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1. Introduction
One important research area in reliability engineering
is studying various maintenance policies. Maintenance
can be classified by two major categories: corrective
and preventive. Corrective maintenance is any
maintenance that occurs when the system is failed.
Some authors refer to corrective maintenance as repair
and we will use this approach in this paper. Preventive
maintenance is any maintenance that occurs when
system is not failed.
A common measure used to describe the reliability
characteristics of a repairable system is mean time
between failures (MTBF). In most repairable systems,
preventive maintenance used to reduce system failure
frequency and hence increase the MTBF. It is easy that
MTBF is the mean time to a repair service or an age
replacement.
The MTBF for a system that has periodic maintenance
at a time t can be described by [1], [10]:
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In paper [1], [10] an approximation to MTBF is
provided. Moreover in [10] is proved that
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and for increasing failure rate on average (IFRA) class
of distributions in [1] the following relation by
proposed
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In this paper, we propose an approximation to MTBF
for wide class than IFRA. The equality (1) can be a
basis to introduction a new class of ageing distributions
(see [7], [8]).
Let us assumption the following notation

   M (t) =
MTBF

1 .

The case when M(t) is monotonic was considered by
Barlow and Campo [2], Marshall and Proschan [9],
Klefsjö [5] and Knopik [7], [8].

Definition 1. The lifetime T belongs to the class (mean
time to failure or replacement) MTFR, if the function
M (t) is non-decreasing for t })t(F:t{ 0>∈ .
It has been shown in Barlow [2] and Klefsjö [5] that

   IFR ⊂ MTFR ⊂ NBUE,

where IFR is increasing failure rate class, NBUE is
new better than used in expectation class.
For absolutely continuous in [2] and for any random
variable in [8] it has been proved, that
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Abstract
This paper describes a simple technique for approximating the mean time between failures (MTBF) of a system
that has periodic maintenance at regular intervals. We propose an approximation of MTBF for vide range of
systems than IFRA class of distributions.
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   IFRA ⊂ MTFR,

where IFRA is increasing failure rate on average class
of distributions. Preservation of life distribution classes
under reliability operations has been studied in [7], [8].
The class MTFR is closed under the operations:
(a) formation of a parallel system for absolutely

continuous random variables,
(b) formation of series system with identically

distributed and absolutely continuous random
variables,

(c)  weak convergence of distributions,
(d)  convolution.
In this paper we propose new approximation and
bounds, applicable for a wide range of systems. It is
MTFR class of distributions, such that MTBF is non-
increasing. The class MTFR contains distributions with
unimodal failure rate function. We analyze special case
of distribution with MTBF non-increasing as mixture
of an exponential distribution and Rayleigh’s
distributions. This distribution has unimodal failure
rate function. However, it is not easy to obtain
distribution from mixtures with unimodal failure rate
function [12]. The mixtures of two increasing linear
failures rate functions were studied in [4]. In [4]
showed that a mixture of two distributions with
increasing linear failure rate functions does not give
distributions with unimodal failure rate function.
In section 2, we introduce the proposed model of
mixture and we estimate their parameters for an
example of lifetime data [11]. In section 3 we propose
a simple approximation of to MTBF for lifetime
distributions with MTBF non-increasing.

2. Mixture of distributions
We consider a mixture of two lifetimes X1 and X2 with
densities f1(t), f2(t), reliability functions R1(t), R2(t),
failure rate functions r1(t), r2(t) and weights p and
q=1– p, where  0 < p < 1. The mixed density is then
written as

)t(f)p()t(pf)t(f 21 1 −+=

and the mixed reliability function is

   R (t) =pR1 (t) + (1-p)R2 (t).

The failure rate function of the mixture can be written
as the mixture

   r(t)= (t ) r1(t)+[1 – (t)] r2(t),

where (t)=pR1(t)/R(t).
Moreover, from [3], we have under some mild
conditions, that

)}t(r),t(rmin{lim)t(rlim
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In the following propositions, we give some properties
for the mixture failure rate function.

Proposition 1. For the first derivative of  (t), we have

   ’(t) = (t)[1 – (t)][r2(t) – r1(t)].

Proposition 2. For the first derivative of r(t), we have

   r’(t)=[1– (t)]( – (t)(r2(t) – r1(t))2+r’2(t)

          + (t)r’1(t).

Proposition 3. If X1 is exponentially distributed with
parameter , then

    r’(t)=[1 – (t)](– (t)(r2(t) – )2+r’2(t)).

We suppose that r2(t) = t, where >0. Consequently,
the reliability function of X2 is the reliability function
of Rayleigh’s distribution of the form

    R2 (t) =exp { }t 2

2
α

− for t 0.

Proposition 4. If 2 , then r (t) is unimodal.

