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Abstract

The basic definitions and theorems from the semi-Markov processes theory are discussed in the paper. The semi-
Markov processes theory allows us to construct the models of the reliability systems evolution within the time
frame. Applications of semi-Markov processes in reliability are considered. Semi-Markov model of the cold
standby system with repair, semi-Markov process as the reliability model of the operation with perturbations and
semi-Markov process as a failure rate are presented in the paper.

1. Introduction

The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55. The essentia
developments of semi-Markov processes theory were
proposed by Cinlar [3], Koroluk & Turbin [13],
Limnios & Oprisan [14]. We would apply only semi-
Markov processes with a finite or countable state
space. The semi-Markov processes are connected to
the Markov renewal processes.

The semi-Markov processes theory alows us to
construct many  models of the reliability systems
evolution through the time frame.

2. Definition of semi-M arkov processes with a
discrete state space

Let Sbe adiscrete (finite or countable) state space and
le¢ R, =[0,¥), N,={012,..}. Suppose that
X,,Jd,,N=012,... aretherandom variables defined
on a joint probabilistic space (W, F, P) with values
onSand R, respectively. A two-dimensional random
sequence {(X,,,J,), n=012,...} is caled a Markov
renewal chainif for all

igreerrdgsi] Sitgrent TR, Nl Ny:

1. P = 59 £ Xy =135 =t Xo =ig,dg =t

=P = 3 ELIX, =i} = Q) (1), 1)

2. P{Xg =i5,d 0= 0 = P{Xy =ig} = p,, 2
hold.

From the above definition it follows that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do

not depend on the second component. It is easy to
notice that arandom sequence {X,:N=012,...} isa

homogeneous one-dimensional Markov chain with the
transition probabilities

Py = P{Xpa =] X, =1} :tlgg Q; (®). )
The matrix
QM) =|Q;®: il 8] (4)

Is called a Markov renewal kernel. Both Markov
renewal kernel and the initial distribution define the
Markov renewal chan. This fact dlows us to
construct a semi-Markov process.

Let

to=J,=0,
t,=J;+..+J,,t, =sup{t,,:nl Ny}

A stochastic process {X(t):t3 O} given by the
following relation
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X(t) :Xn for ti [t n’t n+1) (5)

iscalled asemi-Markov processon S generated by
the Markov renewal chain related to the kernel
Q(t), t3 0 andtheinitial distribution p.
Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals [t ,,t ,,) and
it is a right-continuous function, from
equality X(t ,,) =x,, it follows that the sequence
{X(t,):n=012.} is a Markov chain with the
transition probabilities matrix
P:[pij:i'jl S (6)
The sequence {X(t,):n=012..} is caled an
embedded Markov chain in a semi-Markov process
{X(t):t30}.
Thefunction

Fi () = P{t oy -t ELIXE ) =0, X(E ) = )

Q; (M

P;

(7)

is a cumulative probability distribution of a random
variable 'I'ij that is caled holding time of a state i, if

the next state will be j . From (11) we have

Q; (t) = py Fy (1) - 8

The function

Gi(t):P{tn+1-tn£t|><(tn):i}:ngQij(t) (9)

is a cumulative probability distribution of a random
variable T, that is called waiting time of the state i .

The waiting time T. means the time being spent in

state i when we do not know the successor state.

A stochastic process {N(t) s O} defined by
N({t)=n for tI[t,,t,.) (10)

is called a counting process of the semi-Markov

process {X(t):t3 O}.

The semi-Markov process {X(t):t3 O} is said to be

regular if foral t3 0

P{N(t) <¥} =1

It means that the process {X(t):t3 O} has the finite
number of state changes on afinite period.

Every Markov process {X(t) ts O} with the discrete
space S and the right-continuous trajectories keeping
constant values on the haf-intervals, with the
generating matrix of the transition rates
A=[a;: i,jl §, 0<-a; =a, <¥ is the semi-
Markov process with the kernel

Q) =[Qy():i, T 9],

Where

Q;(t) =p; (- e_aiit% t3 0,

a.
P =—'_’fori1 jad p, =0

In the rdiability models the parameters and
characteristics of a semi-Markov process are
interpreted as the rdiability characteristics and
parameters of the system.

3. Transition probabilities of a semi-Markov
process

The trangition probabilities of the semi-Markov
process areintroduced as follows:

P =P{X®)=iIx©O=i}, i,jiTs @

Applying the Markov property of the semi-Markov
process at the jump moments, as a result, we obtain
Markov renewal equation for the trangitions
probabilities, [4], [12]
t
P, () =d;[1- G )]+ k‘?ls?P"" (t- x)dQ (%), (12
i,jl S.

