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1. Introduction
The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55.  The essential
developments of semi-Markov processes theory were
proposed by Cinlar [3], Koroluk & Turbin [13],
Limnios & Oprisan [14]. We would apply only semi-
Markov processes with a finite or countable state
space. The semi-Markov processes are connected to
the Markov renewal processes.
The semi-Markov processes theory allows us to
construct many   models of the reliability systems
evolution   through the time frame.

2. Definition of semi-Markov processes with a
discrete state space
Let S be a discrete (finite or countable) state space and
let ),0[ ∞=+R , ,...}2,1,0{0 =N . Suppose, that

,...2,1,0,, =nnn ϑξ  are the random variables defined
on a joint probabilistic space ( Ω , F, P ) with values
on S and +R  respectively. A two-dimensional random

sequence ,...}2,1,0),,{( =nnn ϑξ  is called a Markov
renewal chain if for all

0010 ,,...,,,,...., NnRttSiii nn ∈∈∈ +− :

1. { }000011 ,,...,,|, tititjP nnnnn ====≤= ++ ϑξϑξϑξ

{ } ),(|, 11 tQitjP ijnnn ==≤== ++ ξϑξ                  (1)

2. oio piPiP ===== }{}0,{ 0000 ξϑξ                    (2)
hold.
From the above definition it follows that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do
not depend on the second component. It is easy to
notice that a random sequence ,...}2,1,0:{ =nnξ  is a
homogeneous one-dimensional Markov chain with the
transition probabilities

.)(lim}|{ ! tQijPp ijtnnij ∞→+ ==== ξξ                     (3)

The matrix

[ ],,:)()( SjitQt ij ∈=Q                                       (4)

Is called a Markov renewal kernel. Both Markov
renewal kernel and the initial distribution define the
Markov renewal chain. This fact allows us to
construct a semi-Markov process.
Let
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A stochastic process { }0:)( ≥ttX given by the
following relation
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ntX ξ=)( for ),[ 1+∈ nnt ττ (5)

is called   a semi-Markov process on  S  generated by
the  Markov renewal chain related to the kernel

0),( ≥ttQ and the initial distribution p.
Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals ),[ 1+nn ττ  and
it is a right-continuous function, from
equality nnX ξτ =)( , it follows that the sequence
{ },...2,1,0:)( =nX nτ  is a Markov chain with the
transition probabilities matrix

],:[ Sjipij ∈=P                                                 (6)

The sequence { },...2,1,0:)( =nX nτ  is called an
embedded Markov chain in a semi-Markov process
{ }0:)( ≥ttX .
The function

{ }jXiXtPtF nnnnij ==≤−= ++ )(,)(|)( 11 ττττ

ij

ij

p
tQ )(

=                                                         (7)

is a cumulative probability distribution of a random
variable ijT  that is called holding time of a state i , if
the next state will be j . From (11) we have

)()( tFptQ ijijij = .                                                   (8)

 The function

{ } ∑==≤−=
∈

+
Sj

ijnnni tQiXtPtG )()(|)( 1 τττ      (9)

is a cumulative probability distribution of a random
variable iT  that is called waiting time of  the state i .
The waiting time iT  means the time being spent in
state i  when we do not know the successor state.
A stochastic process { }0:)( ≥ttN  defined by

ntN =)(   for ),[ 1+∈ nnt ττ                  (10)

is called a counting process of the semi-Markov
process { }0:)( ≥ttX .
The semi-Markov process { }0:)( ≥ttX  is  said  to  be
regular if for all 0≥t

1})({ =∞<tNP

It means that the process { }0:)( ≥ttX  has the finite
number of state changes on a finite period.
Every Markov process { }0:)( ≥ttX  with the discrete
space S and the right-continuous trajectories keeping
constant values on the half-intervals, with the
generating matrix of the transition rates

],:[ Sjiij ∈=Α α , ∞<=−< iii αα0  is the semi-
Markov process with the kernel

],:)([)( SjitQt ij ∈=Q  ,

Where

0,)1()( ≥−= − teptQ tii
ijij

α ,

jip
i

ij
ij ≠= for

α

α
 and 0=iip

In the reliability models the parameters and
characteristics of a semi-Markov process are
interpreted as the reliability characteristics and
parameters of the system.

