=  
 
     From (4.6) we have: 
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Solution of the equation 95.02 =− γte  yields .025647.0=γt  From (4.5) we obtain: 
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γ

γ
t

tt edtedte
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0

102588.044 25.025.0 0.024375. 

 
This value of γ  is less than ,2.0=α and therefore this value 024375.0=γ  is the required value for a 
confidence interval. 
 

6. Concluding remarks 
 
      We found confidence intervals associated with increasing a given high level. The confidence 
intervals that established in the present paper are random. They are obtained in terms of the parameter 

,γ  which is the value of limiting cumulative normalized queue-length under which the probability that 
the system will be active is not smaller than a given value P. Thus, the strategy is to observe the 
cumulative queue-length process until the total number of units in client stations reaches the value 

.Nγ As soon as the total number of units exceeds this value there is not enough confidence that the 
system and/or information will be available. 
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