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1. Reliability of large series-“m out of n”
systems
Definition 1. A two-state system is called a series-“m
out of kn” system if its lifetime T is given by

   T = T )1( +−mkn
, m = 1,2,...,kn,

where T )1( +−mkn
 is the mth maximal order statistic in

the set of random variables

   Ti = }{min
1

ij
lj

T
i≤≤

, i = 1,2,...,kn.

The above definition means that the series-“m out of
kn” system is composed of nk  series subsystems and it
is not failed if and only if at least m  out of its nk
series subsystems are not failed.
The series-“m out of kn” system is a series-parallel for
m = 1 and it becomes a series system for m = kn.
The reliability function of the two-state series-“m out
of kn” system is given either by
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for t ∈ (–∞,∞), where .mkm n −=

Definition 2. The series-“m out of kn” system is called
regular if

   l1 = l2 = . . . =
nkl = ln , ln∈ N.

Definition.3. The series-“m out of kn” system is called
homogeneous if its component lifetimes Tij have an
identical distribution function

F(t) = P(Tij ≤ t), t ∈ (–∞,∞), i = 1,2,...,kn, j = 1,2,...,li,

i.e. if its components Eij have the same reliability
function

   R(t) = 1 – F(t), t ∈ (–∞,∞).

From the above definitions it follows that the reliability
function of the homogeneous and regular series-“m out
of kn” system is given either by
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for t ∈ (–∞,∞), ,mkm n −=  where kn is the
number of series subsystems in the “m out of kn”
system and ln is the number of components of the
series subsystems.

Corollary 1. If components of the homogeneous and
regular two-state series-“m out of kn” system have
Weibull reliability function

]exp[)( αβttR −=  for ,0≥t ,0>α ,0>β

then its reliability function is given either by
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Proposition 1. If components of the two-state
homogeneous and regular series-“m out of kn” system
have Weibull reliability function

]exp[)( αβttR −=  for ,0≥t ,0>α ,0>β

and
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is its limit reliability function, i.e., for ,0≥t  we have
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Example 1. The piping transportation system is set up to
receive from ships, store and send by carriages or cars
oil products such as petrol, driving oil and fuel oil.
Three terminal parts A, B and C fulfil these purposes.
They are linked by the piping transportation systems.
The unloading of tankers is performed at the pier. The
pier is connected to terminal part A through the
transportation subsystem S1 built of two piping lines. In
part A there is a supporting station fortifying tankers’
pumps and making possible further transport of oil by
means of subsystem S2 to terminal part B. Subsystem S2
is built of two piping lines. Terminal part B is connected
to terminal part C by subsystem S3. Subsystem S3 is built
of three piping lines. Terminal part C is set up for
loading the rail cisterns with oil products and for the
wagon carrying these to the railway station.
We will analyse the reliability of the subsystem 3S
only. This subsystem consists of kn = 3 identical piping
lines, each composed of ln = 360 steel pipe segments.
In each of lines there are pipe segments with Weibull
reliability function

   R(t) = exp[−0.0000000008t4] for t ≥ 0.

We suppose that the system is good if at least 2 of its
piping lines are not failed. Thus, according to
Definitions 2-3, it may be considered as a
homogeneous and regular series-“2 out of 3” system,
and according to Proposition 1, assuming
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 and using (3), its reliability function is given by
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2. Reliability of large “m out of n”-series
systems
Definition 4. A two-state system is called an “ im  out of

il ”-series system if its lifetime T is given by

)1(1
min +−

≤≤
= imilnki

TT , ,,...,2,1 ii lm =

where T )1( +− ii ml  is the mith maximal order statistic in
the set of random variables

   Ti1, Ti2, ..., iilT , .,...,2,1 nki =

The above definition means that the “ im  out of il ”-
series system is composed of nk  subsystems that are
“ im  out of il ” systems and it is not failed if all its “ im
out of il ” subsystems are not failed.
The  “ im  out of il ”-series system is a parallel-series
system if m1 = m2 =  .  .  .  =

nkm = 1 and it becomes a
series system if mi = li for all i = 1,2, …,kn.