3. Transition probabilities of a semi-Markov
process
The transition probabilities of the semi-Markov
process are introduced as follows:

{ } .,,)0(|)()( SjiiXjtXPtPij ∈=== (11)

Applying the Markov property of the semi-Markov
process at the jump moments, as a result, we obtain
Markov renewal equation for the transitions
probabilities, [4], [12]

,)()()](1[)(
0

∑ ∫ −+−=
∈Sk

t

ikkjiijij xdQxtPtGtP δ (12)

Sji ∈, .

Using Laplace-Stieltjes transformation we obtain the
system of linear equation

,)(~)(~)](~1[)(~ ∑+−=
∈Sk

kjikiijij spsqsgsp δ              (13)

Sji ∈,

where the transforms

)()(~
0

tdPesp ij
st

ij ∫=
∞

−

are unknown while the transforms
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,)()(~
0

tdQesq ik
st

ik ∫=
∞

− )()(~
0

tdGesg i
st

i ∫=
∞

−

are given.
Passing to matrices we obtain the following equation

)(~)(~)](~[)(~ sssIs pqgp +−= , (14)

where

],:)(~[)(~ Sjisps ij ∈=p , ],:)(~[)(~ Sjisqs ij ∈=q ,

],:))(~1([)(~ Sjisgs iij ∈−= δg .

In many cases the transitions probabilities )( tPij  and
the states probabilities

{ } ,,)()( SjjtXPtPj ∈==                                 (15)

approach constant values for large t

)(lim),(lim tPPtPP jtjijtij
∞→∞→

==  .                           (16)

To formulate the appropriate theorem, we have to
introduce a random variable

{ }jXNn nj =∈=∆ )(:min τ ,                             (17)

That denotes the time of first arrival at state j.  A
number

})(|{ iXPf njij =∞<∆= τ                                 (18)

is the probability that the chain that leaves state i will
sooner or later achieve the state j.
As a conclusion of theorems presented by Korolyuk
and Turbin [13], we have obtained following theorem

Theorem 1.
Let { }0ttX ≥:)( be a semi-Markov process with a
discrete state space S and continuous kernel

[ ].,:)()( SjitQt ij ∈=Q  If the embedded Markov
chain { },...2,1,0:)( =nX nτ , contains one positive
recurrent class C, such that for each state

1,, =∈∈ ijfCjSi and ,,)(0 SiTE i ∈∞<< then

∑
====

∈
∞→∞→

Si
jj

jj
jtjijtij TE

TE
tPPtPP

)(
)(

)(lim)(lim
π

π
     (19)

where ],[ Sjj ∈= ππ is the unique stationary
distribution of the embedded Markov chain that
satisfies system of equations.

.1,, =∑∈=∑
∈∈ Si

ijij
Si

i Sjp πππ                           (20)

4. First passage time from the state i to the
states subset A.
The random variable

,AA ∆=Θ τ

where

{ },)(:min AXNn nA ∈∈=∆ τ

denotes the time of first arrival of semi-Markov
process, at the set of states A.
The function

{ }.)0(|)( iXtPt AiA =≤Θ=Φ                                (21)

is the cumulative distribution of the random variable
iAΘ  that denotes the first passage time from the state i

to the states subset A.

Theorem 2.   [4], [13]
For the regular semi-Markov processes such that,

AiiXPf AiA ′∈==∞<∆= ,1})0(|{ , (22)

the distributions AitiA ′∈Φ ,)( are proper and they
are the unique solutions of the system of equations

),()()()(
0

xdQxttQt ik
Sk

t

kA
Aj ijiA −∑ ∫ Φ+∑=Φ

∈∈

'Ai ∈

Applying Laplace-Stieltjes transformation we obtain
the system of linear equations

',)(~)(~)(~)(~
'

Aisqssqs
Ak

ikkA
Aj

ijiA ∈∑+∑=
∈∈

φφ     (23)

with unknown transforms

.)()(~
0

tdes iA
st

iA Φ∫=
∞

−φ

Generating matrix form we get equation
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( ) )(~)(~)(~
'' sssI AA bq =− ,                                   (24)

where

],:)(~[)(~],',:[ ' AjisqsAji ijAij ∈=∈= qI δ

are the square matrices and

[ ]

T

ij
Aj

T
iAA

Aisqs

Aiss






 ∈∑=

∈=

∈
':)(~)(~

,':)(~)(~
'

b

are the one-column matrices of transforms. The
formal solution of the equation is

( ) )(~)(~)(~ 1
'' ssIs AA bq −−= .

