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1. Introduction
Often, the environmental conditions are randomly
changeable and they cause a random load of an object.
Thus, the failure rate depending on the random load is
a random process. The reliability function with semi-
Markov failure rate was considered in the following
papers Kopoci ski & Kopoci ska [5], [6], Grabski
[3], [4].

2. Reliability function with random failure
rate
Let }0:)({ ≥tt  be a random failure rate of an
object. We assume that the stochastic process has the
nonnegative, right continuous trajectories. The
reliability function is defined as
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It means that the reliability function is an expectation
of the process },0:)({ ≥tt  where
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From Jensen’s inequality we get very important result
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The above mentioned inequality means that the
reliability function defined by the stochastic process

}0:)({ ≥tt is greater than or equal to the
reliability function with the deterministic failure rate,
equal to the expectation )].([)( tEt =λ
It is obvious, that for the stationary stochastic process

}0:)({ ≥tt , that has a constant mean value
λλ == )]([)( tEt , the reliability function defined by

(3) is
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Hence, we come to conclusion:  for each stationary
random failure rate process, the according reliability
function for each 0≥t , has values greater than or
equal to the exponential reliability function with
parameter λ .
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Abstract
A failure rate of the object is assumed to be a stochastic process with nonnegative, right continuous trajectories. A
reliability function is defined as an expectation of a function of a random failure rate process. The properties and
examples of the reliability function with the random failure rate are presented in the paper. A semi-Markov
process as the random failure rate is considered in this paper.
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Example 1.
Suppose that, the failure rate of an object is a
stochastic process }0:)({ ≥tt , given by

,0,)( ≥= ttCt  where C is a nonnegative random
variable. Trajectories of the process },0:)({ ≥tt are

,0),
2

exp()(
2

≥−= ttctξ

where c is a value of the random variable C.  Assume
that the random variable C has the exponential
distribution with parameter β  :

.0,1)( ≥−=≤ − ueuCP uβ

Then, according to (1), we compute the reliability
function
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Figure 1 shows that function.
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Figure 1. Reliability function )(tR

In that case the function (3) is
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Figure 2 shows that function.

Suppose that a failure rate process }0:)({ ≥tt  is  a
linear function of a random load process }0:)({ ≥ttu :

)()( tut ε= .
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Figure 2. Reliability function )(tR
(

Assume that the process }0:)({ ≥ttu has an ergodic
mean, i.e.
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Then, [2], [3]
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It means, that for small ε

]exp[)( xuxR ε−≈ .

3. Semi-Markov process as a random failure
rate
The semi-Markov process as a failure rate and the
reliability function with that failure rate was
introduced by Kopoci ski & Kopoci ska [5]. Some
extensions and developments of the results from [3]
were obtained by Grabski [3], [4].

3.1. Semi-Markov processes with a discrete
state space
The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55.  The essential
developments of semi-Markov processes theory were
achieved by Cinlar [1], Koroluk & Turbin [8],
Limnios & Oprisan [7], Silvestrov [9]. We will apply
only semi-Markov processes with a finite or countable
state space. The semi-Markov processes are connected
to the Markov renewal processes.

           Let S be a discrete (finite or countable) state space
and let ),0[ ∞=+R , ,...}2,1,0{0 =N . Suppose, that

,...2,1,0,, =nnn ϑξ  are the random variables defined
on a joint probabilistic space ( Ω , F, P ) with values
on S and +R  respectively. A two-dimensional random
sequence ,...}2,1,0),,{( =nnn ϑξ  is called a Markov
renewal chain if for all

0010 ,,...,,,,...., NnRttSiii nn ∈∈∈ +− .
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The equalities

1. { }000011 ,,...,,|, tititjP nnnnn ====≤= ++ ϑξϑξϑξ

{ } )(|, 11 tQitjP ijnnn ==≤== ++ ξϑξ                  (6)

2.
oio piPiP ===== }{}0,{ 0000 ξϑξ                    (7)

hold.
It follows from the above definition that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do
not depend on the second component. It is easy to
notice that a random sequence ,...}2,1,0:{ =nnξ  is  a
homogeneous one-dimensional Markov chain with the
transition probabilities

.)(lim}|{ ! tQijPp ijtnnij ∞→+ ==== ξξ                     (8)

A matrix

[ ]SjitQtQ ij ∈= ,:)()(

Is called a Markov renewal kernel. The Markov
renewal kernel and the initial distribution

]:[ Sipp i ∈=  define the Markov renewal chain.
That chain allows us to construct a semi-Markov
process.
Let

}:sup{,...,0 0100 Nnnnn ∈=++=== ∞ ττϑϑτϑτ

A stochastic process { }0:)( ≥ttX given by the
following relation

ntX ξ=)( for ),[ 1+∈ nnt ττ (9)

is called   a semi-Markov process on S generated by
the  Markov renewal chain related to the kernel

0),( ≥ttQ  and the initial distribution p.
Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals ),[ 1+nn ττ  and
it is a right-continuous function, from
equality nnX ξτ =)( , it follows that the sequence
{ },...2,1,0:)( =nX nτ  is a Markov chain with the
transition probabilities matrix

].,:[ SjipP ij ∈=                                                  (10)
The sequence { },...2,1,0:)( =nX nτ  is called an
embedded Markov chain in a semi-Markov process
{ }0:)( ≥ttX .