Using Laplace-Stieltjes transformation we obtain the
system of linear equation

5ij (s) =d;[1- g; (9] + k;;lsaik () rjkj (s), (13

i,j (S
wherethe transforms

~ ¥ _
p;(s) = g)e Sthj (t)

are unknown while the transforms
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G (9) = }e‘“qu(t) NACE oedG ®

aregiven.
Passing to matrices we abtain the following equation

p(s) =[I - g(9)]+a(s)p(s), (14
where
p(s) =[P, (s):i,j1 S|, a(s) =[q;(9):i,jT 8],
a(s) =[d; (- g (9):i,jT 8].

In many cases the tranditions probabilities B, (t) and
the states probabilities

P =P{x®)=}, il s (15)
approach constant values for large t
R, =limP; (1), Py =limP; (1) . (16)

To formulate the appropriate theorem, we have to
introduce a random variable

D, =min{nl N:X(,)=j}, (17)

That denotes the time of first arrival at state j. A
number

fi =P{D; <¥[|X({,) =1} (18)
is the probability that the chain that leaves state i will
sooner or later achieve the state j.

As a conclusion of theorems presented by Korolyuk
and Turbin [13], we have obtained following theorem

Theorem 1.

Let {X(t) 3 O} be a semi-Markov process with a
discrete state space S and continuous kernel
QM) =|Q,(1): i,j1 S|. If the embedded Markov

chain {X(t,):n=0412..}, contains one positive
recurrent class C, such that for each state
il S, j1C, f,=landO<E(T,)<¥,il S, then

pE(T))

- (@
AP EM)

P = !!@T Rt)=P = !!@T P (t)= 9)

where p =[p;, jI ] is the unique stationary

distribution of the embedded Markov chain that
satisfies system of equations.

apip;=p;, jiTs, ap; =L (20)
s s

4. First passage time from the statei tothe
states subset A.

The random variable
Qa=tp,,
where
D, =min{nl N: Xt )T A},
denotes the time of first arrival of semi-Markov

process, at the set of states A.
Thefunction

Fin() =P{QAEL]X(0) =i}. (21)

is the cumulative distribution of the random variable
Q,, that denotes the first passage time from the statei
to the states subset  A.

Theorem2. [4], [13]
For the regular semi-Markov processes such that,

f.=P(D,<¥|X(0)=i}=1 il A (22)

the distributions F,,(t), i1 AC are proper and they
are the unique solutions of the system of equations

"L0=8Q,07 4

}?F (t - X0, (%),
il A

Applying Laplace-Stieltjes transformation we obtain
the system of linear equations

fia(9) = & G;(9+ &T (9T (), IT A (29)
A K A
with unknown transforms

- ¥
fia(s) = e “dF ia(l) -
0

Generating matrix form we get equation
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(1 - Ga(9)iu(s) =D(s), (24)
where
L =[d; i, jT AT, Ga () =[G;(s):i, i1 Al
are the square matrices and
i (9) =[Tia(9):i1 AT
.

~ é, - .~ U
b(s):é_g a; (s):il Ay
€il A u

are the one-column matrices of transforms. The
formal solution of the equationis

ia(9)=(1-da(9)b(s).

To solve this equation we use any computer programs,
for example MATHEMATICA. Obtaining the inverse
Laplace transform is much more complicated.

It is essentialy simpler to find the expected values
and the second moment of the random variables

Q. i1 AC If the second moments of the waiting
times T, i1 ACare positive and commonly bounded,
and f, =1, il AC, then the expected values of the

random variables Q,,,i1 AC are the unique solution
of equation

(I - PA‘)ﬁA‘ :TAW (25)

U, =[EQu): i1 Al T =[EM):iT AT

and the second moments of the time to failure are the
unique solution of equation

(I } PA‘)ﬁ/Zxcz B (26)
where

| =|d; =i, jT A], Py =|py i, iT Al

ﬁic:[E(inA)i il A‘]T,BA, =[b:iT A]",

by = E(T;) + széA‘pik E(T)EQa) -

5. Semi-Markov model of the cold standby
system with repair

The problem is well known in reliability theory
(Barlow & Proschan [1]). The model presented hereis

some modification of the modd that was considered
by Brodi & Pogosian [2].

5.1. Description and assumptions

A system consists of one operating component, an
identical stand-by component and a switch, (Figurel).

