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1. Introduction
This paper mainly concentrates on the modelling of
various types of renewal processes and on the
computation of principal characteristics of these
processes – the time dependent coefficient of
availability, possibly unavailability. The aim is to
generate models, most often found in practice, which
describe the processes of ageing, further the
occurrence of dormant failures that are eliminated by
periodical inspections as well as monitored failures
which are detectable immediately after their
occurrence.
Renewal theory seems to be a feasible option to
quantify time-dependent effects on component
unavailability due to ageing, periodical inspections, or
repairs [1]. Closed form solutions for the asymptotic
the failure rate and unavailability can be obtained
using Laplace transform. Obtaining the detailed time
behaviour may not be a trivial numerical task.
Basic information from renewal theory brings
Appendix [4], [3].  The following chapter 2 is devoted
to models with a negligible renewal time in which a
main impact is given on flexible models with the
Erlang and Weibull distribution. The solution of these
models is received from a Laplace and discrete
Fourier transformation. In the following chapter 3 we
introduce different models with maintenance. Main
attention is paid to models with periodical preventive

maintenance - basic equations for the model are
formulated. The solution of a system of equations is
demonstrated for the situations with an exponential
and Weibull distribution. In the next chapter the
alternating model with an inconsiderable renewal time
is solved, this is demonstrated for lognormal
distribution of time to failure. The final part involves
generally formulated alternating models with the
occurrence of two types of independent failures.
Time-dependent unavailability of components under
maintenance and ageing processes can exhibit
mathematically complex behaviour [5]. The
unavailability may be also dependent on maintenance
history. First failure distributions may not be
continuous functions. Within this paper we can say
that renewal theory provides a feasible approach in
selected cases to implement and evaluate interventions
given by maintenance and aging processes.
A lot of notable asymptotic results on availability
analyses are focused on the situation that the
components have exponential lifetime distributions.
Using so-called phase-type approach, author in [2]
shows that the multi-state model also provides a
framework for covering other types of distributions,
but with limitations - the approach makes use of the
fact that a distribution function can be approximated
by a mixture of Erlang distributions (with the same
scale parameter). Asymptotic analysis of highly
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available systems has been carried out by a number of
researchers. A survey is given by Gertsbakh [7], with
emphasis on results related to the convergence of the
distribution of the first system failure to the
exponential distribution.
If the lifetimes are distributed arbitrarily, then the
system can be described by a semi-Markov process or
Markov renewal process. Semi-Markov processes and
Markov renewal processes are based on a marriage of
renewal processes and Markov chains. Pyke [8] gave
a careful definition and discussion of Markov renewal
processes in detail. In reliability, these processes are
one of the most powerful mathematical techniques for
analysing maintenance and random models. A
detailed analysis of the non-exponential case (non-
regenerative case) is however outside of the scope of
the introduction part. Further research is needed to
present formally proved results for the general case.
Presently, the literature covers only some particular
cases, what is also the case of this presentation.

2. Models with a negligible renewal period
In some cases we can take into account a renewal
period equal to zero. For example the situation when a
time to a renewal is substantially smaller than a time
to a failure and its implementation would not
influence an expected result. This case was intensively
studied in [6]. Basic relationships for Poisson process
are derived in [4]:
Renewal function and renewal density are given as
follows
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Basic definitions from renewal theory see in
Appendix. Renewal density is constant
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Methodology based on Laplace transforms was
dramatically extended in [6] for the case when a time
to failure is modelled by the Erlang distribution,
which has a probability density function

,
)(

)()(
a

ettf
ta

Γ
=

−λλλ
,0≥t ,0fλ .0fa

After the backward transformation a renewal density
is equal to
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which is kth nonzero root of the equation
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Figure 1. Renewal density for Erlang distribution

Another calculation method was applied for Weibull
distribution of time to failure, which has a probability
density