The reliability function of the two-state “ im  out of il ”-
series system is given either by
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for t ∈ (–∞,∞), where ,iii mlm −= .,...,2,1 nki =

Definition 5. The two-state “ im  out of il ”-series
system is called homogeneous if its component
lifetimes Tij have an identical distribution function

F(t) = P(Tij ≤ t), t ∈ (–∞,∞), i = 1,2,...,kn, j=1,2,...,li ,

i.e. if its components Eij have the same reliability
function

   R(t) = 1 – F(t), t ∈ (–∞,∞).

Definition 6. The “ im  out of il ”-series system is called
regular if

   l1 = l2 = . . . =
nkl = ln

and

   m1 = m2 = . . . =
nkm = m, where ln , m∈ N, m ≤ ln.

The reliability function of the two-state homogeneous
and regular „ m  out of nl ”-series system is given either
by
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for t ∈ (–∞,∞), mlm n −=  where kn is the
number of “m out of ln” subsystems linked in series
and ln is the number of components in the “m out of ln”
subsystems.

Corollary 2. If the components of the two-state
homogeneous and regular “m out of ln”-series system
have Weibull reliability function

]exp[)( αβttR −=  for ,0≥t ,0>α ,0>β

then its reliability function is given either by
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Proposition 2. If components of the two-state
homogeneous and regular “m out of ln”-series system
have Weibull reliability function

]exp[)( αβttR −=  for ,0≥t ,0>α ,0>β

and
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for ),,( ∞−∞∈t  where na  and nb  are defined by (5).

Example 2. Let us consider the ship-rope transportation
system (elevator). The elevator is used to dock and
undock ships coming in to shipyards for repairs. The
elevator is composed of a steel platform-carriage
placed in its syncline (hutch). The platform is moved
vertically with 10 rope hoisting winches fed by
separate electric motors. During ship docking the
platform, with the ship settled in special supporting
carriages on the platform, is raised to the wharf level
(upper position). During undocking, the operation is
reversed. While the ship is moving into or out of the
syncline and while stopped in the upper position the
platform is held on hooks and the loads in the ropes are
relieved.
In our further analysis we will discuss the reliability of
the rope system only. The system under consideration is
in order if all its ropes do not fail. Thus we may assume
that it is a series system composed of 10 components
(ropes). Each of the ropes is composed of 22 strands.
Thus, considering the strands as basic components of
the system and assuming that each of the ropes is not
failed if at least 5=m out of its strands are not failed,
according to Definitions 5-6, we conclude that the rope
elevator is the two-state homogeneous and regular
„5 out of 22”-series system. It is composed of kn = 10
series-linked “5 out of 22” subsystems (ropes) with ln =
22 components (strands). Assuming additionally that
strands have Weibull reliability functions with
parameters ,2=α ,05.0=β  i.e.

]05.0exp[)( 2ttR −=  for ,0≥t
from (4), we conclude that the elevator reliability
function is given by
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Next, applying Proposition 2 with
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the elevator reliability function
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3. Asymptotic approach to systems reliability
improvement
We consider the homogeneous series system illustrated
in Figure 1.

Figure 1. The scheme of a series system

It is composed of n  components ,1iE ,,...,2,1 ni =
having lifetimes ,1iT ,,...,2,1 ni =  and exponential
reliability functions

]exp[)( ttR λ−=  for ,0≥t .0>λ

Its lifetime and its reliability function respectively are
given by

},{min 11
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],exp[)]([)( nttRt n
n λ−==R .0≥t

In order to improve of the reliability of this series
system the following exemplary methods can be used:
– replacing the system components by the improved

components with reduced failure rates by a factor ρ,
0 < ρ < 1,

– a warm duplication (a single reservation) of system

E11 E21 En1

  .    .    .
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   components,
– a cold duplication of system components,
– a mixed duplication of system components,
– a hot system duplication,
– a cold system duplication.
It is supposed here that the reserve components are
identical to the basic ones.
The results of these methods of system reliability
improvement are briefly presented below, giving the
system schemes, lifetimes and reliability functions.