AN

Figure 1. Diagram of the system

When the operating component fails, the spare is put
in motion by the switch immediately. The failed unit
(component) is repaired. There is a single repair
facility. The repairs fully restore the components i.e.
the components repairs means their renewals. The
system fails when the operating component fails and
component that was sooner failed in not repaired yet
or when the operating units fail and the switch fails.
We assume that the time to failure of the operating
components are represented by the independent copies
of a non-negative random variable V with distribution
given by a probability density function (pdf)
f(X), x3 0. We suppose that the lengths of the repair
periods of the components are represented by the
identical copies of the non-negative random variables
g with cumulative distribution function (CDF)

G(X) =P(g £ x). Let U bearandom variable having
binary distribution

b(k)=PU =k)=a*(1- a)**,k=01,0<a<1,

where U =0, when a switch is failed at the moment
of the operating component failure, and U =1, when
the switch work at that moment. We suppose that the
whole failed system is replaced by the new identical
system. The replacing time is a non-negative random
variableh with CDF H(x) = P(h £ X).
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Figure 2. Reliability evolution of the standby system

Moreover we assume that the all random variables,
mentioned above are independent.

5.2. Construction of the semi-M arkov model

To describe reliability evolution of the system, we
have to define the states and the renewal kernel. We
introduce the following states:

0 - thesystemisfailed

1 - the failed component is repaired, spare is operated

2 - both operating component and spare are “up”.

Let 0=t,,t,,t,,..denote the ingtants of the states
changes, and {Y(t):t3 O} be a random process with
the state space S={012, which keeps constant
values on the haf-intervals [t .t,.,),0L... and is

right-continuous. The realization of this process is
shown in Figure 1. This process is not semi-Markov,
because the condition (1) of definition (2) is not
satisfied for al instants of the state changes of the
process.

Let us construct a new random process a following

way. Let 0=t  and t,,t,,... denotetheinstants of

the system components failures or the instants of
whole system renewal. The random process
{X(t):t3 O} defined by equation

X(0)=0, X(t)=Y( ,)fortl [t ,,t,.)

is the semi-Markov process.

To have semi-Markov process as a model we must
define its initial distribution and all elements of its
kernel

¢ 0 0 Quz2()u
QM) =) Qu®) 0
Qn) Qu) 0

(woxY ey eny e

For t3 O weobtain

Q) =Ph £1)=H (1),

Q) =P(VEt,g>2)

+PU =0,VEt,g<z)
=§[1- G(X)]dF(x) + (L- a)gG(x)dF(x)

=F(t) - agG(xdF(x),
Qu(t)=PU =LVEt,g<z)=agG(xdF(x),
Q, (1) =PU =0,VEL) =(1- a)F(t),

Q,, (1) =PU =LVEt)=aF(t).

We assume that, theinitia state is 2. It means that an
initial distribution is

p©@=[0 0 1.
Hence, the semi-Markov model is constructed.

5.3. Thereliability characteristics

The random variable Q,,, that denotes the first

passage time from the state i to the states subset A,
for i=2 and A={0} in our model, represents the

timeto failure of the system. The function
R(t) =P(Qyp >1) =1- F (1), t30 (27)
is the rdiability function of the considered cold
standby system with repair.
System of linear equation (23) for the Laplace
Stidtjes transforms of the functions
Fio(t),t30,i=12,
inthiscaseis

f~10 (S) =Gy (9)+ f~10 ()0, (s)

f~20 () = Oy (9)+ f~10 (5)0(9)

Thesolution is

O (S)

1- Gu(s)

021 (S)Gho (S)
1- Qu(s)

f-;O (s) =

f~20 () =00 (9) + (28)
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Hence, we obtain the Laplace transform of the
reliability function

~ 1- f (s
MQ:——%il. (29)
The transition probabilities matrix of the embedded
Markov chain in the semi-Markov process
{X(t):t3 O} is
€0 0 1u
P= gplo Pu OH (30)
€Pxn P Of
Where
Py =1- py

py =PU =1g<z)=ag G(X)dF (x)
Py =1-a py=PU=D)=a

Using formula (9) we obtain the CDF of the waiting
timesof T,,i=012.

Go(t) = H(t), G,(t) =F(t), G,(t) = F(t).
Hence

E(T,) =EM), E(T) =E(V), E(T;) =E(V).
The equation (25) in this case has form

é].' p]_]_ Ol:BiE(Qlo)gzéE(V)@
8 -a 1£E(Q20)H gE(V)H

Thesolution is

aw

11

E(Qu) =

a E(V)

E(Qyp) =EM) +—— 1
p11

(31)

We will apply theorem 1 to calculate the limit
probability distribution of the state. Now, the system
of linear equation (20) is

P1Pwp TP2Px =Pg

P1P2 TP2P2x =P1s
Po =Py
Po+tP;+P, =1

Since, the stationary distribution of the embedded
Markov chainis

_ Pu
Po =77,
° 2Py + Py
_ P2y
p=———,
! 2Py + Py
_ Pu
p,=—4%
? 2Py + Py

Using formula (19) we obtain the limit distribution of
semi-Markov process

P = puEM)
° puEh)+ puEV) + pyE(V)

(32)

P = PnE(V)
Y puEh) + pyEV) + pyE(V)

P, = PuE(V)
PuEM) + Py EV) + pyEV)

5.4. Conclusion
The expectation E(Q,,) denoting the mean time to
faillureis

E(Qu) = EV) +ng’)
where

py =ag G(x)dF(X) .

