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Abstract

This paper describes a simple technique for approximating the mean time between failures (MTBF) of a system
that has periodic maintenance at regular intervals. We propose an approximation of MTBF for vide range of

systems than IFRA class of distributions.

1. Introduction

One important research area in reliability engineering
is studying various maintenance policies. Maintenance
can be classified by two major categories: corrective
and preventive. Corrective maintenance is any
maintenance that occurs when the system is failed.
Some authors refer to corrective maintenance as repair
and we will use this approach in this paper. Preventive
maintenance is any maintenance that occurs when
system is not failed.

A common measure used to describe the reliability
characteristics of a repairable system is mean time
between failures (MTBF). In most repairable systems,
preventive maintenance used to reduce system failure
frequency and hence increase the MTBF. It is easy that
MTBF is the mean time to a repair service or an age
replacement.

The MTBF for a system that has periodic maintenance
at atimet can be described by [1], [10]:

t
OR(s)ds
MTBF =% —. (1)
F(t)

In paper [1], [10] an approximation to MTBF is
provided. Moreover in [10] is proved that

LiOFIV) Ly
F(t) F(t)

and for increasing failure rate on average (IFRA) class
of distributions in [1] the following relation by
proposed

t £EM
In(R(t)

TBF £
F(t)

In this paper, we propose an approximation to MTBF
for wide class than IFRA. The equality (1) can be a
basis to introduction a new class of ageing distributions
(see[7], [8]).

Let us assumption the following notation

1
M (t) = .
® MTBF

The case when M(t) is monotonic was considered by
Barlow and Campo [2], Marshall and Proschan [9],
Klefsjo [5] and Knopik [7], [8].

Definition 1. The lifetime T belongs to the class (mean
time to failure or replacement) MTFR, if the function
M (t) is non-decreasing for tT {t: F(t)>0}.

It has been shown in Barlow [2] and Klefsj6 [5] that

IFRI MTFR I NBUE,

where IFR is increasing failure rate class, NBUE is
new better than used in expectation class.

For absolutely continuous in [2] and for any random
variablein [8] it has been proved, that
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IFRA | MTFR,

where IFRA is increasing failure rate on average class

of distributions. Preservation of life distribution classes

under reliability operations has been studied in [7], [8].

Theclass MTFR is closed under the operations:

(@) formation of a paralld system for absolutely
continuous random variables,

(b) formation of series system with identically
distributed and absolutely continuous random
variables,

(c) weak convergence of distributions,

(d) convolution.

In this paper we propose new approximation and

bounds, applicable for a wide range of systems. It is

MTFR class of distributions, such that MTBF is non-

increasing. The class MTFR contains distributions with

unimodal failure rate function. We analyze special case
of distribution with MTBF non-increasing as mixture
of an exponential distribution and Rayleigh's
distributions. This distribution has unimodal failure
rate function. However, it is not easy to obtain
distribution from mixtures with unimodal failure rate
function [12]. The mixtures of two increasing linear

failures rate functions were studied in [4]. In [4]

snhowed that a mixture of two distributions with

increasing linear failure rate functions does not give
distributions with unimodal failure rate function.

In section 2, we introduce the proposed model of

mixture and we estimate their parameters for an

example of lifetime data [11]. In section 3 we propose

a smple approximation of to MTBF for lifetime

distributions with MTBF non-increasing.

2. Mixture of distributions

We consider a mixture of two lifetimes X; and X, with
densities fy(t), fo(t), reiability functions Ry(t), Ra(t),
failure rate functions ry(t), rp(t) and weights p and
g=1- p, where 0 < p < 1. The mixed density is then
written as

f(t)=pfy(t)+(1- p)fa(t)
and the mixed rdiability function is
R () =pRu(f) + (1-p)R: (1).

The failure rate function of the mixture can be written
asthe mixture

r)=ow(t) rit)+[1 - ()] r(t),
where o(t)=pRy(t)/R().

Moreover, from [3], we have under some mild
conditions, that

limr(t)=limmin{r/(t),ry(t)}.
t® ¥ t® ¥

In the following propositions, we give some properties
for the mixture failure rate function.

Proposition 1. For thefirst derivative of w (t), we have

o' (t) = o(O[1 -] [r2(t) —ru(t)].

Proposition 2. For thefirst derivative of r(t), we have

I’ (©)=[1- o(®] (- o)(r2(t) —ra(t))*+r o(t)
+ o(O)r'(b).

Proposition 3. If X; is exponentially distributed with
parameter A, then

(=1~ o] (= o®)(rat) =) r2(1).

We suppose that r(t) =at, where a>0. Consequently,
the reliability function of X; is the reliability function
of Rayleigh’s distribution of the form

Ro(t) =exp { - %tz} for 0.

Proposition 4. If pi®<a, thenr (t) is unimodal.

Proof. By Proposition 1, we conclude that o (t) is
decreasing for t 1 (O, t;), where t; = /o and is
increasing for t | (t;, «©). Hence, if t < t;, then
w(t)(ra(t) —2)? is decreasing from pA°< ato 0, and if t
> t; then w(t)(ro(t) — 4)® is incressing from 0 to co.
Thus the equation o (t) (ro(t) — 4)? = 4 has only one
solution t, and r (t) is increasing for t < t, and
decreasing fort > t,.