Proof. By Proposition 1, we conclude that  (t) is
decreasing for t ∈ (0, t1), where t1 = and is
increasing for t ∈ (t1, ). Hence, if t < t1, then

(t)(r2(t) – )2 is decreasing from  p 2<  to 0, and  if  t
>  t1 then (t)(r2(t) – )2 is increasing from  0 to .
Thus the equation  (t) (r2(t) – )2 =   has only one
solution t2 and r (t) is increasing for t  <  t2 and
decreasing for t  >  t2.

Proposition 5. If 2 > , then there exist t3, and t4, t3
< t1 < t4, such that r (t) decreases in (0, t3), increases in
(t3, t4) and decreases in (t4, ).

Proof. Let h(t)=  – (t)(r2(t) – )2. It is easy to find
that h(0)=  – p 2<0,  h(t1)= , h( )=– .
The function h(t) is increasing from h(0) < 0 to
h(t1)= >0, and is decreasing from h(t1)= >0 to
h( )=– .
Thus, there exist t3 and t4, 0<t3<t1<t4 such that r (t)
decreases on (0, t3), increases in (t3, t4) and decreases in
(t4, ). This completes the proof.

Example 1.  In this example we consider a real life
time data from the [11]. We estimate the parameters p,

, of the model with reliability function

   R (t) = p exp (– t) + (1 – p) exp (– 0,5 t2) for x  0.
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By maximizing the logarithm of likelihood function for
grouped data, we calculate p = 0.643316,

 = 0.001284,  = 0.0288. For these values of
parameters, we prove Pearson’s test of fit and compute

2= 0.68. By Proposition 4, we conclude that r (t) is
unimodal.

3. Bounds and Approximation
In this section we cover some of the well known
bounds and approximations to the MTBF.
By the inequality

∫ ≤
t

}ET,tmin{ds)s(R
0

,

where ET is the mean value of T, we obtain the upper
bound for MTBF:

}ET,tmin{
)t(F

MTBFU
1

= .

In [1] for MTBF proposed is the following average
approximation
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+
=

1
2

.

Proposition 6.  If f (t) is unimodal, then these exist t1
such that MTBFA is a lower bound of MTBF for t ∈
<0, t1) and it is an upper bound of MTBF for t ∈(t1, )

Proof. We consider the difference
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and

   g1(t) = ∫ +−
t
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It is easy to find that g1(0) = 0, g1(+ ) = – . The first
derivative of g’1(t) is

   g’1(t) = )t(F)t(tf[ −
2
1 ].

If f (t) is decreasing then g’1(t) <  0  and  MTBFA is  a
lower bound for MTBF.

If f (t) is unimodal then exists tm and t1 such that f’(tm)
=0, tm<t1 and g(t) 0 for t ∈(0,t1), g(t) 0 for t∈(t1, ).

Proposition 7. If T ∈MTFR, then

   MTBF 
)t(r

1 for t > 0.

Proof. By Definition 1, if M (t) is non-decreasing, then
we have

0

0
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Proposition 8. If the lifetime T has unimodal failure
rate function r (t), then T ∈ MTFR if and only if
r( ) ET – 1  0.

Proof. Let

 h (t) = r (t) ∫
t

ds)s(R
0

 – F (t).

It is easy to show that  h (0) = 0 and
 h ( ) = r ( ) ET – 1.
The first derivative of h (t) is

  h’ (t) = r’ (t) ∫
t

ds)s(R
0

.

If r (t) is increasing, then h (t) is increasing and if r (t)
is decreasing, then h (t) is decreasing. This completes
the proof.

Example 2. Consider the system with failure rate
function proposed in Example 1. The exact and
approximate results for MTBF are shown in Table 1
for varying R (t) with the corresponding t. The results
show that the average approximation MTBFA is greater
than MTBF. For this data, we compute ET = 34.81 and
ET – 1  0 and by Proposition 8 we obtain that T ∈

MTFR.
Table 1. The values of the exact and approximate
MTBF of lifetime data
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R(t) t MTBF MTBFU MTBFL MTBFA
0.99999
0.9999
0.999
0,99
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.00054
0.0054
0.05398
0.54031
5.43971
10.9261
16.4696
22.1619
29.1751
34.8007
42.5854
52.8174
70.2655

53.97
53.97
53.95
53.76
51.67
49.15
46.62
44.21
41.98
39.94
38.11
36.50
35.23

53.97
53.97
53.98
54.03
54.40
54.63
54.90
55.40
56.35
58.00
49.73
43.51
38.68

53.97
53.97
53.93
53.55
49.22
44.05
39.17
34.90
34.81
34.81
34.81
34.81
34.81

53.97
53.97
53.95
53.76
51.68
49.17
46.66
44.32
42.26
40.60
39.54
39.61
42.94

4. Conclusion
In this paper we show that, from a practical point view,
the unimodal failure rate model can be obtained from a
mixture of two common IFR models. This model is
flexibility. Practical relevance and applicability have
been demonstrated using well known data. In this
paper a simple approximation of the MTBF of systems
subjected to periodic maintenance has been proposed
as well.
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