Let us notice, that the cold standby determines

increase the meantimeto failure 1+ times.

1- py
Thelimiting availability coefficient of the systemis

P, EV) + pE(V)

A=P +P, = :
pllE(h) + leE(\/) + pllE(\/)
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6. Semi-Markov processasthereliability
model of the operation with perturbation

Semi-Markov process as the reliability model of
multi-stage operation was considered by F. Grabski in
[8] and [10]. Many operations consist of some
elementary tasks, which arerealized in turn. Duration
of the each task realization is assumed to be positive
random variable Each elementary operation may be
perturbed or failed. The perturbations increase the
time of operation and the probability of failure as
well.

6.1. Description and assumptions

Suppose, that the operation consists of n stages which
following in turn. We assume that duration of an i-th
stage, (i = 1, ..., n) isanonnegative random variable
X;;1=14L,n with a cumulative probability
distribution

t
F (t)=P(x, £1)=of (x)dx, i =LK,n,
0
where f, (X) denotesits probability density function
in an extended sense.

Time to failure of the operation on the i-th stage
(component) is the nonnegative random variable h,,

i =1, L,n with exponentia distribution
Ph, £1)=1- 'l"; i =1K,n.

The operation on each step may be perturbed. We
assume that no more then one event causing
perturbation on each stage of the operation may occur.
Timeto event causing of an operation perturbation on
i-th stage is a nonnegative random variable
z;;1 =1LK,n with exponentia distribution

Pz, £t)=1- ", i=1K,n .

The perturbation degreases the probability of the
operation fail. We suppose that time to failure of the
perturbed operation on the i-th stage is the

nonnegative random variable ni,i =12....n that

has the exponentia distribution with a parameter
b, >I,

Ph, £1)=1- e, i =1K,n.
We assume that the operation is cyclical.
We assume that random variables
X; ,h; ,ny,z;, i=1..,n aemutually independent.

6.2. Semi-M arkov model

To construct reiability model of operation, we haveto
start from definition of the process states.

Let €, i=1,...,n, j=0,1 denotes j-th rdiability state
on i-th step of the operation where, j=0 denotes
perturbation and j=1 denotes success

€., - failure (un-success) of the operation

€, - aninitial state.
For convenience we numerate the states

g, « I, 1=1..,n

8, « i+n, i=1...n

€ € 2N+],

Under the above assumptions, stochastic process
describing of the overall operation in rdiability
aspect, is a semi-Markov process { X(t): t3 O} with
a space of states S={1,2,....2n,2n+1} and flow
graph shown in Figure 3.

Figure 3. Transition graph for n-stage cyclic operation

To obtain a semi-Markov mode we haveto define all
nonnegative dements of semi- Markov kernel

QM) =[Q;®:i,jl 8
Q1) = P{X(t por) = j b gy - t L] X(t,) =i}

First, we define transition probabilities from the state i
to the state | for time not greater than't for i=1,...,n-1.

Qult)=Ptx £Lh >X 7, >X)
= (ﬁ\ﬁie_aiyl i€ iz fi (x)dxdy dz
D

where

D={(x,y,2): x30,y30,2z30,
XEt, z>X%, X>V}
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Since, we have

t X ¥
Qi+1(t) =of (Ydx e Vdy d .€'i°dz
0 0 X

Ae R () dX .

cq -

Fori=n+1...2n- 1 weobtain

Qilt)=P@E, £t >2,,2, >x))

t
:Cﬁie-(li+ai)u[1_ Fi (u)]du,i =1...,n- 1.
0

For i =1,...,n weget

Qi2n+l(t):P(hi £t,h; <z;,h; <x;)

t

=o1,e N [L- F (u)]du,

0
i=1...,n-1.
If on i-th stage a perturbation has happened the
transition probability to next state for time less then or

equalto t is

Qnsinsinn() =PX; - z; £t,n; >X; - 2, [X; >2Z)

diR e *’b,e " f; (x)dxdydz

)

an e f; (x)axdy
E

where

D={(x,y,2): x30,y30,2z3%0,

O0Ex- yEt, z>Xx-y, X>Vy}

E={(x,y): x30,y30, x>V}.

