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1. Introduction
The stochastic systems and their subsystems consist of
some particular members representing the only
possible failure mode. To particular members belong
cross and oblique sections of tension, compression,
flexural and torsional structures. The structural
members (beams, slabs, columns, walls) of buildings
consist of two or three design particular members and
may be treated as auto systems representing
multicriteria failure modes. An overloading of
members during severe service and climate actions
may provoke a failure of structures. Therefore, the
requirements of design codes should be satisfied at all
sections along structural members.
Structural failures and collapses in buildings and
construction works can be caused not only by
irresponsibility and gross human errors of designers,
builders or erectors but also by some conditionalities of
recommendations and directions presented in design
codes and standards. A possibility to ensure objectively
the safety degree of structures subjected to extreme
service loads, wind gust and snow pressures or wave
surfs is hardly translated into reality using the traditional
deterministic design methods of partial safety factors in
Europe or load and resistance factors in the USA.
It is understandable that probabilistic design
approaches are inevitable for the calibration of partial
factors. However, it should be more expedient to

analyse the structural safety of particular members and
their systems by probability-based methods.
Regardless of efforts to improve and modify
deterministic design approaches, it is inconceivable to
fix a real reliability index of structures a failure domain
of which changes with time. The time-dependent safety
assessment and prediction of deteriorating members
and systems using unsophisticated methods is a
significant concern of researchers.
Despite of fairly developed up-to-date concepts of
reliability, hazard and risk theories, including the
general principles on reliability for structures [6], [7],
[15], it is difficult to apply probability-based
approaches in structural safety analysis. These
approaches may be acceptable to designers and
building engineers only under the indispensable
condition that the safety performance of members and
their systems may be considered in a simple and easy
perceptible manner. In other words, probabilistic
methods may be implanted into structural design
practice only using unsophisticated mathematical
models helping us to assess all uncertainties due to the
features of resistances and action effects of structures.
This paper deals with probability-based safety analysis
of deteriorating and not deteriorating members and
their systems under extreme gravity and lateral
(horizontal) actions using unsophisticated but fairly
exact design models.
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Abstract
The need to use unsophisticated probability-based approaches and models in the structural safety analysis of the
structures subjected to annual extreme service, snow and wind actions is discussed. Statistical parameters of single
and coincident two extreme variable actions and their effects are analysed. Monotone and decreasing random
sequences of safety margins of not deteriorating and deteriorating members are treated, respectively, as ordinary
and generalized geometric distributions representing highly-correlated series systems. An analytical analysis of the
failure or survival probabilities of members and their systems is based on the concepts of transformed conditional
probabilities of safety margin sequences whose statistically dependent cuts coincide with extreme loading
situations of structures. The probability-based design of members exposed to coincident extreme actions is
illustrated by a numerical example.
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2. Time dependent safety margin
According to probability-based approaches (design
level III), the time-dependent safety margin as the
performance of deteriorating particular members may
be presented as follows:

[ ] −θ−θ−θ== )()()(,)(
11

tSStRtgtZ qqggRX

)()(
22

tStS wwqq θ−θ−  ,                                  (1)

where  is the vector of additional variables
characterizing uncertainties of models which give the
values of resistance R , permanent gS , sustained

1qS
and extraordinary

2qS  service and extreme wind wS
action effects of members (Figure 1, a). This vector
may represent also the uncertainties of probability
distributions of basic variables.
According to Rosowsky and Ellingwood [11], the
annual extreme sum of sustained and extraordinary
occupancy live action effects )()()(

21
tStStS qqq +=

can be modelled as an intermittent process and
described by a Type 1 (Gumbel) distribution with the
coefficient of variation 58.0=qS , characteristic qkS
and mean qkqm SS 47.0=  values. Latter on Ellingwood
and Tekie [4] recommended modelling extreme values
of this sum during a 50 years period by a Type 1
distribution with the coefficient of variation

25.0=qS  and mean value qkqm SS = .