Case 1. Replacing the system components by the
improved components '

1iE ,,...,2,1 ni =  with reduced
failure rates by a factor ρ,  0 < ρ < 1, having lifetimes

,'
1iT ,,...,2,1 ni =  and exponential reliability functions

]exp[)( ttR ρλρ −=  for ,0≥t .0>λ

Figure 2. The scheme of a series system with improved
components
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Case 2. A hot reservation of the system components

Figure 3. The scheme of a series system with
components having hot reservation
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Case 3. A cold reservation of the system components

Figure 4. The scheme of a series system with
components having cold reservation
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Case 4. A mixed reservation of the system components

Figure 5. The scheme of a series system with
components having mixed reservation
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Case 5. A hot system reservation

Figure 6. The scheme of a series system with hot
reservation
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Case 6. A cold system reservation

Figure 7. The scheme of a series system with cold
reservation

.    .    .
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The difficulty arises when selecting the right method of
improvement of reliability for a large system. This
problem may be simplified and approximately solved
by the application of the asymptotic approach.
Comparisons of the limit reliability functions of the
systems with different types of reserve and such
systems with improved components allow us to find
the value of the components’ decreasing failure rate
factor ρ, which gives rise to an equivalent effect on the
system reliability improvement. Similar results are
obtained under comparison of the system lifetime
mean values. As an example we will present the
asymptotic approach to the above methods of
improving reliability for homogeneous two-state series
systems.

Proposition 3.Case 1. If

an = 1/λρn, bn = 0,

then

)()1( tℜ  = exp[–t]  for t ≥ 0,

is the limit reliability function of the homogeneous
exponential series system with reduced failure rates of
its components, i.e.

R =)()1( tn ℜ(1)( )ntλρ ]exp[ ntλρ−= for 0≥t

and
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Case 2. If

,0,/1 == nn bna λ

then

ℜ(2)(t) = exp[–t2]  for t ≥ 0,

is the limit reliability function of the homogeneous
exponential series system with hot reservation of its
components, i.e.
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Case 3. If

,0,/2 == nn bna λ

then

ℜ(3)(t) = exp[–t2] for t ≥ 0,

is the limit reliability function of the homogeneous
exponential series system with cold reservation of its
components, i.e.
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then

ℜ(4)(t) = exp[–t2]  for t ≥ 0,

is the limit reliability function of the homogeneous
exponential series system with mixed reservation of its
components, i.e.
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Case 5. If
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is the limit reliability function of the homogeneous
exponential series system with hot reservation, i.e.
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is the limit reliability function of the homogeneous
exponential series system with cold reservation, i.e.
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Corollary 3. Comparison of the system reliability
functions

ℜ(i)(t) = ℜ(1)(t), i = 2,3,…,6,

results respectively in the following values of the
factor ρ :
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while comparison of the system lifetimes

T(i)(t) = T(1)(t), i = 2,3,...,6

results respectively in the following values of the
factor ρ :
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2
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Example 3. We consider a simplified bus service
company composed of 81 communication lines. We
suppose that there is one bus operating on each
communication line and that all buses are of the same
type with the exponential reliability function

]exp[)( ttR λ−=  for ,0≥t .0>λ

Additionally we assume that this communication
system is working when all its buses are not failed, i.e.
it is failed when any of the buses are failed. The failure
rate of the buses evaluated on statistical data coming
from the operational process of bus service company
transportation system is assumed to be equal to 0.0049

.1−h
Under these assumptions the considered transportation
system is a homogeneous series system made up of
components with a reliability function

]0049.0exp[)( ttR −=  for .0≥t

Here we will use four sensible methods from those
considered for system reliability improvement.
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Namely, we apply the four previously considered
cases.
Case 1. Replacing the system components by the
improved components with reduced failure rates by a
factor .ρ
Applying Proposition 3 with normalising constants

,
397.0
1

810049.0
1

81 ρρ
=

⋅
=a ,081 =b

we conclude that

ℜ(1)(t) = exp[–t]  for t ≥ 0,

is the limit reliability function of the system, i.e.

R =)()1( tn ℜ(1)( tρ397.0 ) ]397.0exp[ tρ−= for 0≥t

and

T
ρ397.0

1][ )1()1( == TE h.

Case 2. Improving the reliability of the system by a
single hot reservation of its components.
This means that each of 81 communication lines has at
its disposal two identical buses it can use and its task is
performed if at least one of the buses is not failed.
Applying Proposition 3 with normalising constants

,
0441.0
1

810049.0
1

81 =
⋅

=a ,081 =b

we conclude that

ℜ ]exp[)( 2)2( tt −= , t ≥ 0.

is the limit reliability function of the system, i.e.

