
R.Guo      An univariate DEMR modelling on repair effects  -  RTA # 3-4, 2007, December  -  Special Issue

- 89 -

1. Introduction
Repairable system analysis is in nature an evaluation
of repair effects. Recent tendency in reliability
engineering literature was estimating system repair
effects or linking repair to certain covariate to extract
repair impacts by imposing repair regimes to the
system. Guo [3], [4] proposed an approach to isolate
repair effects in terms of grey differential equation
modelling, particularly, the one-variable first order
differential equation model, abbreviated as GM (1,1)
model, initiated by Deng [2]. The efforts of modelling
of system repair effects in terms of grey differential
equation models has attracted attention from because
it is easy to calculated, for example, in Microsoft
Excel. However, there were two fundamental
problems necessary to be addressed. The first issue is
the nature of the GM(1,1) model. In The second
fundamental problem is GM(1,1) model is a
deterministic approach and is just a delicate
approximation approach and in nature ignores the
regression error structure, which may be very
reasonable if the sample size is too small, however, in
general, Deng's approach results in information loss,
particularly he used the adjective word "grey",
implying grey uncertainty involved, but there was not
uncertainty structure build up to describe "grey
uncertainty". In other words, the existing GM(1,1)

model has a good idea without a convincingly
rigorous mathematical foundation yet.
In this paper, we will review the coupling principle
materialization in GM(1,1) model in section 2. In
section 3, will propose a families of first order
differential equation motivated regression models
under unequal-gaped data, which is suitable for the
usages in system functioning time analysis. In section
4, we argue that the differential equation motivated
regression model is a coupling regression model with
random fuzzy error terms in nature. In section 5,
review Liu's [5] fuzzy credibility measure theory and
then discuss the random fuzzy variable theory in order
to establish the differential equation motivated
regression models as a coupling regression with
random fuzzy error terms. In section 6, we will
discuss the parameter estimation for the fuzzy variable
repair effect indexing the random fuzzy error terms of
the differential equation motivated regression
modelling on system functioning time sequence under
maximum entropy principle. Section 7 concludes the
paper.

2. An univariate DEMR model
The success of GM(1,1) model lies on the following
two aspects: data accumulative generation operator
(abbreviated as AGO), which is the partial sum
operation in algebra, and a simple regression model
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coupled with a first-order linear constant coefficient
differential equation model, which Deng [2] called is
as whitening differential equation or the shadow
differential equation. Let X(0) =(x(0) (1), x(0) (2),…, x(0)

(n)) be a data sequence, and the partial sum with
respect to X(0)
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and the mean of two consecutive partial sums, which
is used as an approximation to the primitive function
of ( ) ( )1x t
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Definition 1. Given a (strictly positive) discrete real-
valued data sequence X(0) =(x(0)(1), x(0)(2),…, x(0)(n)),
the equation
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“coupled” with the first-order constant coefficient
linear ordinary differential equation.
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is called a univariate DEMR model with respect to the
data sequence X(0) =  (x(0)(1), x(0) (2), …, x(0)(n)) .
Parameter  is called the developing coefficient,
parameter a  is the grey input, term x(0) is called a grey
derivative and term x(1)(k) is called the kth 1-AGO of
X(0) value (partial sum in fact). Furthermore, the
differential equation dx(1)/dt +  x(1) =  in Eq. (4) is
called the whitening differential equation or the
shadow equation of the grey differential equation Eq.
(3) by Deng [2]. The unknown parameter values ( )
can be estimated in terms of a standard regression.
Note that Eq. (3) can be re-written as in a simple
regression form,

,kkk xy εβα ++= nk ,,4,3,2 K= ,      (5)

where
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The estimate for regression parameter pair ( )βα, ,
denoted as ),( ba , can be calculated by,
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The grey filtering-prediction equation is thus
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Note that Eq. (10) is the discrete version of the
solution to the differential equation (Eq. (4))
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The typical goodness-of-fit measure of GM(1,1)
model is the (absolute) relative error described by
Deng [2], i.e.
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and the model efficiency is defined as
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The nature of the univariate DEMR model can be
identified as that the model couples a differential
equation model and a simple regression model
together organically. The form of the motivated
differential equation (i.e., Deng’s whitening
differential equation) in Eq. (4) determines the form
of the coupling regression (i.e., CREG) in Eq. (3). The
data assimilated parameter pair ( ),a b  in CREG
determines the system parameter pair ( ),α β . The
coupling translation rule is listed in Table 1.
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Table 1. Coupling Rule in Univariate DEMT Model