To solve this equation we use any computer programs,
for example MATHEMATICA. Obtaining the inverse
Laplace transform is much more complicated.
It is essentially simpler to find the expected values
and the second   moment of the random variables

AiiA ′∈Θ , . If the second moments of the waiting
times AiTi ′∈,  are positive and commonly bounded,
and Aif iA ′∈= ,1 , then the expected values of the
random variables AiiA ′∈Θ ,  are the unique solution
of equation

( ) ''' AAAI TP =− ,                                              (25)

where

[ ] [ ],',:,',: ' AjipAji ijAij ∈=∈= PI δ

[ ] [ ]TiA
T

iAA AiTEAiE ':)(,':)( '' ∈=∈Θ= T

and the second moments of the time to failure are the
unique solution of equation

( ) 'BPI AAA' =− ′
2                                               (26)

where

[ ] [ ],',:,',: ' AjipAji ijAij ∈=∈= PI δ

[ ] [ ] ,':,':)( '
22 T

iA
T

iAA AibAiE ∈=∈Θ=′ B

∑ Θ+=
∈ '

)()(2)(
Ak

kAikikii ETEpTEb .

5. Semi-Markov model of the cold standby
system with repair
The problem is well known in reliability theory
(Barlow & Proschan [1]). The model presented here is
some modification of the model that was considered
by Brodi & Pogosian [2].

5.1. Description and assumptions
A system consists of one operating component, an
identical stand-by component and a switch, (Figure1).

2

1

Figure 1. Diagram of the system

When the operating component fails, the spare is put
in motion by the switch immediately.   The failed unit
(component) is repaired. There is a single repair
facility. The repairs fully restore the components i.e.
the components repairs means their renewals. The
system fails when the operating component fails and
component that was sooner failed in not repaired yet
or when the operating units fail and the switch fails.
We assume that the time to failure of the operating
components are represented by the independent copies
of a non-negative random variable ς  with distribution
given by a probability density function (pdf)

0),( ≥xxf . We suppose that the lengths of the repair
periods of the components are represented by the
identical copies of the non-negative random variables
γ  with cumulative distribution function (CDF)

).()( xPxG ≤= γ  Let U  be a random variable having
binary distribution

,10,1,0,)1()()( 1 <<=−=== − akaakUPkb kk

where 0=U , when a switch is failed at the  moment
of the operating component failure, and 1=U , when
the switch work at that moment. We suppose that the
whole failed system is replaced by the new identical
system. The replacing time is a non-negative random
variable η  with CDF )()( xPxH ≤= η .
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Figure 2. Reliability evolution of the standby system

Moreover we assume that the all random variables,
mentioned above are independent.

5.2. Construction of the semi-Markov model
To describe reliability evolution of the system, we
have to define the states and the renewal kernel. We
introduce the following states:
0 - the system is failed

1 - the failed component is repaired, spare is operated

2 - both operating component and spare are “up”.

Let ,...,,0 210
∗∗∗= τττ denote the instants of the states

changes, and }0:)({ ≥ttY  be a random process with
the state space }2,1,0{=S , which keeps constant

values on the half-intervals ,...1,0),,[ 1
∗
+

∗
nn ττ  and is

right-continuous.  The realization of this process is
shown in Figure 1. This process is not semi-Markov,
because the condition (1) of definition (2) is not
satisfied for all instants of the state changes of the
process.
Let us construct a new random process a following
way. Let 00 τ=  and ,..., 21 ττ  denote the instants of
the system components failures or the instants of
whole system renewal. The random process