   R )()2(
81 t ≅ ℜ )0441.0()2( t ],0019.0exp[ 2t−≅ ,0≥t

and

   T ][ )2()2( TE= .10.20
810049.0

1)
2
3( h≅Γ≅

Case 4. Improving the reliability of the system by a
single mixed reservation of its components.
This means that each of 81 communication lines has at
its disposal two identical buses. There are 50=m
communication lines with small traffic which are using
one bus permanently and after its failure it is replaced
by the second bus (a cold reservation) and

315081 =−=− mn  communication lines with large

traffic which are using two buses permanently (a hot
reservation).
Applying Proposition 3 with normalising constants

,0,
0.0367

1
112

2
0049.0
1

=== nn ba

we conclude that

ℜ(4)(t) = exp[–t2]  for t ≥ 0,

is the limit reliability function of the system, i.e.

R ≅)()4( tn ℜ(4) )0367.0( t ]00135.0exp[ 2t−=  for 0≥t

and

T ][ )4()4( TE= .15.24
112

2
0049.0
1)

2
3( h≅Γ≅

Case 5. Improving the reliability of the system by a
single hot reservation.
This means that the transportation system is composed
of two independent companies, each of them operating
on the same 81 communication lines and having at
their disposal one identical bus for use on each line.
Applying Proposition 3 with normalising constants

,
397.0
1

810049.0
1

81 =
⋅

=a ,081 =b

we conclude that

ℜ(5)(t) = 2]]exp[1[1 t−−−   for t ≥ 0,

is the limit reliability function of the system, i.e.

R =)()5( tn ℜ(5)( )397.0 t

              = 2]]397.0exp[1[1 t−−−  for 0≥t
and

T == ][
)5()5( TE ≅

⋅⋅ 810049.02
3 3.78 h.

Comparing the system reliability functions for
considered cases of improvement, from Corollary 3,
results in the following values of the factor ρ:

tt 0049.0)( == ρρ   for  i = 2,

t0340.0=ρ   for i = 4,
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]]397.0exp[2log[1)( tt −−−== ρρ   for i = 5,

while comparison of the system lifetimes results
respectively in:

1254.0=ρ   for  i = 2,

1043.0=ρ   for i = 4,

6667.0=ρ   for i = 5.

Methods of system reliability improvement presented
here supply practitioners with simple mathematical
tools, which can be used in everyday practice. The
methods may be useful not only in the operation
processes of real technical objects but also in designing
new operation processes and especially in optimising
these processes. Only the case of series systems made
up of components having exponential reliability
functions with single reservations of their components
and subsystems is considered.  It seems to be possible
to extend these results to systems that have more
complicated reliability structures, and made up of
components with different from the exponential
reliability functions.

4. Reliability of large systems in their operation
processes
This section proposes an approach to the solution of
the practically very important problem of linking
systems’ reliability and their operation processes. To
connect the interactions between the systems’
operation processes and their reliability structures that
are changing in time a semi-markov model ([1]) of the
system operation processes is applied. This approach
gives a tool that is practically important and not
difficult for everyday use for evaluating reliability of
systems with changing reliability structures during
their operation processes. Application of the proposed
methods is illustrated here in the reliability evaluation
of the port grain transportation system.
We assume that the system during its operation process
is taking different operation states. We denote by ),(tZ

,,0 >∞∈<t  the system operation process that may
assume v different operation states from the set

}..,..,,{ 21 vzzzZ =

In practice a convenient assumption is that Z(t)  is  a
semi-markov process ([1]) with its conditional sojourn
times blθ  at the operation state bz  when its next

operation state is ,lz ,,...,2,1, vlb = .lb ≠  In this case
this process may be described by:

- the vector of probabilities of the initial operation
  states ,)]0([ 1 νxbp
- the matrix of the probabilities of its transitions
  between the states ννxblp ][ ,
- the matrix of the conditional distribution functions

ννxbl tH )]([  of the sojourn times ,blθ ,lb ≠  where

)()( tPtH blbl <= θ  for ,,...,2,1, vlb = ,lb ≠

and

0)( =tH bb  for .,...,2,1 vb =

Under these assumptions, the lifetime blθ  mean values
are given by

][ blbl EM θ= ∫=
∞

0
),(ttdH bl ,,...,2,1, vlb = .lb ≠ (7)