Term Motivated DE Coupling REG
Translation between MDE and CREG

Intrinsic
feature

Continuous Discrete

Independent
Variable

t k
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In DEMR modelling, the motivated differential
equation and the coupling regression model are not
separable but are organic integration. The DEMR
models are differential equation motivated but defined
by system data. A DEMR model starts with a
motivated differential equation, then the coupling
regression model is specified in the form “translated”
from the form of the motivated differential equation,
in return, in terms of coupling regression model, the
parameters specifying the motivated differential
equation are estimated under L2-optimality, and
finally, the solution to the motivated differential
equation (or the discredited solution) equipped with
data-assimilated parameters is used for system
analysis or prediction.  In nature a DEMR model is a
coupling of a motivated differential equation and a
regression formed by the discredited version of the
motivated differential equation. We call the
“translation” rule in grey differential equation
modelling as a coupling principle.

3. Unequal-gapped differential equation
motivated regression model with term of
product of exponential and sine function
The basic form of the first order linear differential
equation with constant term in right side is

( )ϖωαβ δ +=+ tex
dt
dx t sin      (14)

Note here, the proposal of the motivated differential
equation in Eq. (14) is featured by the term

sinte tδα ω  to replacing the constant term α in Eq. (4)
with an intention that the fluctuating pattern of

( )sinte tδ ω + ϖ will help the model goodness-of-fit.
Then the solution to Eq. (14)  is
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is the solution to the homogeneous equation
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while a particular solution to the motivated
differential equation Eq. (14) takes a form
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Note that px satisfies Eq. (14), thus substitute the
particular solution into Eq. (14), we obtain
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which leads to an equation system by comparing the
coefficients of term ( )sinte tδ ω + ϖ  and term

( )te tδ ω + ϖ respectively,
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Solving the linear equation Eq. (19), we obtain
the coefficients 0A  and 0B  respectively as follows
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In theory, the expressions of 0A  and 0B  will
determine the particular solution px

)sin(0 ϖωδ += teAx t
p

)cos(0 ϖωδ ++ teB t      (22)

which will result in the general solution to Eq. (14) as
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Note that for the unequal-gapped data sequence,
( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0

1 2, , , nX x t x t x t= L , the coupling (or
translation) rule is slightly different from the equal-
gapped data sequence.

Table 2. Coupling Principle in unequal gapped
GM(1,1) Model.
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The coupling regression is
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The parameter pair ( ),α β  is obtained by least-square
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since δ and ω are given (in a manner by trials and
errors).
Formally, we have a DEMR model as
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4. Fuzzy repair effect structure
In standard regression modelling exercises, it is often
to assume that the error terms iε , 1,2, ,i n= L  are
random with zero mean and constant variance, i.e.,

[ ]E 0iε =  and [ ] 2VAR iε = σ , 1,2, ,i n= L . It is
typically assuming a normal distribution with zero
mean and constant variance, i.e., ( )20,N σ .
Furthermore, as we pointed out that a grey differential
equation model is a motivated differential equation
motivated regression, which takes the form translated
from the motivated differential equation, as shown in
Table 1 for GM(1,1) case.  However, we should be
fully aware that translation back and forward between
the motivated differential equation and the coupling
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regression will bring in new error which is different
from the random sampling error ( )20,N σ . The errors
brought in come from the steps of the usage of
difference ( ) ( ) ( ) ( ) ( ) ( )0 1 1 1x k x k x k= − − to replace the
derivative ( )t k

dx dt
=

and the usage of the average
accumulated partial sum ( ) ( )1

kz t to replace the
primitive function ( ) ( )1

kx t  during the translation
between the motivated differential equation and the
coupling regression.
Our simulation studies have shown that the coupling-
introduced error is dependent upon the grids size ∆ , or
equivalent to the total number of approximation N.
The simulation evidences have shown that the larger
the number of approximating grid, or equivalently, the
smaller the approximating grid, the coupling
translation error is smaller. However, the coupling
translation error and the approximating grid do not
hold a deterministic functional relation. What we can
see is the functional relation has a certain degree of
belongingness. In other words, the coupling
translation process induces a fuzzy error term, denoted
as ς  with a membership function.
We perform a simulation study of the error occurrence
frequencies of approximating ( )cos 2π  by