To find thetriple integral over the region D, we apply
change of coordinates:

U=x-y, v=y, w=2z

Hence

X=u+v, y=Vv, z=w.
This mapping assigns to points from set
D={(u,v,w):0£u£t,v3 0,w>u}

the points from plane region D. The Jacobian of this
mapping is

J(u,v,w) =1.
Since, we get

aa e b, e "% f, (x)dxdy dz

D

= gin € *Vb,e "™ f, (u +v)J(u,v, w)du dvdw
D
¥ ¥ ) t

= ¢a,€ *Vdvo,e " Mdwof, (u +v)du
0 u 0
t o ¥ )

=0 "du ¢a, e f; (U +V)dv.
0 0

Let us notice that

¥ ¥
aa etV f (x)dxdy = ¢ga, e Y of, (X)dx
E 0 y
¥
=&,eV[1- F(y)ldy
0

¥
=1- g, *F (y)ady.
0
Finally, we abtain

t ¥
oe [ e Y f (u+v)dvldu
Qn+i n+i+1(t) = L ¥ 0 '

g)aie'aiyll- F (y)ldy

In the same way we get
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Qusiznsn(t) =P, £t,n; <x; - 2, |X; >Z;)

@A, e " Vb e 7 f, (x) dxly dz

_ D

aa e Y f (x)dx dy
E

i=1..n
where
D={(x,y,2): x20,y20,
O£zE£t, z<x-Yy, x>V}
E={(x,y): x30,y30, x>V}.
Hence
b :‘3e' binWE@'“"dVEﬁ (u+v)du
0

Qn +i 2n+1 (t) = £ ¥ =
gﬁieaiy[l' Fi (y)ldy

i=1...n
Similar way we obtain

in(t) = P(Xn £t1hn >Xn Zn >Xn)

= oe (n*an)i £ (4)du

Q2nl(t) = P(Xn - Zy £t1nn >Xn = Zy X, >Zn)

t ¥
oe Pndu ¢a e v f, (u+Vv)dv
0

_0

¥
A ,e ™ [1- F, (X)]dx
0

Therefore the semi-Markov reliability model  of
operation has been constructed.

6.3. Two-stage cyclical operation

We will investigate particular case of that mode,
assuming n=2. A transition matrix for the semi-
Markov model of the 2-stage cyclic operation in
reliability aspect takes the following form

0 Q) Qu®) 0 QsMu
a) 0 0 Qu®) Qg

D> %CD) [} %D) D

QM)=¢€ 0 0 0 Qu® QWY
a(t) 0 0 0 Qs My
0 o 0 0 QMY
where

Qalt)= g6 R (u),

0

Qus(t)= toale’ (1i*adup] - F (u)]du,
0

Qult)=¢ ;e 132 [L- Fy(u)ldu,
0

Qu(t)= oe 272 (u),

Qult)= & ,e 272110 F (u)]du,
0

Q)= L& 1222 1- F, (u)]du,
0

¥
o " 0,6 F, (u+ V)dvidu
Q34(t) = g ¥ 9 . [}
e [1- Fy(y)ldy

t ¥ ¥
b, oe " dwea, e dvf, (U + v)du
Q35 (t) = 0 ¥ = 0 ’
07,6 1~ Fy(x)]dx
0

t ¥
e "2'duga e 2 f,(u+v)Jdv
Q4l(t) = 0 ¥ 0 ’
oaze"“zx[l- F>(X)]dx

b Wewill consider 3
bzoe 2Wdwoa eaz"dvof (u+v)du

Q45(t) = s ¥ = ’
R ,€ 2 [1- F, (X)]dx
0

Qss (1) =U (1)
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That model allows us to obtain some rdiability
characteristics of the operation. The random
variableQ,. denoting the first passage time from state

1 to state 5 in our model, means time to failure of the
operation. The Laplace-Stieltjes transform for the
cumulative distribution function of that random
variable we will abtain from a matrix eguation (25).

Inthis case we have A(={1,2,34}, A={5 and

g 5(S)u éals (S)U
(q) =€ 25 (S)u _ eqzs( )
HA(S) e~35( )U ( ) Zqi35( )U’
g (98 &5 (S)u
¢ 0 (9 Ou(s) O U
@ 0 0 Gy
qa(s) = g 0 0 0 u
€ O (S)U
&a 0 0 0 g

From the solution of equation (24) we obtain Laplace-
Stieltjes transform of the cumulative distribution

function of the random variable Q,. denocting time to
failure of the operation

_a(S) 33
fis(9) = 5 (33)

a(s) = Gys(S) + 012 (S)05(S) + Gy () 0as (9)

+ 012 (S) G4 (S)Glas (S) + Gia (S)0laa (S)Clas (9)

b(8) =1- T (9T (S) - Tz (9F2a (9Tar (9)
- 513 (3)634 (8)541 (9).

The Laplace transform of the reliability function is
given by the formula

R =210, (34

6.4. Examples

Example 1
We suppose that

Fo(t)=1- e ' t30,i=12.

