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Abstract

A failure rate of the object is assumed to be a stochastic process with nonnegative, right continuous trajectories. A
reliability function is defined as an expectation of a function of a random failure rate process. The properties and
examples of the reliability function with the random failure rate are presented in the paper. A semi-Markov

process as the random failure rate is considered in this paper.

1. Introduction

Often, the environmental conditions are randomly
changeable and they cause a random load of an object.
Thus, the failure rate depending on the random load is
a random process. The reliability function with semi-
Markov failure rate was considered in the following
papers Kopocinski & Kopocinska [5], [6], Grabski
(3], [4].

2. Reliability function with random failure
rate

Let {a(t): t3 O} be a random failure rate of an
object. We assume that the stochastic process has the
nonnegative, right continuous trajectories. The
reiability function is defined as

R(t) = Efexp® on(x)dx% t2 0. (1)
e €eo %

It means that the reliability function is an expectation
of the process {o(t):t 3 O}, where

o(t) =exp® o1 t3 0. @
e o %)
Let
o = exp® SELa]Xd, t3 0. 3
e o 9

From Jensen’ s inequality we get very important result

R(t) = Egexpg? (e
g &o o al
(4)
Fg(t), t3 0.

t )
3 expg? (?E[n(x)]dx%:

The above mentioned inequality means that the
reliability function defined by the stochastic process
{at): t3 0 is greater than or equal to the
reiability function with the deterministic failure rate,
equal to the expectation | (t) = E[a(t)].

It is obvious, that for the stationary stochastic process
{at): t3 0, that has a constant mean vaue
| (t) = E[a(t)] =1 , the reliability function defined by
(3)is

Fg(t)zexpg;? | oax@=exp(-1 1), t2 0.
e 0o g
®)

Hence, we come to conclusion: for each stationary
random failure rate process, the according reliability
function for each t3 O, has values greater than or
equal to the exponentia reliability function with
parameter | .
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Example 1.
Suppose that, the failure rate of an object is a
stochastic  process  {a(t):t3 0}, given by

a(t)=Ct, t3 0, where C is a nonnegative random
variable. Trajectories of the process {o(t):t 3 O}, are

2

X (t) = exp(- c%), t3 0,

where ¢ is a value of the random variable C. Assume
that the random variable C has the exponentia

distribution with parameter b :

P(CEu)=1- e ™, us 0.

Then, according to (1), we compute the reiability
function

2

A t oy ¥ _u—
R(t) = Egexp oCxckdj = ¢ 2 be ™du
e eo 0

Figure 1 shows that function.
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Figure 1. Reliability function R(t)
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In that casethe function (3) is

d L
(t) = equ, oE[Cx]dx— expg- —x, t3 0.

Figure 2 shows that function.

Suppose that a failure rate process {a(t):t3 0} isa
linear function of a random load process {u(t) :t2 O} :

a(t) =eu(t) .
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Figure 2. Reliability function R(t)

1

Assume that the process {u(t):t3 O} has an ergodic
mean, i.e.

lim %I‘;u(x)dx: E[u(t)] =T.

Then, [2], [3]
limR() = exp[- Ut]

It means, that for small e
R(x) » exp[- e ux] .

3. Semi-Markov processas arandom failure
rate

The semi-Markov process as a failure rate and the
reiability function with that failure rate was
introduced by Kopocinski & Kopocinska [5]. Some
extensions and developments of the results from [3]
were obtained by Grabski [3], [4].

3.1. Semi-M arkov processes with a discrete
state space

The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55. The essentia
developments of semi-Markov processes theory were
achieved by Cinlar [1], Koroluk & Turbin [8],
Limnios & Oprisan [7], Silvestrov [9]. We will apply
only semi-Markov processes with a finite or countable
state space. The semi-Markov processes are connected
to the Markov renewal processes.

Let S be a discrete (finite or countable) state space
and let R, =[0,¥), N, ={012,..}. Suppose, that

Xp,Jd,,N=012,... are the random variables defined
on a joint probabilistic space (W, F, P) with values
onSand R, respectively. A two-dimensional random
sequence {(x,,J,),n=012,...} is called a Markov
renewal chain if for all

igseeemsipgsi ] Sitgrent, T R, NT N .
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The equalities
1 Pt = .3 pa £y =10, =t Xo Zigudg =t

= I:){Xn+1 = 1Jdna EtX, =i} = Q;(t) (6)

2. P{xo =i5,d =0 =P{X, =ic} = p,, (7

hold.