( ) ( )( )sin 2 sin 2 x xπ π− + ∆ ∆ .

error's frequency Chart
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Figure 1. Error occurrence frequency

Therefore, in general the error terms of a differential
equation motivated regression model (i.e., grey
differential equation in current grey theory literature)
is fuzzy because the vague nature of the error
occurrences.
As a standard exercise, the fuzzy error component ie
may be assumed as triangular fuzzy variable with a
membership function
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which has a fuzzy mean zero.
However, in the modelling of system functioning
times, we further note that the repair will reset the
system dynamic rule so that the repair impact may be
understood as a fuzzy variable having a triangular
membership
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The fuzzy mean of the fuzzy repair effect is thus

)2(
4
1)( cbarE ++=µ ,     (30)

which provides a repair effect structure. Therefore, the
“composite” fuzzy “error” term appearing in the
differential equation motivated regression for
modelling a system function time will be
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with a triangular membership function, i.e.,
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because the sum of two triangular fuzzy variables is
still a triangular fuzzy variable. The total error

,)( iiiiii er εεζξ ++=+= ni ,,3,2 K= ,   (33)

which is a sequence of random fuzzy variables
because the summation nature of a random fuzzy
variable and a fuzzy variable according to Liu [5].
Now, we reach a point that the random fuzzy variable
concept is involved and therefore it is necessary to
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have a quick review on the relevant theoretical
foundation.

5. A random fuzzy variable foundation
First we need to review the fuzzy credibility measure
theory foundation proposed by Liu [5], then we will
establish the normal random fuzzy variable theory for
a facilitation of error analysis in the differential
equation motivated regression models.
Let Θ  be a nonempty set, and 2Θ  the power set on
Θ . Each element, let us say, A ⊂ Θ , 2A Θ∈  is called
an event. A number denoted as { }Cr A ,

{ }0 Cr 1A≤ ≤ , is assigned to event 2A Θ∈ , which
indicates the credibility grade with which event

2A Θ∈  occurs. { }Cr A satisfies following axioms
given by Liu [5]:
Axiom 1. { }Cr 1Θ = .
Axiom 2. { }Cr ⋅ is non-decreasing, i.e., whenever
A B⊂ , { } { }Cr CrA B≤ .
Axiom 3. { }Cr ⋅  is self-dual, i.e., for any

2A Θ∈ , { } { }Cr Cr 1cA A+ = .

Axiom 4. { } { }Cr 0.5 sup Cri i i
i

A A∧ =   U  for any { }iA

with { }Cr  0.5iA ≤ .

Axiom 5. Let set functions ]1,0[2:}{ →⋅ Θ k
kCr satisfy

Axioms 1-4, and 1 2 pΘ = Θ × Θ × × ΘL , then:

{ } { } { } { }pp CrCrCrCr θθθθθθ ∧∧∧= LK 2121 ,,,  (34)

for each { } .2,,, 21
Θ∈pθθθ K

Definition 5.1. Liu [5] Any set function
[ ]Cr : 2 0,1Q ®  satisfies Axioms 1-4 is called a ( )∧∨, -

credibility measure (or classical credibility measure).
The triple ( )Cr,2, ΘΘ  is called the ( )∧∨, -credibility
measure space.

Definition 5.2. Liu [5] A fuzzy variable ξ  is  a
mapping from credibility space ( )Cr,2, ΘΘ  to the set

of real numbers, i.e., ( ): ,2 ,Crξ ΘΘ → R .

Definition 5.3. Liu [5] The (induced) membership
function of a fuzzy variable ξ  on ( )Cr,2, ΘΘ  is:

{ }( ) ,12)( ∧== xCrx ξµ R∈x     (35)

Conversely, for given membership function the
credibility measure is determined by the credibility
inversion theorem.

Theorem 5.4. Liu [5] Let ξ be a fuzzy variable with
membership function m. Then for R⊂∀B ,
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As an example, if the set B is degenerated into a point
x, then
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Definition 5.5. Liu [5] The credibility distribution
[ ]: 0,1Φ →R  of a fuzzy variable ξ  on ( )Cr,2, ΘΘ  is

{ }xCrx ≤Θ∈=Φ )()( θξθ .     (38)

The credibility distribution ( )xΦ  is the accumulated
credibility grade that the fuzzy variable ξ  takes a
value less than or equal to a real number x ∈ R .
Generally speaking, the credibility distribution  is
neither left-continuous nor right-continuous.