It is proposed to model the annual extreme climate
(wind and snow) action effects by Gumbel distribution
law with the mean values equal to

( )wwkwm SkSS 98.01+=  and ( )ssksm SkSS 98.01+=
[3, 6, 7, 13, 15]. According to meteorological data, the
strong wind conditions are characterized by a small
wind extreme velocity variation, i.e. 1.0≈v . On the
contrary, a large variation is characteristic of strong
snow loading. Therefore, the coefficients of variation
of wind and snow loads depending on the feature of a
geographical area are equal to 4.02.0 −=w  and

7.03.0 −=s .
Probability distributions of material properties are
close to a Gaussian distribution [3], [6], [9], [12].
Therefore, a normal distribution or a log-normal
distribution may be convenient in resistance analysis
models [5], [6], [7]. The permanent action effect gS
can be described by a normal distribution law [4], [5],
[6], [10], [12]. Thus, for the sake of design
simplifications, it is expedient to present the expression
(1) in the form:

)()()( tStRtZ c −= ,                                                 (2)

where the component process

ggRc StRtR θ−θ= )()( ,                                         (3)

may be considered as the conventional resistance of
members which may be modelled by a normal
distribution;
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Figure 1. Real (a) and conventional (b) models for safety analysis of particular members (sections) of
deteriorating structures

[ ])()()( tStStS wwqq θ+θ= ,                                   (4) [ ])()()( tStStS wwss θ+θ= ,                                    (5)
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are the joint processes of two annual extreme action effects
when floor and roof structures, respectively, are under
consideration. The components in square brackets belonging
to the wind action effect are used in design analysis of wind-
resistant members and systems. The action effect )(tS s  in
Equation (5) is caused by extreme snow loads.

3. Safety margin sequences with independent cuts
The data presented in Section 2 allow us to model
extreme service and climate action effects as
intermittent rectangular pulse renewal processes. These
time-variant intermittent action effects belong to
persistent design situations in spite of the short period
of extreme events being much shorter than the design
working life of structures. When variable action effects
may be treated as rectangular pulse processes, the
time-dependent safety margin (2) may be expressed as
the finite rank random sequence and written as:

kckk SRZ −= , nnk ,1...,,3,2,1 −= .            (6)

There

ggkRck SRR θ−θ= ,                                             (7)

wkwqkqk SSS θ+θ=  or wkwsksk SSS θ+θ= ,     (8)

are the components of this non-stationary sequence;
ntn λ=  is the number of sequence cuts as critical

events (situations) during design working life nt  of
members (Figure 1, b), where λ=λ t1  is a mean
renewal rate of these events per unit time when their
return period is λt .
Usually the components ckR  and kS  are stochastically
independent. The instantaneous survival probability of
a member at k-th extreme situation (assuming that it
was safe at the situations 1, 2, …, 1−k ) is:

{ } dxxFxfSR kSckRkcksk )()(
0
∫=>=
∞

PP , (9)

where )(xf ckR  and )(xF
kS  are the density and

distribution functions of a conventional resistance ckR
by (7) and an extreme action effect kS  by (8). In this
case, the instantaneous failure probability of members
may be presented as:

( )∏
−

=

−=
1

1
1

k

i
siskfk PPP .                                          (10)

Thus, the random sequence of safety margins may be
treated as a geometric distribution with ranked

instantaneous survival probabilities of members
fnnffkff PPPPP <<<<< −1,21 ......  calculated by

Equation (10).
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Figure 2. The scheme of series systems

Failure probabilities of structures should always be
defined for some reference period nt  or as a number of
extreme events n  during this period. The scheme of
series systems representing the safety margin
sequences is given in Figure 2. When the cuts of rank
random sequences are statistically independent, the
cumulative distribution function and similarly a failure
probability of members during their service life [ ]nt,0
with n  extreme situations may be presented as
follows:
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When the resistance )(tR  is a time-invariant function
and treated as a stationary process, the instantaneous
survival probability skP  by (9) is characterized by the
same value for all cuts of the monotone sequence. In
this case, Equation (11) becomes a cumulative
distribution function of an ordinary geometric
distribution as follows:

{ } ( ) n
fkNf nNnF PPP −−=≤== 11)( .    (12)

The failure probability of members may be
approximated by Equations (11) and (12) only for
situations in which a variance of the action effect S2

is much larger than the value cR2  for their
conventional resistance by (7).
4. Safety margin sequences with dependent cuts
In design practice, only recurrent extreme action
effects caused by extraordinary service and climate
loads may be treated as stochastically independent
variables. Usually, random sequence cuts of the safety
margin (6) are dependent. The value of a coefficient of
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autocorrelation klρ  of sequence cuts depends on
uncertainties of material properties and dimensions of
members. This coefficient may be defined as:

( ) ( ) ( )lklklkkl ZZZZCovZZ ×=ρ=ρ ,, ,    (13)

where ( )lk ZZCov ,  and lk ZZ ,  are an
autocovariance and standard deviations of the random
safety margins kZ  and lZ .
The finite random sequence of member safety margins
may be treated as a series stochastic system. The
survival probability of highly correlated series systems
consisting of two dependent elements can be expressed
as follows:

{ } { }0000 12121 >>×=>> ZZZZ s PPP I

( ),21221 PPPPP ×−+×= s
a

ss ρ          (14)

where ( )1298.015.4 ρ−≈a  is the bond index of
survival probabilities of second-order series systems.
The data calculated by (14) and computed by the
complex numerical integration method presented by
Ahammed and Melchers [1] are very close. Thus, a
conditional probability { }00 12 >> ZZP  may be

transformed to a probability
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Therefore, Equation (14) may be presented in the form:
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For not deteriorating structures, a member resistance is
a time-invariant fixed random function the numerical
values of which are random only at the beginning of a
process. Therefore, the coefficient of correlation (13)
of monotone sequence cuts may be expressed as:

( )ckkl RS 2211 +=ρ .                              (16)

When the monotone rank sequence of safety margins
consists of n  dependent elements, a failure probability
of members is:
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When a ratio of variances 122 >ck RS , the

coefficient 0≈ρa
kl  and the failure probability (17)

becomes ( ) n
fkf PP −−= 11  as it is expressed by

Equation (12).
A long-term survival probability of not deteriorating
members is:
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The decreasing rank sequence of safety margins of
deteriorating members may be treated as a generalized
geometric distribution. Similar to Equation (17), the
failure probability of these members as series systems
may be calculated by the formula:
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where the transformed rank coefficient of correlation is

( ) ( )1... 122,1,1... −ρ+ρ++ρ+ρ=ρ −− kkkkkkkk   (20)

The long-term survival probability of deteriorating
members fs PP −= 1 , where the probability fP  is
given in (19).
The presented method of transformed conditional
probabilities may also be successfully used in the
reliability analysis of random systems consisting of
individual components and characterizing different
failure modes of structures. In this case, it is expedient
to base the structural safety analysis of systems on the
ranked survival probabilities of their members as:

snnsskss PPPPP >>>>>> −1,21 ......  (Figure 2). A
rank correlation matrix of systems is constructed
taking into account this analysis rule.

4. The system of safety margin sequences
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Due to the complexity of mathematical models, it is
rather difficult to assess and predict a failure probability
of structures subjected to two and more coincident
recurrent and different by nature extraordinary actions.
The methods based on the Markov-chain model and
Turkstra’s rule [14] may be quite unacceptable in a
probabilistic analysis of not only deteriorating but also
not deteriorating members and their systems. The
Markov-chain model may be quite inaccurate for
reliability analysis of members exposed to multiple
combination of action-effect processes [12]. The
Turkstra’s rule may be assumed only in the case when the
principal extreme load is strongly dominant [10].
Failure probabilities of members may be computed by
modified numerical integration methods. It is suggested
to use the theoretical expression of the cumulative
distribution function of the maximum intensity of two
load processes [10], the load overlap method [12] and the
improved upper bounding techniques [13]. It leads to
sufficiently accurate values but it is hard to realize these
recommendations in engineering practice.
The need to simplify a reliability analysis of
deteriorating structures is especially urgent. In any
analysis case, it must be taken into account that a
member failure caused by two statistically independent
extreme action effects may occur not only in the case of
their coincidence but also when the value of one out of
two effects is extreme. Therefore, three finite random
sequences of safety margins should be considered:

kckk SRM 11 −= , 1...,,2,1 nk = ,                 (21)

kckk SRM 22 −= , 2...,,2,1 nk = ,                 (22)

kckk SRM 33 −= , 3...,,2,1 nk = .                 (23)

There kkk SSS 213 +=  is the joint action effect, the
recurrence number of which during the period of time
[ ]nt,0  may be calculated by the equation:

( ) 21213 λλ+= ddtn n ,                              (24)

where 1d , 2d  and 1λ , 2λ are durations and renewal
rates of extreme actions [8].
Mostly, the duration qd  of annual extreme gravity
service loads is from 1 to 3 days. The durations of annual
extreme snow and wind loads, respectively, are: =sd 14-
28 days and =wd 8-12 hours. The renewal rates of these
actions are: =λ=λ=λ wsq 1/year. Therefore, for 50
years reference period, the recurrence numbers of
extreme actions are: =qwn 0.2-0.5 and =swn 2-4.

When probability distributions of random variables X
and Y  obey a Gumbel distribution law, the bivariate
density function of the random variable YXZ +=
may be presented in the form:

( )XXyzfzf mxz 45.0,)( −−∫=
∞

∞−

( )dyYYyf my 45.0, −× ,                 (25)

where mX , mY  and X , Y  are means and standard
deviations of these variables.
Taking into account that YXZ 222 +=  is the
variance of bivariate probability distribution, the joint
density function may be expressed as:

( )zZZ azfzf ,)( ≈ ,  (26)

( ) ( ) 2/12245.019.0 YXYXYXa mmz +−+−+= .
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Figure 3. Bivariate density functions calculated by
Equations (25) – 1 and (26) – 2: the coefficients of
correlation == YX 0.10 (a) and 0.224 (b)

The probability density curves of joint extreme
variable YXZ +=  are given in Figure 3. It is not
difficult to ascertain that the difference between the
values computed by Equations (25) and (26) is fairly
small. Besides, the upper tails of both density curves
coincides. Therefore, in design practice it is expedient
to use the conventional bivariate distribution function
of two independent extreme action effects with the
mean mkmkmk SSS ,2,1,3 +=  and the variance

kkk SSS 2
2

1
2

3
2 += .

6. Numerical example
The knee-joints of not deteriorating concrete frames of
reliability class RC2 are under exposure of shear forces
during 50 years period (Figure 4). The shear resistance
of knee-joints is expressed as: cbhfR 068.0= . The
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characteristic, design and mean values of the concrete
compressive strength and shear resistance of knee-
joints are:

=ckf 30 MPa, =cdf 20 MPa, =cmf 38 MPa;

=kR 306 kN, =dR 204 kN, =mR 387.6 kN.

The variance of shear resistance of knee-joints is:

( ) 4.24616.387128.0 22 =×=R  (kN)2.

1 - 1
V V Vg s w

1
b = 0.3 m

h = 0.5 m

1

Figure 4. The knee-joint of concrete frames

The characteristic and design values of shear forces
caused by permanent, snow and wind loads are:

=gkV 77.72 kN,

== wksk VV 38.86 kN;

92.10435.172.77 =×=gdV  kN,

=sdV 38.86 × 1.5 = 58.29 kN,

=××= 5.17.086.38wdV 40.8 kN.

Thus, the joint design shear force

=++= wdsdgdd VVVV 204 kN dR= .