,)()( )(1 αλαλαλ tettf −−= ,0≥t

 > 0 is a parameter of the shape,  > 0 is a parameter
of a scale.
A probability density fn(t), n = 2,3,…., or a probability
density of time to nth  failure can be calculated as a
convolution of the function ( fn-1 *f ). We can express
it numerically e.g. with the help of discrete Fourier
transformation [6].
By a numerical integration we can determine a vector
of a distribution function Fn .
A formula (1) for a calculation of the renewal function
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is necessary to substitute by a finite sum of the first K
computed terms at the numerical calculation. It can be
conducted because these terms converge quickly to a
zero at a definite interval [0, T]. Equally, Sn = X1 + X2
+…+ Xn has an asymptotic normal distribution N(n ,

2) where  and 2 are definite expected value and a
dispersion of Xi.
Considering that Weibull distribution of time to
failure for > 1 has an increasing failure rate
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a distribution function Fn(t) can be upper estimated by
the function
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where  is an expected value of a time to failure [3].
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Exact relationship for the reminder is derived in [6].
The behaviour of the renewal function estimated for
different number of members in the above finite sum
we can see in Figure 2.

Figure 2. Renewal function for Weibull distribution

3. Models with maintenance
In many situations, failure of a unit during actual
operation is costly or dangerous. If the unit is
characterized by a failure rate that increases with age,

it may be wise to replace it before it has aged too
greatly. In this section we shall concentrate on the
operating characteristics of some commonly
employed replacement policies.
A commonly considered replacement policy is the
policy based on age (age replacement). Such a policy
is in force if a unit is always replaced at the time of
failure or c hours after its installation, whichever
occurs first; c is a constant unless otherwise specified.
If c  is a random variable, we shall refer to the policy
as a random age replacement policy. Under a policy of
block replacement the unit is replaced at times c (k =
1,2,…), and at failure. This replacement policy
derives its name from the commonly employed
practice of replacing a block or group of units in a
system at prescribed times c(k = 1,2,…) independent
of the failure history of the system.

3.1. Replacement based on age
A unit is replaced c hours after its installation or at
failure, whichever occurs first; c is considered
constant. Let R(t) denote the probability that an item
does not fail in service before time t. Then
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Figure 3. The Weibull distribution function for a unit
with the replacement based on age.

When the time to failure is exponentially distributed X
~ exp(1/µ), then we have
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which means that distribution function is independent
on replacements. Other words, the unit does not age.

3.2. Block replacement policy
Under a policy of block replacement all components
of a given type are replaced simultaneously at times

c  (k = 1,2,…) independent of the failure history of
the system. If Xi is time of i-th failure of a unit which
has distribution function Fi and probability density fi
and Ri(t)=1- Fi (t), then
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Distribution of time to i-th failure for i  >  1 we can
derive on the basis of conditional probability:
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Figure 4. The Weibull distribution function for a unit
with block replacement

In Figure 4, we can see time dependencies for Ri(t) for
Weibull distribution of time to failure.

3.3. Periodical preventive maintenance
May a device goes through a periodical maintenance
after a time interval of the operation c, whose
intention is a detection of possible dormant flaws and
their possible elimination. The period of device
maintenance is d and after this period the device starts
operating again. F(t) is here a time distribution to a
failure X. Then in the interval [0, c+ d) there is a
probability that the device appears in the not operating
state equal to

),()( tFtP = ct τp

,1= .ct τ≥

The state of a failure is considered then both a time to
the maintenance after a possible failure and the time
when the device is under maintenance. The
probability P(t) (also a coefficient of unavailability)
for ),0[ ∞∈t  is generated by following system of
equations:
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Here Pi (t) stands for a probability that a device exists
in the failure state provided that before it had gone
through i inspections. A term Pi-1(t)  - Pi-1(i c)
represents a probability that a device was all right at
the previous inspection and it failed in the interval (i c,
t), Pi-1(i c) P0(t - i( c + d)) is a probability that it had
failed in the previous inspection and since then it
failed again.