}0:)({ ≥ttX  defined by equation

),[for)()(,0)0( 1+∈== nnn tYtXX τττ

is the semi-Markov process.
To have semi-Markov process as a model we must
define its initial distribution and all elements of its
kernel
















=

0)()(
0)()(

)(00
)(

2120

1110

02

tQtQ
tQtQ

tQ
tQ

For 0≥t  we obtain

),()()(02 tHtPtQ =≤= η

,)()()(

)()()1()()](1[

),,0(

),()(

0

00

10

∫−=

∫∫ −+−=

<≤=+

>≤=

t

tt

xdFxGatF

xdFxGaxdFxG

tUP

tPtQ

ζγς

ζγς

,)()(),,1()( 011 ∫=<≤== t xdFxGatUPtQ ζγς

),()1(),0()(20 tFatUPtQ −=≤== ς

).(),1()(21 taFtUPtQ =≤== ς

We assume that, the initial state is 2. It means that an
initial distribution is

[ ]100)0( =p  .

Hence, the semi-Markov model is constructed.

5.3. The reliability characteristics
The random variable iAΘ , that denotes the first
passage time from the state i to the states subset A,
for 2=i  and }0{=A  in our model, represents the
time to failure of the system. The function

0,)(1)()( 2020 ≥Φ−=>Θ= tttPtR                (27)

is the reliability function of the considered cold
standby system with repair.
System of linear equation (23) for the Laplace-
Stieltjes transforms of the functions

,2,1,0,)(0 =≥Φ itti

in this case is

)(~)(~)(~)(~
11101010 sqssqs φφ +=

)(~)(~)(~)(~
21102020 sqssqs φφ +=

The solution is

,
)(~1

)(~
)(~

11

10
10 sq

sqs
−

=φ

.
)(~1

)(~)(~
)(~)(~

11

1021
2020 sq

sqsqsqs
−

+=φ                         (28)
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Hence, we obtain the Laplace transform of the
reliability function

.)(~1)(~ 20

s
ssR φ−

=                                               (29)

The transition probabilities matrix of the embedded
Markov chain in the semi-Markov process
{ }0:)( ≥ttX  is
















=

0
0
100

P

2120

1110

pp
pp                                              (30)

Where

1110 1 pp −=

,)()(),1( 011 ∫=<== ∞ xdFxGaUPp ζγ

.)1(,1 2120 aUPpap ===−=

Using formula (9) we obtain the CDF of the waiting
times of .2,1,0, =iTi

)()(),()(),()( 210 tFtGtFtGtHtG === .

Hence

)()(),()(),()( 310 ςςη ETEETEETE === .

The equation (25) in this case has form









=








Θ
Θ









−
−

)(
)(

)(
)(

1
01

20

1011

ς
ς

E
E

E
E

a
p

The solution is

11
10 1

)()(
p

EE
−

=Θ
ς ,

11
20 1

)()()(
p

EaEE
−

+=Θ
ς

ς .                                    (31)

We will apply theorem 1 to calculate the limit
probability distribution of the state. Now, the system
of linear equation (20) is

,0202101 πππ =+ pp

,1212121 πππ =+ pp

,20 ππ =

.1210 =++ πππ

Since, the stationary distribution of the embedded
Markov chain is

,
2 2111

11
0 pp

p
+

=π

,
2 2111

21
1 pp

p
+

=π

.
2 2111

11
2 pp

p
+

=π

Using formula (19) we obtain the limit distribution of
semi-Markov process

)()()(
)(

112111

11
0 ςςη

η
EpEpEp

EpP
++

=                      (32)

)()()(
)(

112111

21
1 ςςη

ς
EpEpEp

EpP
++

=

)()()(
)(

112111

11
2 ςςη

ς
EpEpEp

EpP
++

=

5.4. Conclusion
The expectation )( 20ΘE  denoting the mean time to
failure is

11
20 1

)()()(
p

EaEE
−

+=Θ
ς

ς ,

where

.)()(011 ∫= ∞ xdFxGap

Let us notice, that the cold standby determines

increase the meantime to failure
111

1
p

a
−

+   times.

