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1. Introduction
This contribution is supposed to contribute to a
solution of dependability qualities of the complex (in
this case) weapon system as an observed object. I
would like to show one of the ways how to specify a
value of single dependability measures of a set. The
aim of our paper is to verify the suggested solution in
relation to some functional elements which influence
fulfillment of a required function in a very significant
manner. [1], [3]
A weapon set is a complex mechatronics system which
is designed and constructed for military purposes. We
are talking about a barrel shooting gun – a fast
shooting two-barrel cannon. It is going to be
implemented in military air force in particular.
Generally speaking the set consists of mechanical
parts, electric, power and manipulation parts,
electronic parts and ammunition. For the purpose of
use in our paper we are going to deal with isolated
functional blocks and ammunition only. In this case we
view the ammunition as recommended standardised
rounds and pyrotechnic cartridges.
Single parts of the set can be described with qualitative
and most importantly quantitative indices which
present their quality. In my paper I am dealing
especially with quality in terms of dependability
characteristics. We are working first and foremost with
probability values which characterize single indices,
and which describe functional range and required
functional abilities of the set. We focus on the part

handling rounds and pyrotechnic cartridges which are
crucial for this case. In order to continue our work it is
necessary to define all terms and specify every
function.

2. Essential terms and definitions
We are always talking about an object in terms of
reliability analyses. The definition for object is the
same as the used in IEC 60500 (191/50). Consequently
we need to describe the basic object’s measures [2].
Object’s function:
The main function: The main function of the object is
putting into effect a fire from a gun using standard
ammunition.
The step function: Manipulation with ammunition, its
charging, initiation, detection and indication of
ammunition failure during initiation, initiation of
backup system used for re-charging of a failed
cartridge.
It is expected that the object will be able to work under
different operating conditions especially in different
temperature spectra, under the influence of varied
static, kinetic and dynamic effects, in various zones of
atmospheric and weather conditions.
In this case we will not take into account any of the
operating conditions mentioned above. However, their
influence might be important while considering
successful mission completion.
One of the main terms we are going to develop is:
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Mission: It is an ability to complete a regarded mission
by an object in specified time, under given conditions
and in a required quality.
In our contribution it is a case of cannon ability to put
into effect a fire in a required amount – in a number of
shot ammunition at a target in required time, and under
given operating and environmental conditions.
As it follows from the definition of a mission it is a
case of a set of various conditions which have to be
fulfilled all at once in a way to satisfy us completely.
Our object is supposed to be able to shoot a required
amount of ammunition which has to hit the target with
required accuracy (probability). We will not take into
consideration circumstances relating to evaluation of
shooting results, weapon aiming, internal and external
ballistics, weather conditions and others. We will focus
only on an ability of an object to shoot. [4]
As we have stated above we will deal with isolated
function blocks only. We are presuming that these
blocks act according to required and determined
boundary conditions. In order to understand functional
links fully we introduce our way of dividing an object.
We are talking about the following block:

- manipulation with ammunition, its charging,
initiation, failure detection and indication
during initiation, initiation of a backup system
in order to recharge a failed cartridge, all
mechanical parts, all electric and electronic
parts, interface elements with a carrying device
- Block A;

- ammunition – Block B;
- pyrotechnic cartridges – Block C.

3. Description of a process
The process as a whole can be described this way:
From a mathematical and technical point of view it is a
fulfilling of requirements´ quee which gradually comes
into the service place of a chamber. The requirements´
quee is a countable rounds´ chain where the rounds
wait for their turn and are transported from the line
where they wait in to a service place (fulfilment of a
requirement) of a chamber and there they are initiated.
After the initiation the requirement is fulfilled. An
empty shell (one of the essential parts of a round)
leaves a chamber taking a different way than a
complete round. When the requirement is fulfilled,
another system which is an integral part of a set detects
process of fulfilling the requirement. The process is
detected and indicated on the basis of interconnected
reaction processes. In this case fulfilling the
requirement is understood as a movement of a barrel
breech going backwards. Both fulfilling the
requirement and its detection are functionally
connected with transport of another round waiting in a
line to go into a chamber.
Let’s presume that rounds are placed in an ammunition
feed belt of an exactly defined length. A maximum

number of rounds which could be placed in a belt is
limited by the length then. The length is given either
by construction limitations or by tactical and technical
requirements for a weapon set. Let’s presume that
despite different lengths of an ammunition belt, this
will be always filled with rounds from the beginning to
the end. Let’s also assume that the rounds are not non-
standard and are designed for the set.
The process of fulfilling the requirement is monitored
all the time by another system which is able to
differentiate if it is fulfilled or not. The fulfilment itself
means that a round is transported into a chamber, it is
initiated, shot, and finally an empty shell leaves a
chamber according to a required principle. If the
process is completed in a required sequence, the
system detects it as a right one.
Because of unreliability of rounds the whole system is
designed in the way to be able to detect situations in
which the requirement is not fulfilled in a demanded
sequence and that is why it is detected as faulty.
Although a round is transported into a chamber and is
initiated, it is not fired. A function which is essential
for a round to leave a chamber is not provided either,
and therefore another round waiting in line cannot be
transported into a chamber. That is the reason why
fulfilling of the requirement is not detected.
The system is designed and constructed in such a way
that it is able to detect an event like this and takes
appropriate countermeasures. A redundant system
which has been partly described above is initiated.
After a round is initiated and the other steps don’t carry
out (non-fire, non-movement of a barrel breech
backwards, non-detection of fulfilling the requirement,
non-leaving of a chamber by an empty shell, and non-
transport of another round into a chamber) a system of
pyrotechnic cartridges is initiated. It is functionally
connected with all the system providing mission
completion.  A pyrotechnic cartridge is initiated and
owing to this a failed round is supposed to leave a
chamber. A failed functional link is established and
another round waiting in line is transported into a
chamber.
In order to restore the main function we use a certain
number of backup pyrotechnic cartridges. Our task is
to find out a minimum number which is essential for
completing the mission successfully.