3.3.1. Exponential distribution of time to
failure
May

.1)( tetF λ−−=

For the time ),0[ ∞∈t is then a probability P(t) equal
to
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If d = 0, the expression for P(t) can be further
simplified into the form
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3.3.2. Weibull distribution of time to failure
Let the intensity of failures of the given distribution of
time to failure is not constant, it is then a function of
time past since the last renewal. In this case it is
necessary for the given t and n, related with it which
sets a number of done inspections to solve above
mentioned system of n equations and the solution of
the given system is not eliminated anyhow as it is at
an exponential distribution.
In the Figures 5 and Figure 6 a slightly marked curve
draws points of the local extremes in the case of
shortening a time to the first inspection.

Figure 5. Coefficient of unavailability for exponential
distribution

Figure 6. Coefficient of unavailability for Weibull
distribution.

4. Alternating renewal models
Alternating models are those where two of the
significantly diverse states appear, between which a
model converts from one to another. A faulty device is
the example of the alternating model where a time to a
repair is compared with a time to failure and it cannot
be neglected.
In the case that both a time to failure and a time to a
repair follows an exponential distribution, general
solution for a calculation of a coefficient of
availability can be found in [4].

4.1. Lognormal distribution of a time to failure
If a distribution to a failure Xf has a lognormal
distribution, then a probability density is in the form
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where (x) is standard normal density.
In this case a numerical calculation is offered again
for the computation of the coefficient of availability.
We can compute a probability density of a sum of
random quantities Xf and Xr (Xr is an exponential time to
a repair) from a discrete Fourier transformation [6],
equally as a convolution in the equation
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The calculation of a renewal density is substituted by
a finite sum
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An example: In the following example a calculation
for parameter values =1/4, =8 , =1/2, is done. In
the Figure 7 there is a renewal density. The
asymptotic value is marked by dots, which is in this
case equal to

Figure 7. A renewal density for lognormal distribution

Figure 8 shows a procedure of the coefficient of
availability K(t), the asymptotic value is marked by
dots again and it is given by the following formula:

Figure 8. Coefficient of availability for a lognormal
distribution

5. Alternating renewal models with two types
of failures
The following part presents models, which consider
an appearance of two different independent failures.
These failures can be described by an equal
distribution with different parameters or by different
distributions.

5.1. Common repair
A device composed of two serial elements can be an
example whereas a failure of one of them causes a
failure of the whole device. A time to a renewal is
common for both the failures and begins immediately
after one of them. It is described by an exponential
distribution with a mean value 1/ .

A failure occurrence in the renewal time is not taken
into account, after the renewal both the parts are
considered to be new.
May Xf1 and Xf2 are independent random values
describing time of failures with probability densities
ff1(t) and ff2(t), further a time to a repair is Xr with a
density fr(t). A probability that no failure occurs in the
interval [0,t) is equal to
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and is a reliability function of the time to failure Xf  of
the whole device. Then Xf has a probability density
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With the knowledge ff(t) we can calculate the
functions describing this alternating process.
If the time to failure has an exponential distribution
with mean values 1/  and 1/ , then
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Then ff(t) has an exponential distribution with a mean
value 1/( ) and the coefficient of availability is
equal
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If the analytical procedure is uneasy or impossible, a
numerical calculation can be used.  For a renewal
density computation is desirable instead of the
equation
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use a renewal equation for a renewal density
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and conduct a sum of the only definite number of
elements with a fault stated above. fn(t) is  a
probability density of time to nth failure. Then for the
calculation of convolutions is used for example a
quick discrete Fourier’s transformation.
In the Figure 9 there is a graph of a coefficient of
availability in the case that a time to a failure Xf1 and
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Xf2 have Weibull distribution. Expected value to the
failure EXf is equal to
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and that is why an asymptotic coefficient of
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Figure 9.  Coefficient of availability for Weibull
distribution