The limiting availability coefficient of the system is

)()()(
)()(

112111

1121
21 ςςη

ςς
EpEpEp

EpEpPPA
++

+
=+= .
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6. Semi-Markov process as the reliability
model of the operation with perturbation
Semi-Markov process as the reliability model of
multi-stage operation was considered by F. Grabski in
[8] and [10]. Many operations consist of some
elementary tasks, which are realized in turn. Duration
of the each task realization is assumed to be positive
random variable.  Each elementary operation may be
perturbed or failed. The perturbations increase the
time of operation and the probability of failure as
well.

6.1. Description and assumptions
Suppose, that the operation consists of n stages which
following in turn. We assume that duration of an i-th
stage, (i =  1, ... , n)  is a nonnegative random variable

nii ,,1; L=ξ  with a cumulative probability
distribution

( ) ( ) nidxxftPtF
t

iii ,,1,)(
0

K=∫=≤= ξ ,

where )(xf i  denotes its probability density function
in an extended sense.
Time to failure of the operation on the i-th stage
(component) is the nonnegative random variable iη ,

ni ,,1 L=  with exponential distribution

( ) nietP ti
i ,,1;1 K=−=≤ −λη .

The operation on each step may be perturbed. We
assume that no more then one event causing
perturbation on each stage of the operation may occur.
Time to event causing of an operation perturbation on
i-th stage is a nonnegative random variable

nii ,,1; K=ζ  with exponential distribution

( ) nietP ti
i ,,1;1 K=−=≤ −αζ .

The perturbation degreases the probability of the
operation fail. We suppose that time to failure of the
perturbed operation on the i-th stage is the
nonnegative random variable nii ....,2,1, =ν   that
has the exponential distribution with a parameter

ii λβ >

( ) .,,1;1 nietP ti
i K=−=≤ −βν

We assume that the operation is cyclical.
We assume that random variables

niiiii ,...,1,,,,, =ζνηξ  are mutually independent.

6.2. Semi-Markov model
To construct reliability model of operation, we have to
start from definition of the process states.
Let jie , i=1,...,n, j=0,1 denotes j-th reliability state
on i-th step of the operation where, j=0 denotes
perturbation and j=1 denotes success

12 +ne - failure (un-success) of the operation

11e - an initial state.
For convenience we numerate the states

niiei ,...,1,1 =↔

niniei ,...,1,0 =+↔

,1212 +↔+ ne n

Under the above assumptions, stochastic process
describing of the overall operation in reliability
aspect, is a semi-Markov process }0:)({ ≥ttX  with
a space of states }12,2,...,2,1{ += nnS  and flow
graph shown in Figure 3.

1 2 n-1 n

n+
1

n+
2

2n-
1 2n

2n
+1

Figure 3. Transition graph for n-stage cyclic operation

To obtain a semi-Markov model we have to define all
nonnegative elements of semi- Markov kernel

[ ]SjitQt ij ∈= ,:)()(Q

{ }iXtjXPtQ nnnnij =≤−== ++ )(|,)()( 11 ττττ

First, we define transition probabilities from the state i
to the state j for time not greater than t for i=1,…,n-1.

( ) ),(1 iiiiiii tPtQ ξζξηξ >>≤=+

dzdydxxfee i
zi

D
i

yi
i )(λα λα −−∫∫∫=

where

},,
,0,0,0:),,{(

yxxztx
zyxzyxD

>>≤
≥≥≥=
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Since, we have

( ) ∫ ∫ ∫=
∞

−−
+

t x

x

zi
i

yi
iiii dzedyedxxftQ

0 0
1 )( λα λα

dxxfe i

t
xii )(

0

)(∫ +−= αλ .