Then
kl -(Ip+ay +kq)t O
Qul)=— e
1ta; ke g
_ a - (I1+ay +kq)t O
Q13(t)—| -€ ! K
1ta; kg e [}

o (1vag k)t 0

Q15(t):|—1§'

|, +a, +k, & i
Qu (1) _ﬁ (1_ g (2+az+ko)t ),
Qy4(t) :Iz"':ﬁ (1- g (l2raz+ko)t ),
Qu5(t) —ﬁ (1- g (2+az+ko)t ),

Q)= e o)

Q)= 2 eu)

Qu1(t) =

- k+2k2 @_ e-(b2+k2)t),

2

b
t) = 2 _ o (batk)t
Qus() =32~ )

2

Laplace-Stidltjes transform of these functions are:

_ Kk,

s)= ,
G2 (S) s+l +a, 7k,
_ a,

s)= ,
O3 (S) S+, +a, +k,
e (S) = [,
s s+l,+a, +k,
~ _ k,
U (9) =<1 va, vk
o a,
024 (S) = |, +a, +k
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P

= (9= ,
025 (9) stl, +a, +k,
- K,
Sy=—-—+——,
B (9= 5 p 7
- b,
S)=—F———,
0= 5 7k
- K,
s)=——< |
0= 5 71
- b,
Sy=———=
09 = 575 7
For k,=01; k, =012; |, =0,002; 1, =0,001,
a, =0,02; a,=004; b,=001; b,=001,
applying (33) and (34), with hep of

MATHEMATICA computer program, we obtain the
density function and therdiability function as inverse
Laplace transforms .

The density function is given by the formula

f 15 (t)
=0.00712201e **¥7" - 0.00872613 e ¥

- 0.000144434 e *#%M +0,00374856 e >

Thisfunction is shown in Figure 4.
Thereliability functionis

R(t) =3.79823" 10 '® + 0.0333808 ¢ *#**""
- 0.0484641e *%%5! - 00011472 20
+1.01623 " 059!

0.003
0. 0025
0.002
0. 0015
0.001
0. 0005

200 400 600 800 1000

Figure 4. The density function the timeto failure of
2-stage cyclic operation

Thisfunction is shown on Figure 5.

1
0.8
0.6
0.4

0.2

200

Figure 5. The rdiability function of 2-stage cyclic
operation

400 600 800 1000

Mean time to failure we can find solving the matrix
equation

(I - PA‘)(_QA‘ :-FA‘ (39)
where
€0 p, p3 OuU
e u
P - &P 0 0 pyuy
Yeo 0 0 pyulf
e u
Py O 0 0q
SE(T,)0 6E(Qus)
€ €
T — eE(Tz)a GA' — eE(st)a
gE(rs)H SE(QBS)H
eE(T,)a eE(Qus)a

From this equation we obtain the mean time to failure

E(Q,) =275378
Example 2
Now we assume that

i0 da tE£L

i (t):}l da t>L '

i=12.

It means that the duration of the stages are determined
andthey areequal X, =L, for i =12
In this case the e ements of Q(t) are:

i0 for tEL
=l

-(l1+ay) L
te 1 for t>L,

Qy(t)
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1 a - 0
J|| +la gi- e ( 1+al)t+ for tELl N a, ae (I1+a1+s)ly
Qult)=1 'a H " fj(-j WO = va, s+l va
'If I +1 - erh2 for t>1, to t
ae [}
1 1
_ I L I le» (I1+a1+s)ly
i : Gis(9) = :
i: |IT1§ e 112)tQ ¢ tEL, s+l,+a; s+l,+a;
Q15(t):_|" ! | A | ﬂ('j = — a-(l2+an+s)Lp
1 &g (NE for > O () =e :
f litae
a (S) _ a2 ] aze»(l ,ta,+s)L,
N 24
Qull) = frnie sy 1o stlo+a, s+l v,
je 2@z for t>|,
| | e»(I2+a2+s)L21
~N — 2 2
1 a, -(12+a )t Q %es () = s+l,+a, s+l,+a
. +a gi = for t£L, 27%2 27%2
Q24(t) jl27%¢ St )|_g20 ail gy g (a9l
i 2 ~ ae - et 0
fl,+ ? 2 for 1>k G (8) = -aly b -
l-e stb,-a; g
JI I |+2 a_ e'(l z+a2)t9 for t£L, B9 = b, aa- g (brrola ) e'a1L1(1- e'(bl—a1+s)L1)'_(:j
Q25(t)=:' 27828 e, RS e_alLlé s+by s+b;-a; 2
i &- 2222 for t>1,
1 l,+a,e 2 N aze-asz & - g (h2raz+s)lz
Au(s) = “aglz b T
i ae’ bray l-e st+b,-a, 4
Geetr) . ogeel,
1(b al)(l-e X )
(t) 61L1 6 brag ) ) _ () b2 ? e(b2+s)L2 —asz(l_ é( —a2+s)L2)9
V t>|— q45 S : a2L2 -
(b al)(l e 1) 1- 8 s+b, s+b,-a, 5
i ol The mean time to failure we can find solving the
o ealLl)gl ebt). (E a])(l st avt)g’ OEtEL, matrix equation (35), where
QE(t) |l b1|-10 bleail N (I1+a1)lg
i (br-aply —e
Tl S T b I -
) s 0 = a,1-e ) 0 = [,1-e )
i ) 3 = s =
i aze (1_ e-(bz—az)l), 0£t£|_2 I 1 +al I 1 +al
_1(b,-a,)1- e?)
Q4l(t)_-|- a,e 22 - (I g+ag)L
'I_ 2 - (1_ e-(bz-az)Lz), t>L2 P, =€ 2+az)l2
b (by-a,)@l-e%2)