Theorem 5.6. Liu [5] Let ξ  be a fuzzy variable on
( )Cr,2, ΘΘ  with membership function . Then its
credibility distribution,

,)(sup1)(sup
2
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Definition 5.7. Liu [5]  Let  be the credibility
distribution of the fuzzy variable ξ . Then function

: [0, )φ → +∞R  of a fuzzy variable ξ  is called a
credibility density function such that,

,)()( ∫
∞−

=Φ
x

dyyx φ R∈∀x .     (40)

Now we are ready to state the normal random fuzzy
variable theory for the error analysis in the repairable
system modelling.
Liu [5] defines a random fuzzy variable as a mapping
from the credibility space ( )Cr,2, ΘΘ  to  a  set  of
random variables.  We would like to present a
definition similar to that of stochastic process in
probability theory and expect readers who are familiar
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with the basic concept of stochastic processes can
understand the comparative definition.

Definition 5.8. A random fuzzy variable, denoted as

( ){ },Xβ θξ = θ∈Θ  , is a collection of random variables

Xβ  defined on the common probability space

( ), PrΩ A,  and indexed by a fuzzy variable ( )β θ

defined on the credibility space ( )Cr,2, ΘΘ .
Similar to the interpretation of a stochastic process,

{ },tX X t += ∈ R , a random fuzzy variable is a

bivariate mapping from ( ), 2ΘΩ× Θ ×A  to the space

( ),R B . As to the index, in stochastic process theory,
index used is referred to as time typically, which is a
positive (scalar variable), while in the random fuzzy
variable theory, the “index” is a fuzzy variable, say,
β . Using uncertain parameter as index is not starting
in random fuzzy variable definition. In stochastic
process theory we already know that the stochastic
process ( ){ },X X τ ω= ω∈Ω  uses stopping time

( ), Wt w w , which is an (uncertain) random variable
as its index.
In random fuzzy variable theory, we may say that that
average chance measure, denoted as ch , plays a
similar role similar to a probability measure, denoted
as Pr , in probability theory.

Definition 5.9. Liu and Liu [6] Let x  be a random
fuzzy variable, then the average chance measure
denoted by {}ch , of a random fuzzy event { }x≤ξ ,
is

{ } =≤ xch ξ ( ){ }{ }∫ ≥≤Θ∈
1

0
Pr ααθξθ dxCr .    (41)

Then function () is called as average chance
distribution if and only if

{ }xchx ≤=Ψ ξ)( .      (42)

Liu [5] stated that if a random variable η  has zero
mean and a fuzzy variableζ , then the sum of the two,
η ζ+ , results in a random fuzzy variable ξ . Now, it
is time to find the average chance distribution for a
normal random fuzzy variable ( )2,

d
Nx z s: , where ζ is

a triangular fuzzy variable and 2σ is a given positive
real number. Note that fuzzy event

{ }{ }αθξθ ≥≤Θ∈ x)(Pr:

( )








≥





 −

ΦΘ∈⇔ α
σ

θζ
θ

x:

    (43)
( ){ })( x: 1 ασθζθ −Φ+≥Θ∈⇔

( ){ })(: 1 ασθζθ −Φ−≤Θ∈⇔ x                     (43)

The fuzzy mean is assumed to have a triangular
membership function















≤≤
−
−

≤≤
−
−

=

otherwise0

)( ζζ
νν

ν

ζζ
ζζ

ζ

ζµ awb
bc
wc

bwa
ab
aw

w    (44)

and

{ } ( )

( )



















≥

<≤
−

−+

≤≤
−

−

<

=≤=Φ

ζ

ζζ
ζζ

ζζ

ζζ
ζζ

ζ

ν

ζ

cw

cwb
bc

bcw

bwa
ab

aw

aw

wCrw

1

2
2

2

0

)(    (45)

which gives the credibility distribution for the fuzzy
mean, ζ .
Then the critical step is to derive the expression of

{ }{ }.),(Pr)( αθωξθζ ≥≤Θ∈ xCr  For normal
random fuzzy variable with a triangular fuzzy mean,

{ }{ }αθωξθζ ≥≤ x),(Pr:)(

{ })()(: 1 ασθζθ −Φ−≤Θ∈⇔ x .    (46)

Then the range for the integration of the integrand
{ })()(: 1 ασθζθ −Φ−≤Θ∈ xCr   with respect to α

is listed in Table 3.