The function
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is a cumulative probability distribution of a  holding
time of a state i , if  the next state will be j . From
(11) we have

)()( tFptQ ijijij = .                                                 (12)

The function

{ } ∑==≤−=
∈

+
Sj

ijnnni tQiXtPtG )()(|)( 1 τττ    (13)

is a cumulative probability distribution of an
occupation time of the state .i
A stochastic process { }0:)( ≥ttN defined by

ntN =)(  for ),[ 1+∈ nnt ττ                        (14)

is called  a counting  process of the semi-Markov
process { }0:)( ≥ttX .
The semi-Markov process { }0:)( ≥ttX  is  said  to  be
regular if for all 0≥t

1})({ =∞<tNP .                                                  (15)

It means that the process { }0:)( ≥ttX has the finite
number of state changes on a finite period.
Every Markov process { }0:)( ≥ttX  with the discrete
space S   and the right-continuous   trajectories
keeping constant values on the half-intervals, with the
generating matrix of the transition rates

],:[ Sjiij ∈=Α α , ∞<=−< iii αα0  is the semi-
Markov process with the kernel
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0=iip .

3.2. Semi-Markov failure rate
Suppose that the random failure rate }0:)({ ≥ttλ   is
the semi-Markov process with the discrete state space

},:{ JjS j ∈= λ },...,1,0{ mJ =  or ,...}2,1,0{=J ,
...0 10 <<≤ λλ  with the kernel

],:)([)( JjitQt ij ∈=Q

and the initial distribution ]:[ Jipp i ∈= .
We define a conditional reliability function as
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In [3] it is proved, that for the regular semi-Markov
process }0:)({ ≥ttλ  the conditional reliability
functions JittRi ∈≥ ,0,)(  defined by (16), satisfy
the system of equations
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Using the Laplace transform we obtain the system of
linear equations
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In matrix notation we have
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The conditional mean times to failure we obtain from
the formula
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p
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The unconditional mean time to failure has a form
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3.3. 3-state random walk process as a failure
rate
Assume that the failure rate is a semi-Markov process

}0:)({ ≥tt  with the state space },,{ 210 λλλ=S  and
the kernel
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where )(),(),( 210 tGtGtG  are the cumulative
probability distribution functions with nonnegative
support.  Suppose that at least one of the functions is
absolutely continuous with respect to the Lebesgue
measure. Let ],,[ 210 pppp =  be an initial probability
distribution of the process. That stochastic process is
called the 3-state random walk process. In that case
the matrices from the equation (19) are
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The Laplace transform of unconditional reliability
function is
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Example 2.
Assume that
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and
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The corresponding Laplace transforms are
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From solution of equation (19), in this case, we obtain
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Using the MATHEMATICA computer program we
obtain the reliability function as the inverse Laplace
transform

tt eetR 07486.013292.0 23349.051646.0)( −− +=

te 13292.028565.2 −+

)01075.0cos(01539.02 22069.0 te t−⋅−

)01075.0cos(01343.02 22069.0 te t−⋅− .

Figure 3 shows this reliability function.
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Figure 3. The reliability function from example 2

The corresponding density function is shown in
Figure 4.
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Figure 4. The density function from example 2

3.4. The Poisson process as a failure rate
Suppose that the random failure rate }0:)({ ≥ttλ is the
Poisson process with parameter 0>λ . Of course, the
Poisson process is the Markov process with the
counting state space ,...}2,1,0{=S . That process can
be treated as the semi-Markov process defined on by
the initial distribution ,...]0,0,1[=p  and the kernel

,

...............

...............
0)(000
...0)(00
...00)(0

)( 2

1

0























= tG
tG

tG

tQ

where

,...2,1,0,0,1)( =≥−= − itetG t
i

λ

The Poisson process is of course a Markov process
too.
Applying equation (19), Grabski [3] proved the
following theorem:
If the random failure rate }0:)({ ≥ttλ  is the Poisson
process with parameter 0>λ , than the reliability
function defined by (16) takes form

.0},)]exp(1[exp{)( ≥−+−−= ttttR λ

The corresponding density function is given by the
formula

.0)],exp(1}[)]exp(1[exp{)( ≥−−−+−−= tttttf λλ

Those functions with parameter 2.0=λ  are shown in
Figure 5 and Figure 6.
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Figure 5. The reliability function for the Poisson
process
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Figure 6. The density function for the Poisson process

3.5. The Furry-Yule process as a failure rate
The Furry-Yule is the semi-Markov process on the
counting state space ,...}2,1,0{=S with the initial
distribution ,...]0,0,1[=p  and the kernel similar to the
Poison process

,

...............

...............
0)(000
...0)(00
...00)(0

)( 2

1

0























= tG
tG

tG

tQ

where

,...2,1,0,0,1)( )1( =≥−= +− itetG ti
i

λ

The Furry-Yule process is also the Markov process.
Assume that the random failure rate }0:)({ ≥ttλ  is
the Furry-Yule process with parameter 0>λ .  The
following theorem is proved by Grab ski [4]:
If the random failure rate }0:)({ ≥ttλ  is the Furry-
Yule process with parameter 0>λ , then the
reliability function defined by  (1) is given by
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The corresponding density function is
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Those functions with parameter 2.0=λ  are shown in
Figure 7 and Figure 8.
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Figure 7. The reliability function for the Furry-Yule
                                         process
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Figure 8. The density function for the Furry-Yule
                                               process

4. Conclusion
Frequently, because of the randomly changeable
environmental conditions and tasks, the assumption
that a failure rate of an object is a random process
seems to be proper and natural. We obtain the new
interesting classes of reliability functions for the
different stochastic failure rate processes.
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