az(l_ e’ ( 2+a2)|—2)

| 4 r gl ] p24 =
i la . gl e—bzl) bze (1 e—(bz-azt)g O£t£|_2 I 2 +a2
[(L-e%2)g (b a,)
Q45(t) .|. 1 g a2L2 (b le_,l
[ szl g 2:22) >L, - (I p+az)Ly
fa-e®2)g (b a,) 0 _1,@a-e )
. . . I 2 +a2
The Laplace a-Stieltjes transform of these functions
ae a.e 4 5. e (brrah 0
— 1
p34 =

Gy (5) =€ (17219 1- e b,-a;, 5
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_bilg
_ by 1l-e
Pas Tl ool ( b,
e aih (1_ e-(bl-al)Ll
b,-a,;
aze-asz o - e-(bz-az)Lz o}
Par 1o @22 b,-a, EJ
_ b,
Pos = gans
?‘_ e—b2L2 ] e—asz(l_ e‘(b ‘aZ)LZ)Q'
& b, b, - a P
Psy =1
1 e @il
E(T) = -
a;+l;, a;+l,
1 g (@z+2)L2
E(T,) = -
a,+*l, a,+l,
_ d(@x(s) +as(9)
E(T3) - = ds = |s:0
_ d(u(9) +0us(9))
E(T4) - = ds = |s:0

For the same parameters k; =01; k, =012;
[, =0,002;1,=0,001; a, =0,02; a, =0,04;
b, =0,01; b, =0,01,

and L, -1 i L, :i,themeantimetofailureof
k k

1 1
the operationis

E(Q,5) =366.284.
In previous case the mean timeto failureis

E(Qs) = 275,378.

6.5. Conclusion

It means that for the determined duration of the stages
mean time to failure of the operation is essentially
greater than for exponentially distributed duration of
the stages with the same expectations.

To assess reliability of the many stage operation we
can apply a semi-Markov process. Construction of the
semi-Markov model consist in defining a kernel of
that process. A way of building the kerndl for the
semi-Markov model of the many stage operation is
presented in this paper. From Semi-Markov model we
can obtain many interesting parameters and
characteristics for analysing rdiability of the
operation.

From presented examples we get conclusion that for
the determined duration of the stages, mean time to
failure of the operation is essentially greater than for
exponentially distributed duration of the stages with
the same expectations.

7. Semi-Markov processas a failurerate

The reliability function with semi-Markov failure rate
was considered by Kopocinski & Kopocinska [11],
Kopocinska [12] and by Grabski [4], [6], [9]. Suppose
that the failurerate {I (t):t3 O} isthe semi-Markov
process with the discrete state space S={I ;:j1 J},
J={0L...,m} or J={012..}, Ofl, <l <..
with the kernel

Q(t) =[Q; (1)1, jim J]
and theiinitial distribution p=[p, :il J].
We define a conditional reliability function as

R(t)zE(?@xp‘?;ﬁu(u)dual ©=1,4. t30, i3
e eo u

In [6] it is proved, that for the regular semi-Markov
process {l (t):t3 0} the conditional reliability
functions R (t) ,t2 0, il J defined by (17), satisfy
the system of equations

R(t)=€"""[1- G(t)]+éflt6€'”|%(t- QdQ(9,iT J
IN¢)