The unconditional distribution functions of the sojourn
times bθ  of the process )(tZ  at the states ,bz

,,...,2,1 vb =  are given by

)(tHb  = ∑
=

v

l
blbl tHp

1
),( .,...,2,1 vb =

The mean values E[ bθ ] of the unconditional sojourn
times bθ  are given by

][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,,...,2,1 vb =                   (8)

where blM  are defined by (7).
Limit values of the transient probabilities at the states

)(tpb = P(Z(t) = bz ), ),,0 ∞∈<t ,,...,2,1 vb =

are given by ([1])

bp  = )(lim tpb
t ∞→

    = ,

1
∑
=

v

l
ll

bb

M

M

π

π
,,...,2,1 vb =            (9)

where the probabilities bπ  of the vector νπ xb 1][  satisfy
the system of equations







∑ =

=

=

v

l
l

blbb p

1
.1

]][[][

π

ππ

We consider a series-parallel system and we assume
that the changes of its operation process Z(t) states
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have an influence on the system components ijE
reliability and on the system reliability structure as
well. Thus, we denote ([13]) the conditional reliability
function of the system component ijE  while the

system is at the operational state ,bz ,,...,2,1 vb =  by

)(),( )]([ bji tR = ))(/( )(
b

b
ij ztZtTP =≥ ,

for t ∈ <0,∞), ,,...,2,1 ν=b and the conditional
reliability function of the non-homogeneous regular
series-parallel system while the system is at the
operational state ,bz ,,...,2,1 ν=b  by

   [ )(
, )]( b
lk t
nn

R = ))(/( )(
b

b ztZtTP =≥

                       = ∏ −−
=

a

i

kqlbi nintR
1

)()( ]])]([[1[1            (10)

for ),0 ∞∈<t  and

   [R(i)(t)] )(b  = ,])]([[
1

)(),(∏
=

i ij
e

j

pbji tR i = 1,2,...,a.       (11)

The reliability function )(),( )]([ bji tR is the conditional
probability that the component ijE  lifetime )(b

ijT  in the
is not less than t, while the process Z(t) is at the
operation state .bz  Similarly, the reliability function

)(
, )]([ b
lk t
nn

R  is the conditional probability that the

series-parallel system lifetime )(bT  is not less than t,

while the process Z(t) is at the operation state .bz  In
the case when the system operation time is large
enough, the unconditional reliability function of the
series-parallel system is given by

)(, t
nn lkR )( tTP >= )(

,
1

)]([ b
lk

b
b tp

nn
R∑≅

=

ν
              (12)

for 0≥t and T  is the unconditional lifetime of the
series-parallel system.
The mean values and variances of the series-parallel
system lifetimes are

,
1

∑≅
=

ν

b
bb MpM                         (13)

where

,)]([
0

)(
,∫=

∞
dttM b

lb nnkR                                          (14)

and

∫ −=
∞

0

2)()( ,][)]([2][ b
b

lk
b MdtttTD

nn
R         (15)

for .,...,2,1 ν=b

Example 5. We analyse the reliability of one of the
subsystems of the port grain elevator. The considered
system is composed of four two-state non-
homogeneous series-parallel transportation subsystems
assigned to handle and clearing of exported and
imported grain. One of the basic elevator functions is
loading railway trucks with grain.
In loading the railway trucks with grain the following
elevator transportation subsystems take part: S1 –
horizontal conveyors of the first type, S2 – vertical
bucket elevators, S3 – horizontal conveyors of the
second type, S4 – worm conveyors.
We will analyze the reliability of the subsystem 4S
only.
Taking into account experts opinion in the operation
process, ),(tZ 0≥t  of the considered transportation
subsystem we distinguish the following as its three
operation states:
an operation state 1z  –  the system operation with the
largest efficiency when all components of the
subsystem 4S  are used,
an operation state 2z  –  the system operation with less
efficiency system when the first and second conveyors
of subsystem 4S  are used,
an operation state 3z  –  the system operation with least
efficiency when the first conveyor of subsystem 4S  is
used.
On the basis of data coming from experts, the
probabilities of transitions between the subsystem 4S
operation states are given by