For 12,...,1 −+= nni  we obtain

( )

.1,...,1,)](1[

),,(

0

)( −=∫ −=

>>≤=

+−

+

niduuFe

tPtQ

t

i
uii

i

iiiiinii

αλα

ξζζηζ

For ni ,...,1=  we get

( )

,)](1[

),,(

)(

0

12

duuFe

tPtQ

i
uii

i

t

iiiiini

−∫=

<<≤=

+−

+

αλλ

ξηζηη

.1,...,1 −= ni

If on i-th stage a perturbation has happened the
transition probability to next state for time less then or
equal to t is

,
)(

)(

)|,()(1

∫∫

∫∫∫
=

>−>≤−=

−

−−

+++

E
i

yi
i

i
zi

D
i

yi
i

iiiiiiiinin

dydxxfe

dzdydxxfee

tPtQ

α

βα

α

βα

ζξζξνζξ

,1,...,1 −= ni

where

},,0

,0,0,0:),,{(

yxyxztyx

zyxzyxD

>−>≤−≤

≥≥≥=

}.,0,0:),{( yxyxyxE >≥≥=

To find the triple integral over the region D, we apply
change of coordinates:

.,, zwyvyxu ==−=

Hence

.,, wzvyvux ==+=

This mapping assigns to points from set

},0,0:),,{( uwvtuwvu >≥≤≤=∆

the points from plane region D. The Jacobian of this
mapping is

1),,( =wvuJ .

Since, we get

dzdydxxfee i
zi

D
i

yi
i )(βα βα −−∫∫∫

dwdvduwvuJvufee i
wi

i
vi

i ),,()( +∫∫∫= −

∆

− βα βα

∫ ∫ ∫ +=
∞ ∞

−−

0 0
)(

u

t

i
wi

i
vi

i duvufdwedve βα βα

∫ ∫ +=
∞

−−
t

i
vi

i
ui dvvufedue

0 0
)(αβ α .

Let us notice that

∫ ∫=∫∫
∞ ∞

−−

0
)()(

y
i

yi
i

E
i

yi
i dxxfedydxxfe αα αα

∫−=

∫ −=

∞
−

∞
−

0

0

.)(1

)](1[

dyyFe

dyyFe

i
yi

i

i
yi

i

α

α

α

α

Finally, we obtain

.1,...,1

,
)](1[

])([
)(

0

00
1

−=

∫ −

+∫∫
=

∞
−

−
∞

−

+++

ni

dyyFe

dudvvufee
tQ

i
yi

i

i
vi

i

t
ui

inin
α

αβ

α

α

.

In the same way we get
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Therefore the semi-Markov reliability model of
operation has been constructed.

6.3. Two-stage cyclical operation We will consider 3 models for

We will investigate particular case of that model,
assuming 2=n . A transition matrix for the semi-
Markov model of the 2-stage cyclic operation in
reliability aspect takes the following form
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That model allows us to obtain some reliability
characteristics of the operation. The random
variable 15Θ  denoting the first passage time from state
1 to state 5 in our model, means time to failure of the
operation. The Laplace-Stieltjes transform for the
cumulative distribution function of that random
variable we will obtain from a matrix equation (25).
In this case we have }5{},4,3,2,1{ ==′ AA  and

,
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From the solution of equation (24) we obtain Laplace-
Stieltjes transform of the cumulative distribution
function of the random variable 15Θ  denoting time to
failure of the operation
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The Laplace transform of the reliability function is
given by the formula
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s
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=                                               (34)

6.4. Examples
Example 1
We suppose that
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Laplace-Stieltjes transform of these functions are:
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For 1,01 =κ ; 12,02 =κ ; 002,01 =λ ; 001,02 =λ ;
02,01 =α ; 04,02 =α ; 01,01 =β ; 01,01 =β ,

applying  (33) and (34), with help of
MATHEMATICA computer program, we obtain the
density function and  the reliability function as inverse
Laplace transforms .
The density function is given by the formula
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This function is shown in Figure 4.
The reliability function is
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Figure 4.  The density function the time to failure of
  2-stage cyclic operation

This function is shown on Figure 5.
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Figure 5. The reliability function of 2-stage cyclic
operation

Mean time to failure we can find solving the matrix
equation
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From this equation we obtain the mean time to failure
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Example 2
Now we assume that
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It means that the duration of the stages are determined
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The Laplace’a-Stieltjes transform of these functions
are:
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The mean time to failure we can find solving the
matrix equation (35), where
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For the same  parameters 1,01 =κ ; 12,02 =κ ;
002,01 =λ ; 001,02 =λ ; 02,01 =α ; 04,02 =α ;
01,01 =β ; 01,01 =β ,

and
1

1
1

κ
=L  i

1
2

1
κ

=L , the mean time to failure of

the operation is

284.366)( 15 =ΘE .