4. Mathematical model
To meet the needs of our requirements we are going to
use a mathematical way which helps us to express
successful completing the mission. We know that the
number of rounds n in an ammunition belt is final. We
also know that an event-failure of a round B
(ammunition block – B) can occur with a probability
pn. All the requirements and specifications mentioned
above will be used in further steps.
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Because it is about a stream of rounds of a number n
which wait in line to meet the requirement, and each of
them has a potential quality pn, a number of failed
rounds has a binomial distribution (Bi) of a an event
occurrence. The distribution is specified by the
parameters n and pn: Bi(n,pn). A number of occurrences
Xn of an event B  follows the distribution in
Bernoulli’s row n of independent experiments, and
probability of event occurrence P( B ) = pn. A number
pn  is the same in every experiment. [5]; [6]
Because there is an occurrence of a number of events
in an observed file we are talking about a counting
distribution of an observed random variable. A random
variable is in this case a number of failed rounds. A
probability function of a binomial distribution can be
put that way:
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Qualities of binomial distribution like a mean value
E(Xn) and dispersion D(Xn) are obtained by calculating
the formula:

E(Xn) = n . pn , (2)

   D(Xn) = n . pn . (1- pn).                                            (3)

A number of failed rounds follows a binomial
distribution with parameters n – a number of rounds
and pn – failure occurrence probability of a round.
In order to specify a mean number of possible failures
in an ammunition belt of a given length (there is a
certain amount of rounds) we quantify the formula (2)
and replace n by a real number of rounds in an
ammunition belt.
On the basis of construction, technical and technical
requirements we can have ammunition belts of
different length at a given moment, and consequently
we have a different number of rounds. Only a
maximum number of rounds in an ammunition belt is
considered in another calculation. The ammunition belt
is supposed to be of a maximum length which is able
to fit a loading device
In case a round fails initiation of a backup system for
function restoration occurs according to a mechanism
described above. It is a case of successive initiation of
pyrotechnic cartridges (in a system of pyrotechnic
cartridges) which are supposed to guarantee restoring
of a required broken chain of function. A number of
pyrotechnic cartridges in a backup system is m.
Pyrotechnic cartridges have also a probability pm of  a
failure occurrence which unable their initiation.
Pyrotechnic cartridges too are placed in line waiting
for meeting the requirement which results from their
function. In case of a failure of the first pyrotechnic

cartridge the next one is initiated up to the moment
when either a function is restored or all pyrotechnic
cartridges are used up.
On the basis of the facts mentioned above it is obvious
that the process of fulfilling the requirements follows
geometrical distribution (Ge). It means that the process
of fulfilling the requirements repeats so often until it
meets them in terms of reversion of all the process to
an operational state. It is a case of an observed discreet
random variable. Pyrotechnic cartridges also have
failure rate pm (failure probability) and there is a
limited number of them. It means that a failure can
occur up to m-times. A geometrical distribution Ge(pm)
generally follows this outline.
We are going to assess the succession of independent
attempts, and probability of an observed event
occurrence equals the same number pm in each attempt.
The quantity Xm is a serial number of the first success
which means that a required event occurs. The event
here means a function of a block C, and a probability
pm means an event occurrence C . Characteristics of
the process are as follow. A probability function:

   P(Xm=x) = pm
x-1(1-pm);x∈{1,2,3,…,m}.                   (4)

It is a special case of a geometrical distribution when a
probability of an event occurrence (a pyrotechnic
cartridge failure) does not depend on a number of
previous unsuccessful attempts of a value 0.
Characteristics of a geometrical distributions, for
example mean value E(Xm) (a mean number of
pyrotechnic cartridges necessary for removing one
failed round) and dispersion D(Xm) are obtained by a
calculation of a formula:
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While completing the mission during either training or
a real deployment a few scenarios can occur, and the
course of them depends on single functional blocks. To
complete the mission M successfully single blocks are
expected to be failure free as stated above. The
function of the blocks mentioned above are designated
as A, B,  C, the opposite is ;A ;B C . The relation can
be expressed by using events this way:

M = A ∩(B∪ C).                                                     (6)

Using probability expression we talk about probability
of mission completion M. We can put it that way:

P(M) = P(A) . [P(B) + P(C) - P(B ∩C)];               (7)
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5. Description of scenarios