It follows from the above definition that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do
not depend on the second component. It is easy to
notice that a random sequence {x,:n=012,..} isa
homogeneous one-dimensional Markov chain with the
transition probabilities

Py = P{Xpa =] [X, =1} :tlgg Q; (1). (8)

A matrix
QM) =|Q; ©): i,iT S|

Is caled a Markov renewal kerne. The Markov
renewa kend and the initid distribution

p=[p :il S] define the Markov renewal chain.

That chain allows us to construct a semi-Markov
process.
Let

t,=J,=0t,=J;+..+J ,ty, =supft,:nl N}
A stochastic process {X(t):t3 0} given by the
following relation

X()=x, for t1[t,.t,.) (©)

iscaled asemi-Markov process on S generated by
the Markov renewal chain related to the kernel
Q(t),t3 0 andtheinitia distribution p.

Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals [t .t ;) and
it is a right-continuous function, from
equality X(t ,,) =x,, it follows that the sequence
{X(t,):n=012.} is a Markov chain with the
transition probabilities matrix

P=[p, :i.jl SI. (10)
The sequence {X(t,):n=012,..} is cdled an

embedded Markov chain in a semi-Markov process
{X@):t3 0}.

Thefunction
Fi () =P{t oy - t o ELIX(E ) =1, X er) = i}

_Q

(11)
P;

is a cumulative probability distribution of a holding
time of astate i, if the next state will be j. From

(11) we have

Q; (1) = py F (1) - (12)

Thefunction

G () =Pt -t £t]X(E,)=i}=3aQt) (13
jIs

is a cumulative probability distribution of an
occupation time of the state i.

A stochastic process J{N(t) s 0} defined by

N(t)=n for tT [t,,t,.) (14)

is called a counting process of the semi-Markov
process {X(t):t3 O}.
The semi-Markov process {X(t) s 0} is said to be
regular if foral t3 0

P{N(t) <¥} =1. (15)

It means that the process {X(t) s 0} has the finite
number of state changes on afinite period.

Every Markov process {X(t) s 0} with the discrete
space S and the right-continuous  trajectories
keeping constant values on the half-intervals, with the
generating matrix of the transition rates
A=[a;:i,jl §], 0<-a; =a, <¥ is the semi-
Markov process with the kernel

Q) =[Q; (1):i, jT S,

where

Q) =p;@A- e_aiit) 130,

aji o
P :a—_’forl 1

and
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p; =0.

3.2. Semi-M arkov failurerate

Suppose that the random failurerate {I (t):t3 O} is
the semi-Markov process with the discrete state space

S={l,:j1 J},J={0L...m} o J={012.1},
0£1,<I,<.. withthe kernel
Q) =[Q; (1):i, jT J]

and theinitial distribution p=[p, il J].
We define a conditional reliability function as

R(t) = Egexp t@n(u)du%l ©=1,g, t2 0, il J. (16)
e €eo u

In [3] it is proved, that for the regular semi-Markov

process {l (t):t3 O} the conditional reliability

functions R (t),t3 0, il J defined by (16), satisfy
the system of equations

Rt =¢"1"[1- Q(O]*%‘ég PR (t- )dQ (%), (17)
il J.

Using the Laplace transform we obtain the system of
linear equations

RO=— G(s+1)+aR©T(s+1). 113 (19)
where

R(9) =}e’“a (b,
G.(9) = o G, (),

¥
q;(s)=oe o dQ; (t) .
0
In matrix notation we have

[1- G (9IR(9) =H(s), (19)

where

R =[R(9:i1 I,

[1-d, (s)]=|d; - G (s+1):i, i1 3],

_ 6 N D
f(s) = G (s+1 ):il 3§
és+l, a

The conditional mean times to failure we obtain from
the formula

m = lim R (p), pl (0.¥), il J (20)
p® 0"
The unconditional mean time to failure has aform
mzaP(I O =1,)m. (21
il J

3.3. 3-state random walk processas afailure
rate

Assume that the failure rate is a semi-Markov process
{na(t):t3 O} with the state space S={I ,, 1,1 ,} and
the kernel

é 0 Gyt) 0 0
QV=gG(t) 0 (- aGWy
€ 0 G 0 H

where G, (t), G, (t),G,(t) are the cumulative
probability distribution functions with nonnegative
support. Suppose that at least one of the functions is
absolutdy continuous with respect to the Lebesgue
measure. Let p=[p,, p;, p,] beaninitial probability
distribution of the process. That stochastic process is
called the 3-state random walk process. In that case
the matrices from the equation (19) are