In previous case the mean time to failure is

378,275)( 15 =ΘE .

6.5. Conclusion
It means that for the determined duration of the stages
mean time to failure of the operation is essentially
greater than for exponentially distributed duration of
the stages with the same expectations.

To assess reliability of the many stage operation we
can apply a semi-Markov process. Construction of the
semi-Markov model consist in defining a kernel of
that process.   A way of building   the kernel for the
semi-Markov model of the many stage operation is
presented in this paper. From Semi-Markov model we
can obtain many interesting parameters and
characteristics for analysing reliability of the
operation.
From presented examples we get conclusion that for
the determined duration of the stages, mean time to
failure of the operation is essentially greater than for
exponentially distributed duration of the stages with
the same expectations.

7. Semi-Markov process as a failure rate
The reliability function with semi-Markov failure rate
was considered by Kopoci ski & Kopoci ska [11],
Kopoci ska [12] and by Grabski [4], [6], [9]. Suppose
that the failure rate }0:)({ ≥ttλ  is the semi-Markov
process with the discrete state space },:{ JjS j ∈= λ
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with the kernel
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In [6] it is proved, that for the regular semi-Markov
process }0:)({ ≥ttλ  the conditional reliability
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the system of equations
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Applying the Laplace transformation we obtain the
system of linear equations
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The conditional mean times to failure we obtain from
the formula
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The unconditional mean time to failure has a form
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7.1. Alternating random process as a failure
rate
Assume that the failure rate is a semi-Markov process
with the state space },{ 10 λλ=S  and the kernel
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where ),(),( 10 tGtG  are the cumulative probability
distribution functions with nonnegative support.
Suppose that at least one of the functions is absolutely
continuous with respect to the Lebesgue measure. Let

],[ 10 ppp =  be an initial probability distribution of
the process. That stochastic process is called the
alternating random process. In that case the matrices
from the equation (20) are









+−

+−
=−

1)(~
)(~1

)](~[
11

00

λ
λ

λ sg
sg

sqI ,

where

)()(~)(~
0

0
010 tdGesqsg ts∫==

∞
− ,

)()(~)(~
1

0
101 tdGesqsg ts∫==

∞
− ,









=

)(~
)(~

)(~

1

0

sR
sRsR ,













+−

+−
=

+

+

)(~
)(~

)(~

111
1

000
1

λ

λ

λ

λ

sG
sG

s
s

sH .

The solution of (20) takes the form
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The Laplace transform of the unconditional reliability
function is
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Suppose that an initial state is 0λ . Hence the initial
distribution is ]01[)0( =p  and the Laplace
transform of the unconditional reliability function
is )(~)(~

0 sRsR = .  Now the equation (20) takes the
form of
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Using the MATHEMATICA computer program we
obtain the reliability function as the inverse Laplace
transform.
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)0614293.0exp(33023.1)(

1514 tt
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−− ⋅+⋅−+
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)]171789.0sin(0.00695828
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t

tt

+

−−

)]224699.0sin(128174.0

)224699.0cos(146168.0)[37535.0exp(2

t

tt

+

−−

Figure 6 shows the reliability function.
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Figure 6. The reliability function from example 2

The corresponding density function

)(')( tRtf −=

is shown in Figure 7
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Figure 7. The density function from example 2

8. Conclusion
The semi-Markov processes theory is convenient for
description of the reliability systems evolution
through the time.  The probabilistic characteristics of
semi-Markov processes are interpreted as the
reliability coefficients of the systems. If A represents
the subset of failing states and i  is an initial state, the
random variable iAΘ  designating the first passage
time from the state i to the states subset A, denotes
the time to failure of the system. Theorems of semi-
Markov processes theory allows us to find the
reliability characteristic, like the distribution of the
time to failure, the reliability function, the mean time
to failure, the availability coefficient of the system
and many others. We should remember that semi-
Markov process might be applied as a model    of the
real system reliability evolution, only if the basic
properties of the semi-Markov process definition are
satisfied by the real system.
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