5.2. Two independent parts
Supposing the device consists of two independent
parts. The behaviour of each one is described by its
alternating model with a given time to a failure and a
time to a repair. Maintenance proceeds for both
differently and independently. Equally, the failure of
one of them can appear regardless of the state of the
other part, even in the state of a failure.
Let us consider the whole device to be in the state of a
failure when at least one of the parts is in the state of a
failure. Ka(t) is a coefficient of availability of the first
part and Kbt) is a coefficient of availability of the
second one. For the whole device K(t) is equal to

).()()( tKtKtK ba=

May dormant faults occur in the first part, with
Weibull’s distribution and with an expected value EX
=  2 and a parameter of the form  = 2 which are
eliminated by periodical inspections with a period c =
2 (See Models with periodical preventive
maintenance) and the second part is equal as in the
previous model. The course of the coefficient of
availability as the product of already computed partial
ones is designed in the Figure 10.

Figure 10. Coefficient of availability for independent
parts

6. Conclusion
In this paper a few types of renewal processes, which
differentiate in a renewal course and a type of
probability distribution of a time to failure, were
described. These processes were mathematically
modelled by the means of a renewal theory and these
models were subsequently solved.
In the cases, when the solving of integral equations
was not analytically feasible, numerical computations
were successfully applied. It was known from the
theory that the cases with the exponential probability
distribution are analytically easy to solve.
With the gained results and gathered experience it
would be possible to continue in modelling and
solving more complex mathematical models which
would precisely describe real problems. For example
by the involvement of certain relations which would
specify the emergence, or a possible renewal of
individual types of failures which in reality do not
have to be independent on each other. Equally, it
would be practically efficient to continue towards the
calculation of optimal maintenance strategies with the
set costs connected with failures, exchanges and
inspections of individual components of the system
and determination of the expected number of these
events at a given time interval.
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Appendix

Renewal Process
Renewal process serves for example to model
mathematically a device behaviour which is
maintained in such a way that it stays running as most
effectively and longest as possible. May a file of
components or the whole device with a time to a
failure X (non-negative absolutely continuous random
variable) with a dispersion given by a probability
density f(t) exists and may a symbol t denotes for
clearness a time. The first component is put into
operation at time t = 0. Further, X1 is a period when
the first component comes to the failure and at the
same time it is substituted by a new identical
component from a given file. It means that a renewal
period (in this case a change period) is negligible, or
equal to zero. This second component breaks down
after the period X2 since it started to operate. At the
time X1 + X2 the second component is renewed by the
exchange for the third one and the process continues
further in such a way. The r-th renewal will happen at
the time Sr = X1 + X2 +…+Xr.
If X1, X2…are independent non-negative equally
distributed random variables with a finite expected
value and dispersion,
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i
in NnXSS

1
0 ,,,0

then a random process { }∞
=0nnS  is called a renewal

process in a renewal theory. Sometimes an order of
stated random variables {Xn} n=0 is denoted in this
way. In the case when a time distribution until the
failure is exponential, we speak about Poisson
process. A function Fn(t) indicates a distribution
function of a random variable Sn.. There are a few
other random variables connected with the renewal
process, which describe its behaviour (at time). Let we

call Nt a number of renewals in the interval [0, t] for a
firm t 0, it means

{ }tSnN nt p:max=

From this we also get that SNt  t < SNt+1. Regarding
the fact that the interval [0, t] contains n failures (as
well as renewals) only if nth failure happens at the
latest at the time t

{ } { } )(tFtSPnNP nnt ==≥ p

and the probability that at the time t there are n
renewals in the given renewal process can be
described in the following way

{ } { }tStSPnNP nnt ≥∧== +1p

[ ] )()()(1)( 11 tFtFtFtF nnnn ++ −=−=

Provided that X1, X2…are independent non-negative
equally distributed random variables and Pr(X1 = 0) <
1, then a random variable Nt has finite moments of all
the series (Stein`s theorem).
And if Nt ,  t .0 gives a number of renewals in the
interval [0, t], then a function