( )g α Range for α ( ) ( ){ }1Cr : x -Q z q - s F a
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( )g aζα−∞ < <
1

x aζ− 
Φ < α < σ 

0

( )a g bζ ζα≤ < x b x aζ ζ− −   
Φ < α < Φ   σ σ   

( )
( )

1

2
x a

b a

−
ζ

ζ ζ

− σΦ α −

−

( )b g cζ ζα≤ < x c x bζ ζ− −   
Φ < α < Φ   σ σ   

( )
( )
1 2

2
x c b

c b

−
ζ ζ

ζ ζ

− σΦ α + −

−

( )g cζα ≥
0

x cζ− 
< α < Φ σ 

1

Table 3. Integration range with respect to α

where ( ) ( )1g x −ζ = α = − σΦ α .
Then we obtain the average chance measure for the
event ( ){ }, xξ ω θ ≤

{ } =≤ xch ),( θωξ ( ) α
ασσ

ζ

σ
ζ ζζ

ζ d
ab

ax
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
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
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)(1
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ζcx
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1    (47)

which leads to the average chance distribution
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6. Fuzzy repair effect estimation under fuzzy
maximum entropy principle
Entropy is a measure of uncertainty. The entropy of
De Luca and Termini [1] characterizes uncertainty
resulting primarily from the linguistic vagueness
rather than resulting from information deficiency, and
vanishes when the fuzzy variable takes all the values
with membership degree 1. However, we hope that the
degree of uncertainty is 0 when the fuzzy variable

degenerates to a crisp number, and is maximum when
the fuzzy variable is an equi-possible one, i.e., all
values have the same possibility. In order to address
such a requirement, Li and Liu [6] provided a new
definition based on credibility measure.

Definition 6.1.(Fuzzy Entropy) Let x  be a continuous
fuzzy variable defined on a credibility space
( )Cr,2, ΘΘ , then the fuzzy entropy, [ ]H x , is defined
by

[ ] { }( )( )∫
∞

∞−

== duuCrSH )(: θξθξ     (49)

where

)1ln()1(ln)( tttttS −−−−=     (50)

For convenience, we name ( )S t as entropy density at
point t.
The maximum entropy principle provides a route such
that it is possible to select the parameter(s) λ  that
maximizes the value of entropy function and satisfies
certain given constraints for specifying a membership
function with a given form. However, what we aim at
is not obtaining parameters from the theoretical
entropy function rather we must determine the
parameters based on observations of the fuzzy
variable, say, ξ . In other words, we need to develop a
criterion to obtain data-assimilated membership
function. Therefore, we suggest an empirical fuzzy
entropy function for parameter searching since the
optimal value of the data-dependent object function
has to reflect the constraints specified by
observational data implicitly. The data assimilated
object function is the average of entropy densities
evaluated at 1 2{ , , , }nz z zL respectively, i.e.,

[ ] ( ){ }( )∑ ==−
=

N

i
izZCrS

n
LLJ

1
21 ,;)(1, ηδθ    (51)

where a finite interval ],,[ 21 LL− 012 ≥> LL  is
defined for the domain of the entropy. Note that with
the finiteness of empirical entropy,

];[],[ 21 λZHLLJ →−  asymptotically with
parameter constrained by the data structure and

],,[ 21 LLZ −∈ 012 ≥> LL  which guarantees the
theoretical entropy [ ]H Z  exists and finite in general.

Then, we can estimate the parameter ( ), ,a b cζ ζ ζ  of
the membership of fuzzy composite error in terms of
maximum entropy principle. Furthermore, we can
isolate a few repair as bad-as-old regime and thus
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repair effect is zero for estimation parameter ο  for
specifying iε , the translation error because under
triangular membership assumption, the empirical
membership can be defined and satisfies the
asymptotical requirements.

7. Conclusion
In this paper, we argue that a differential equation
motivated regression model will result in a regression
model with random fuzzy error terms and thus
complete our mission for solidifying a rigorous
mathematical foundation for the grey modelling on
system repair effects proposed by Guo [3], [4]. The
maximum entropy principle facilitates a way for fuzzy
parameter estimation. However, the average change
distribution is also providing a way for parameter
data-assimilation.
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