Therefore, according to deterministic calculation data,
the frame knee-joints are reliable.
The coefficients of variation, means and variances of
these extreme shear forces are:

=gV 0.1,

== gkgm VV 77.72 kN,

=gV2 60.4 (kN)2;

=sV 0.6,

( ) =+= ssksm VkVV 98.01 15.21 kN,

=sV2 83.25 (kN)2;

=wV 0.3,

( ) =+= wwkwm VkVV 98.01 21.86 kN;

=wV2 43.0 (kN)2.

The parameters of additional variables are:

=θRm 1.0,

=θR 0.1;

=θVm 1.0,

=θ=θ sg =wθ 0.1,

=θ sw 0.15.

Thus, the variances of revised shear forces are:

( ) =ggVθ2 120.8 (kN)2,

( ) =θ ssV
2 85.56 (kN)2,

( ) =θ wwV2 47.8 (kN)2,

( ) =θ swswV2 157.17 (kN)2.

The parameters of conventional shear resistance (3)
are:

=cmR 387.6 – 77.72 =309.9 kN,

=cR2 1.0 × 2461.4 + 387.62 × 0.01

             + 120.8 = 4084.6 (kN)2.

According to (16), the coefficients of autocorrelation
of the safety margins wcw VRZ −= , scs VRZ −=  and

wscsw VVRZ −−=  of considered knee-joints are:

=ρ klw, 0.9884,
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=ρ kls, 0.9795,

=ρ klsw, 0.9629.

The recurrence number of joint action effect
ws VV + calculated by Equation (24) is:

=3n 50 [21/365 + 12/(24 × 3.65)] 1 × 1 = 2.945.

According to (9), the instantaneous survival
probabilities of members are:

=wsk ,P 0.99999617,

=ssk ,P 0.99999728,

=swsk ,P 0.9999837.

Therefore, according to (18), the partial long-term
survival probabilities of analysed knee-joints are:

=swP 0.9999717,

=ssP 0.9999710,

=sws,P 0.9999747.

According to (13), the coefficients of cross-correlation
of safety margins are:

=ρsw 0.9839,

=ρ sww, 0.9871,

=ρ sws, 0.9914.

 From Equation (19), the total survival probability of
knee-joints is:

   P = 0.9999747 × 0.9999717 × 0.9999710

      × 













 −+ 1

9999717.0
198767.01 84.11

     × 













 −+ 1

9999747.0
19871.01 73.11  = 0.9999635.

It corresponds to the reliability index
)8.3(97.3 min =β>=β  [5].

Despite high-correlated cuts of the safety margin
sequences wZ , sZ  and swZ  of knee-joints,
considerable differences among their instantaneous and
long-term survival probabilities are corroborated.
The reliability verification of knee-joints of concrete
frames by the deterministic partial factor method and
probability-based approaches practically gave the same
results.

7. Conclusion
When the system may be subjected to annual extreme
service and climate actions, it is expedient to express
its member performance processes by finite random
sequences of safety margins, the dependent cuts of
which coincide with the extreme loading situations of
structures. Therefore, the generalized geometric
distribution as the decreasing stochastic sequence may
be successfully used in failure or survival probability
analysis of highly correlated series systems. It leads to
considerable perfections of probability-based analysis
of deteriorating structures subjected to recurrent single
and coincident actions as intermittent rectangular pulse
renewal processes. A Gumbel distribution law may be
used not only for joint sustained and extraordinary
variable service loads but also for the sum of annual
extreme action effects.
For the sake of simplifications of probabilistic time-
dependent safety analysis of members, it is
recommended to use design models with their
conventional resistances and correlated sequence cuts
of safety margins representing a variety of load
combinations. The presented unsophisticated
probability-based approaches and models may
stimulate engineers having minimum appropriate skills
to use full probabilistic methods in their engineering
practice more courageously and effectively. It should
be one more remedy in the struggle against
deterministic approaches in the structural design.
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