[1- 6 (9=
é 1 - gO(S+| o) 0 [;]
=& agy(s+,) 1 - @- a)Gy(s+1 ) (22
B 0 -Ty(s+ly) 1§
where

gi(s)= f‘ﬁ’ G, (t),i =0.1,2.
0

ERo(9)0
R(9=6R (S5
ng (S)H
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a=04, b=004,9g=002 1,=01,=011,=
As+| -G o(s+l 0)u Since the matrices (22) and (23) are
H(s) S+| -G L(s+1)0 u (23) - B
[I-q (9]=
§s+| Gz (s+I z)g
é 0.0025 0 u
The Laplace transform of unconditional reliability é oon (005+5)? oos a
function is =8 045545 1 -06g5:4
g 0 00004 1 E
-~ ~ ~ ~ (0.22+5)2
R(S) = poRy(s) + P,R.(S) + PR (9)
é 1_ _00025 u
Example 2. 5 & 5 s00+9?
Assume that H (S) = g s+%).l B (s+0. 8(?)414+s) tjl
1 0.0004
Po =1 p, = 0, p, = 0 s+l 2 (s+0.2)(0.22+s)2
and From solution of equation (19), in this case, we obtain

G, (t)=1- (L+at)e?",
G,(t)=1- "
G,(t)=1- (L+gt)e 9, t3 0.

The corresponding Laplace transforms are

~ . a
o(S) ss+a)
~ b
Gy(s) S5+ D)
Z(S)_S(S+g)2’
-
5= oy
- b
91(5)—Tb,
_ g’
,(s 5
d,(9) (5+)
Let
p=[100], a=04
and

a(s)

R(S) =
(s) = Ry(s) = 5()

where

a(s) = (0.01623+ 0.23349s + s?)

%(0.05002 + 0.44655s + s°)

b(s) = (0.03083 + 5)(0.07486 + 5)(0.13292 + )

x(0.04882 + 0.44138s + 5?)

Using the MATHEMATICA computer program we
obtain the reiability function as the inverse Laplace
transform

R(t) =0.51646e 12t + 0,23349e 07t

+ 2.28565¢ 013292t

- 2>0.01539" %%t ¢05(0.01075t)
- 2>0.01343e 0%%9 05(0.01075t) .

Figure 3 shows this reliability function.
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Figure 3. Therdiability function from example 2
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The corresponding density function is shown in
Figure 4.
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Figure 4. The density function from example 2

3.4. The Poisson processas afailurerate

Suppose that the random failure rate{l (t) :t3 O} isthe
Poisson process with parameter | > 0. Of course, the
Poisson process is the Markov process with the
counting state space S={012,...}. That process can
be treated as the semi-Markov process defined on by
theinitial distribution p =[1,0,0,...] and the kernel

€0 G,(t) 0 0 Y|
é u
éO 0 G, (1) 0 ]
Q=€ 0 0 Gyt 04
é u
8. -H

where

G (t)=1-¢'"130,i=012,..

The Poisson process is of course a Markov process
too.

Applying equation (19), Grabski [3] proved the
following theorem:

If the random failure rate {I (t):t3 O} isthe Poisson

process with parameter | >0, than the reliability

function defined by (16) takes form
R(t) =exp{- 1 [t- 1+exp(-1)]},t3 0.

The corresponding density function is given by the
formula

f@t)=1 exp{-| [t- 1+exp(-t)]}[1- exp(-1)],t3 O.
Those functions with parameter | = 0.2 areshownin
Figure 5 and Figure 6.
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Figure 5. The rdiability function for the Poisson
process
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Figure 6. The density function for the Poisson process

3.5. The Furry-Yule processas a failurerate

The Furry-Yule is the semi-Markov process on the
counting state space S={012,..}with the initial
distribution p =[1,0,0,...] and the kernel similar to the
Poison process

€0 Gy(t) O 0 .0
e u
@0 0 GO 0 .
Q=€ 0 0 G,(1) oy
e u
g.. .H

where

G (t)=1- '™ t30,i=012,..

The Furry-Yule process is also the Markov process.
Assume that the random failure rate {I (t):t3 O} is
the Furry-Yule process with parameter | >0. The
following theorem is proved by Grab ski [4]:

If the random failure rate {I (t):t3 O} is the Furry-
Yule process with parameter | >0, then the
reliability function defined by (1) isgiven by
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__(+Dep-10 o

RO 1+1 exp[- (I +Dt]’

The corresponding density functionis

_(+Dexp[l- (I +1)t] 20

' {1+1 exp[- (I +Dt]}?

Those functions with parameter | = 0.2 are shownin
Figure 7 and Figure 8.
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Figure 7. The rdiability function for the Furry-Yule
process
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Figure 8. The density function for the Furry-Yule
process

4. Conclusion

Frequently, because of the randomly changeable
environmental conditions and tasks, the assumption
that a failure rate of an object is a random process
seems to be proper and natural. We obtain the new
interesting classes of reliability functions for the
different stochastic failure rate processes.
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