0,)( ≥= tENtH t

is called a renewal function. As it is apparent it gives
an expected number of renewals in the interval [0, t].
The expected number of renewals in the interval [t1,
t2], 0<  t1<  t2 can be quantified from H (t1) – H (t2),
because a number of renewals in this interval is Nt2 –
Nt1 .
A renewal function can be also expressed from
distributional functions Fn(t) of random variables Sn
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A renewal equation is important for the renewal
function computation H(t). It provides a mutual
unique relation between distributional function of a
time to a renewal and a renewal function: if a
distributional function of a time to the renewal F(t) is
continuous, then a renewal function H(t) is convenient
with an integral equation
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This equation can be easily derived from the previous
equation with help of its integral transformation (e.g.
Laplace).
An asymptotic behaviour of a renewal process is
substantial. An asymptotic behaviour of a renewal
process is discussed in an Elementary theorem about a
renewal: if a time distribution to a renewal has a finite
expected value , then

µ
1)(lim =

∞→ t
tH

t
.

It is a Blackwell theorem, which testifies about a
limited behaviour of an expected number of renewals
at a finite interval (t, t+ t]: if a time to a renewal has
a non-lattice distribution with a definite positive
expected value , then 0fh∀ is
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µ
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If a derivation of a renewal function exists (i.e. X1,
X2…are absolutely continuous random variables), then
for the arbitrary time t  >  0 a function h(t) that is
defined by a relation
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is a renewal density. Then with a help of a probability
density fn(t) = F’n(t) we have
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A renewal density most often appears in the following
integral equation
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so called a renewal equation for a renewal density.
Here f(t) is a probability density of a absolutely
continuous non-negative time to the renewal X.
We can describe the equation approximately by words
in such a way that for t 0 renewal probability
h(t) t in the interval (t, t +  t  ] is equal to a
probability sum f(t) t that in the interval (t, t + t ]
the first renewal happens and the sum of probabilities
for ),0( tu ∈∀ that the renewal happens at the time t –
u followed by a time to the failure of the length u.

Alternating Renewal Process

Provided that there are two kinds of components with
various independent time to a failure X,Y ,

respectively adequate distributional functions F(t),
G(t) (densities f(t), g(t)), at the time t =  0 the
component of the first type is activated and every time
at the time of failure is substituted by the component
of the opposite type, resulting process is named
Alternating renewal process.
We can simulate a renewal process with a definite
time to a renewal with such a model.  At the time t =
0 the component begins to work to the moment of
failure X1. The final time to the renewal Y1 follows. At
the moment X1 + Y1 the renewal ends and  a new (or
repaired) component is activated with a time to a
failure X2. X1,X2…resp.  Y1,Y2…are independent non-
negative random variables with a distr. function F(t)
resp. G(t).The nth  failure happens at the moment
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for nth  renewal we have
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A random process {S1,  T1,  S2,  T2…..} is then an
alternating renewal process. A coefficient of
availability K(t) (or also A(t) - availability) is a basic
characteristic of a renewal process with a finite time
to a renewal. It determines a probability that at the
time t the component will work. It is consequently
equal to a sum of probabilities that X1 > t, it means
that the first component has a time to a failure greater
than t, and that the renewal happens in the interval (u,
u + u], u  0, 0 < u < t and a renewed component
will have a time to a failure greater than t - u.
Written by an integral equation:
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 h(x) is a renewal process density of a renewal
{Tn} n=0, F(t) is a distribution function of the time to a
failure, resp. 1 – F(t) = R(t) is reliability function.
In particular, an asymptotic coefficient of availability
of the alternating renewal process is important
practical reliability characteristics,
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It describes behaviour of the alternating renewal
process in the situation when the system is stabilized
in “a distant time moment t”, i.e. a stationary case,
when the influence of the beginning configuration
subsides.