,
0615.0385.0
2.008.0

643.0357.00
][
















=blp

and their mean values, from (8), are

,257.02.0643.036.0357.0][ 11 ≅⋅+⋅== θEM

,08.02.02.005.08.0][ 22 ≅⋅+⋅== θEM

.062.005.0615.008.0385.0][ 33 ≅⋅+⋅== θEM

Since from the system of equations
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,

1
0615.0385.0
2.008.0

643.0357.00
],,[],,[

321

321321











=++
















=

πππ

ππππππ

we get

,374.01 =π ,321.02 =π ,305.03 =π

then the limit values of the transient probabilities
)(tpb  at the operation states bz , according to (9), are

given by

,684.01 =p ,183.02 =p .133.03 =p                  (16)

The subsystem S4 consists of three chain conveyors.
Two of these are composed of 162 components and the
remaining one is composed of 242 components. Thus it
is a non-regular series-parallel system. In order to
make it a regular system we conventionally complete
two first conveyors having 162 components with 80
components that do not fail. After this supplement
subsystem S4 consists of kn = 3 conveyors, each
composed of ln = 242 components. In two of them there
are:
- two driving wheels with reliability functions

   R(1,1)(t) = exp[−0.0798t],

- 160 links with reliability functions

   R(1,2)(t) = exp[−0.124t],

- 80 components with “reliability functions”
   R(1,3)(t) = exp[ )1(1λ− t], where )1(1λ = 0.

The third conveyer is composed of:

- two driving wheels with reliability functions

   R(2,1)(t) = exp[−0.167t]

- 240 links with reliability functions

   R(2,2)(t) = exp[−0.208t].

At the operation state 1z  the subsystem 4S  becomes a
non-homogeneous regular series-parallel system with
parameters

   kn  = 3, ln = 242, a = 2, q1 = 2/3, q2 = 1/3,

   e1 = 3, e2 = 2,

   p11 = 2/242, p12 = 160/242, p13 = 80/242,

   p21 = 2/242, p22 = 240/242,

and from (10)-(11) the reliability function of this
system is given by

   [R )1(
242,3 )](t

   = 1 – [1 – exp[–19.9892t]]2[1 – exp[–50.2628t]]

−−= ]9892.19exp[2 t ]252.70exp[2 t−

]2628.50exp[ t−+ ]2412.90exp[ t−+

]9784.39exp[ t−−  for t ≥ 0.                                   (17)

According to (14)-(15), the subsystem lifetime mean
value and the standard deviation are

,078.01 ≅M .054.01 ≅σ (18)

At the operation state 2z  the subsystem 4S  becomes a
non-homogeneous regular series-parallel system with
parameters

    kn = 2, ln = 162, a = 1, q1 = 1, e1 = 2,

    p11 = 2/162, p12 = 160/162.

and from (10)-(11) the reliability function of this
system is given by

   [R )2(
162,2 )](t = 1 – [1 – exp[–20.007t]]2

]007.20exp[2 t−= ]014.40exp[ t−−  for t ≥ 0.      (19)

According to (14)-(15), the subsystem lifetime mean
value and the standard deviation are

,075.02 ≅M .056.02 ≅σ (20)

At the operation state 3z  the subsystem 4S  becomes a
non-homogeneous regular series-parallel (series)
system with parameters

   kn = 1, ln = 162, q1 = 1, e1 = 3,

p11 = 2/162, p12 = 160/162,

and from (10)-(11) the reliability function of this
system is given by
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    [ 162,1R )3()](t = exp[–19.999t] for t ≥ 0.                (21)

According to (14)-(15), the system lifetime mean value
and the standard deviation are

,050.03 ≅M .050.03 ≅σ                             (22)

Finally, considering (12), the subsystem 4S
unconditional reliability is given by

)2(
162,2

)1(
242,3 )]([183.0)]([684.0)( ttt RRR ⋅+⋅≅

)3(
162,1 )]([133.0 tR⋅+ ,                                  (23)

where [R )1(
242,3 )](t , [R )2(

162,2 )](t ,  [ 162,1R )3()](t , are
given by (17), (19), (21).
Hence, applying (16) and (18), (20), (22), we get the
mean values and standard deviations of the subsystem
unconditional lifetimes given by

≅M 078.0684.0 ⋅ 075.0183.0 ⋅+

050.0133.0 ⋅+ ,074.0≅                                    (24)

.054.0)1( ≅σ                                                          (25)
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