Applying the Laplace transformation we obtain the
system of linear equations

RE©=—1 - G(s+ )+&R (98, (s+,).iT J,
]

s+l

where

R (9= & R t)dt, G(s) = o8 G, ()t
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- st 1 50(S+| O)l:J,
G;(9) = 0e™™dQ; () AOFE ey e
In matrix notation we have where
[1- @ (9]R(S) =H(s), _ -
9o(9) = qu(S) = dG,(t)
where
[I-q; ()] 01(9) = Gy (8) = o' dG, (1),
él- Qoy(s+! - Oy (s+]1 - Oy (s+ Lo
< 900( 0) qu( 0) (102( 0) l] = o eRO(S)
_é- Oo(s+ly) 1-du(s+ly) - du(stly) Ly (s) = Rl( )
& Gpp(s+l,) - Gulstl,) 1- Gp(s+l,) LU RSu
é G
é N M M o
~ G s+ )U
(9= Gl(( ; 0)) .
_ . 1 N . 3 s
?RO(S)U Ss+| ) GO(SHO)H Sll ' H
e~ u é 0 U
R(s) = eRi(9)y _ el g+t The solution of (20) takes the form
€R,(9)U H(s)=és+1, a
¢ el - G,(s+I )3 R(S)
g g g5+l 1 2 d Ry
e i 5| _ _
- GylsH )+ Bo(sH o) - Gils+ )
The conditional mean times to failure we obtain from = = = )
the formula 1- go(s*l g)Gi(s+1 1)
m = lim R (p), pl (0,¥), il J 1) Ry(9)
p® 0"
The unconditional mean time to failure has aform =T - Gy(s+1 ) +Gy(s+ |2 S0 - Go(s+l o)

m=4P( (0)=1,) m.

7.1. Alternating random process as a failure
rate

Assume that the failure rate is a semi-Markov process
with the state space S={l ,, | ;} andthekernel

_é0
07 &

where G,(t), G,(t), are the cumulative probability
distribution functions with nonnegative support.
Suppose that at least one of the functions is absolutely
continuous with respect to the Lebesgue measure. Let
p=[p,, P,] bean initial probability distribution of
the process. That stochastic process is caled the
alternating random process. In that case the matrices
from the equation (20) are

Gy(t)u
0y

1- Qo (s+l )Gy (s+1 )

The Laplace transform of the unconditional reliability
functionis

R(S) = PoRo(S) + PRy (9).

Example 3.
Assume that

t t
Go(t) = (()‘)go(x)dx, G ()= (?gl(x)dx1

where
bg° 1-b
gO(X):G(O )Xao' e x30,
ag
b2t
g, (t) =—=—xte X 30,
Ga,)
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Suppose that an initial state is | ,. Hence the initia
digtribution is p(0)=[1 0] and the Laplace
transform of the unconditiona reliability function
is ﬁ(s) = ﬁo(s). Now the equation (20) takes the
form of

é ba0 u

¢ 0 UéR, (s)u
e 1 '—aL,JgRO u
é (s+b0+I0) LJé G
€ b 21 ue a
€ 1 Ués U
e 1 &Rl
g (s+by+ly) a

é a u

~ 0 Z

e 1 . s q
8+l (sl ) (s+ by +1 )0

e 1 b1 u

¢ - 2 4

gstly (s+l)(s+b +1,)* g
For

a,=2,a,=3,b,=02,b, =05,1,=0,1, =02,

we have
1004 Q04 €1 0125 U
9= (s+02° (s+02P&+02 (s+02)(s+077h
R(9 = .. 004 0125

 (s+02 (s+07°

Using the MATHEMATICA computer program we
obtain the reiability function as the inverse Laplace
transform.

R(t) =1.33023exp(- 0.0614293t)

+exp(- 0.021)(1.34007 X10"** +9.9198X10 *°1)

- 2exp(- 0.843935t)[0.0189459 cos(0.1717891t)

+0.00695828sin( 0.1717891t)]

- 2exp(- 0.375351)[0.146168.c0s(0.224699 )

+0.128174sin(0.224699t)]

Figure 6 shows the reiability function.

1

0.8

0.6

0.4

0.2

20 40 60 80 100

Figure 6. Thereliability function from example 2
The corresponding density function

f(t) =-R(t)
isshownin Figure7

0.04
0.03
0.02

0.01

20 40 60 80 100

Figure 7. The density function from example 2

8. Conclusion

The semi-Markov processes theory is convenient for
description of the reliability systems evolution
through the time. The probabilistic characteristics of
semi-Markov processes are interpreted as the
reliability coefficients of the systems. If A represents
the subset of failing statesand i isan initial state the

random variable Q,, designating the first passage

time from the state i to the states subset A, denotes
the time to failure of the system. Theorems of semi-
Markov processes theory alows us to find the
reiability characteristic, like the distribution of the
time to failure, the reliability function, the mean time
to failure, the availability coefficient of the system
and many others. We should remember that semi-
Markov process might be applied as a model  of the
real system rdiability evolution, only if the basic
properties of the semi-Markov process definition are
satisfied by the real system.
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