Proposition 5. If pA® > q, then there exist ts, and ty, ts
< ty< t4, suchthat r (t) decreasesin (0, t3), increasesin
(ts, t4) and decreases in (ts, ).

Proof. Let h(t)=a — o(t)(ro(t) — ). It is easy to find
that h(0)=o — pA°<0, h(ty))= a, h(co)=—x.

The function h(t) is increasing from h(0) < 0 to
h(ty)=a>0, and is decreasing from h(t;))=a>0 to
h(o0)=—0.

Thus, there exist t3 and t4, O<ts<t;<t, suchthat r (t)
decreases on (0, t3), increasesin (i3, t4) and decreasesin
(ts, o). This completes the proof.

Example 1. In this example we consider a real life
time data from the [11]. We estimate the parameters p,
a, /. of the model with reliability function

R () = pexp (- At) + (1—p) exp (- 0,5at?) for x> 0.
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By maximizing the logarithm of likelihood function for
grouped data, we calculate p = 0.643316,

a = 0.001284, 4 = 0.0288. For these values of
parameters, we prove Pearson’ s test of fit and compute
2= 0.68. By Proposition 4, we conclude that r (t) is
unimodal.

3. Bounds and Approximation

In this section we cover some of the wel known
bounds and approximations to the MTBF.
By theinequality

t
OR(s)dsE min{t,ET},
0

where ET is the mean value of T, we abtain the upper
bound for MTBF:

MTBF, :ﬁmin{t,ET}.

In [1] for MTBF proposed is the following average
approximation

T1+R(t)

MTBF, = 2 F()

Proposition 6. If f (t) is unimodal, then these exist t;
such that MTBF, is a lower bound of MTBF for t |
<0, t;) and it is an upper bound of MTBF for t I (t;, «0)

Proof. We consider the difference

t
OR(s)ds

o(ty=0 - RO

2 F(t)

F(t)

and
t 1
gu(t) = Oc‘fe(t)dt - Et( R(t)+1).

It iseasy to find that g;(0) = 0, gi(+) = —co. Thefirst
derivative of g'4(t) is

g’l(t)%[tf(t)- F(1)].

If f (t) is decreasing then g’'1(t) < 0 and MTBF, is a
lower bound for MTBF.

If f (t) isunimodal then exists t,, and t; such that f (t.,)
=0, t<tyand g(t)>0 for t I (O,t,), g(t)<Ofor tl (ty, ).

Proposition 7. If T I MTFR, then

MTBF > i fort> 0.
r(t)

Proof. By Definition 1, if M (t) is non-decreasing, then
we have

t
f(t)OR(s)ds- F(t)R(t)
[M(t)]'=—2 20

t
(OR(s)ds)?
0

and

MTBF 3 MTBF, :% for t1 {t: r (t)>0}.
r

Proposition 8. If the lifetime T has unimodal failure

rate function r (t), then TT MTFRIif and only if
F(o) ET—1>0.

Proof. Let
t

h({t)=r (t)(‘)Q(s)ds —F ().
0

It is easy to show that h (0) = 0 and
h () = r (00) ET - 1.
Thefirst derivative of h (1) is

t
h' (t) = r’ (t) OR(s)ds.
0

If r () isincreasing, then h (t) isincreasing and if r (t)
is decreasing, then h (t) is decreasing. This completes
the proof.

Example 2. Consider the system with failure rate
function proposed in Example 1. The exact and
approximate results for MTBF are shown in Table 1
for varying R (t) with the corresponding t. The results
show that the average approximation MTBF, is greater
than MTBF. For this data, we compute ET = 34.81 and
AET — 1> 0 and by Proposition 8 we obtain that T 1
MTFR.

Table 1. The values of the exact and approximate
MTBF of lifetime data
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R(t) t MTBF|MTBF,| MTBF_| MTBF,
0.99999 | 0.00054 | 53.97 | 53.97 53.97 53.97
0.9999 | 0.0054 | 53.97 | 53.97 53.97 53.97
0.999 |0.05398| 53.95 | 53.98 53.93 53.95
0,99 |0.54031| 53.76 | 54.03 53.55 53.76
0.9 |[543971| 51.67 | 5440 | 49.22 51.68
0.8 [10.9261| 49.15 | 54.63 | 44.05 49.17
0.7 |16469% | 46.62 | 54.90 39.17 46.66
0.6 |[221619| 4421 | 55.40 34.90 44.32
05 |[29.1751| 4198 | 56.35 34.81 42.26
04 |34.8007| 39.94 | 58.00 34.81 40.60
0.3 |[425854| 38.11 | 49.73 34.81 39.54
02 |528174| 36.50 | 4351 34.81 39.61
0.1 |70.2655| 35.23 | 38.68 34.81 42.94

4. Conclusion

In this paper we show that, from a practical point view,
the unimodal failure rate model can be obtained from a
mixture of two common IFR models. This model is
flexibility. Practical reevance and applicability have
been demonstrated using well known data. In this
paper a simple approximation of the MTBF of systems
subjected to periodic maintenance has been proposed
aswell.
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