Description of the scenarios which can occur during
completing or defaulting the mission relate only to an
ammunition block and to a redundant mechatronics
system with pyrotechnic cartridges.
The mission is completed. In the first case there can be
a situation when all the ammunition of a certain
amount which is placed in an ammunition belt is used
up and a round failure occurs or it is used up and a
round failure does not occur. In this case a backup
system of pyrotechnic cartridges is able to reverse a
system into an operational state. Using up can be
single, successive in small bursts with breaks between
different bursts, or it might be mass using one burst.
Shooting is failure free or there is a round failure
occurrence n. In case a round failure occurs, a system
which restores a function of pyrotechnic cartridges is
initiated. There are two scenarios too – a system
restoring a pyrotechnic cartridges function is failure
free, or a pyrotechnic cartridge fails. If a function of
pyrotechnic cartridges is applied, it can remove a
failure m-times. So a number of restorations of the
function is the same as the number of available
pyrotechnic cartridges. In order to complete the
mission successfully we need a higher amount of
pyrotechnic cartridges m, or in the worst case the
number of pyrotechnic cartridges should be equal to a
number of failures. Another alternative is the situation
that a round fails and in this case a pyrotechnic
cartridge fails too. A different pyrotechnic cartridge is
initiated and it restores the function. This must satisfy
the requirements that an amount of all round failures n
is lower or at least equal to a number of operational
(undamaged) pyrotechnic cartridges m. The mission is
completed in all the cases mentioned above and when
following a required level of readiness of a block A.
The mission is not completed. In the second case the
shooting is carried out one at a time, in small bursts or
in one burst, and during the shooting there will be n
round failures. At the time the failure occurs a backup
system for restoring the function will be initiated.
Unlike the previous situation there will be m
pyrotechnic cartridges´ failures and a total number of
pyrotechnic cartridges´ failures equals at least a
number of round failures, and is equal to a number of
implemented pyrotechnic cartridges M at the most. It
might happen in this case that restoring of the function
does not take place and the mission is not completed at
the same time because there are not enough
implemented pyrotechnic cartridges.
The relation of transition among the states can be
expressed by the theory of Markov chains.

Figure 1. Description of transitions among the states

Characteristics of the states:
0 state: An initial state of an object until a round
failure occurs with a probability      function of a
round P(B). It is also a state an object can get with a
pyrotechnic cartridge probability P(C) in case a round
failure occurs
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m1…mm state:  A state an object can get while
completing the mission. Either a round failure occurs
in probability ( ) ( )BPBP −= 1 , or there is a pyrotechnic
cartridge failure in probability ( ) ( )CPCP −= 1 .
1 state: A state an object can get while completing the
mission. It is so called an absorption state. Transition
to the state is described as probability ( ) ( )CPCP −= 1
of a failure of last pyrotechnic cartridge as long as an
object was in a state „kn“ before this state, or it can be
described as probability of a round failure occurrence

( ) ( )BPBP −= 1  as long as an object was in a state 0
before this state and all pyrotechnic cartridges are
eliminated from the possibility to be used.
Transitions among different states as well as absolute
probability might be put in the following formulae:
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2. An alternative
of a function
when the mission
is not completed.
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We suggest the subsequent steps for all the scenarios
mentioned above. Following the mathematical formula
(1) it is possible to find out probability of a number of
round failures´ occurrences in an ammunition belt of a
length n. Following the equation (2) we can specify an
expected mean value of a mean number of round
failures in an ammunition belt of a given length.
The mean value result is recommended to be used for a
maximum length of an ammunition belt (a maximum
number of rounds) which could be implemented into a
weapon set concerning construction as well as tactical
and technical views. The result informs us of a
minimum number of pyrotechnic cartridges which are
to be applied for a successful completing the mission.
In this case there is a threat of a pyrotechnic cartridge
failure which could cause a system failure (as far as a
number of round failures is higher than a number of
available pyrotechnic cartridges). In this case we
would not complete the mission.
In order to assess dependability of a shooting function
it is necessary to know a number of pyrotechnic
cartridges and, depending on this, probability of
completing the mission. To fulfil the requirements I
suggest three steps:

1) To determine a required number of
pyrotechnic cartridges;

2) To quantify generally probabilities of
completing the mission;

3) To quantify exactly probabilities of completing
the mission

Following the steps mentioned above we suggest this
method.

Ad 1) To determine a required number of pyrotechnic
cartridges

When we calculate a mean number of failed rounds
E(Xn) which is determined from a maximum number of
rounds n in a ammunition belt (see above) and
probability of a round failure occurrence pn, see the
formula (2), we get a minimum recommended number
of pyrotechnic cartridges which are supposed to
guarantee completing the mission in case a round fails.
The calculation would be successful in case a
pyrotechnic cartridge failure does not occur. However,
even a system of pyrotechnic cartridges concerning a
failure occurrence depends on counting distribution of
a discreet random variable which is specified in our
case by a geometrical distribution. (Because the system
is activated so long until the observed and required
event occurs – in terms of repairing the failure.) We
suggest calculating a mean number of pyrotechnic
cartridges´ failures following the formula (5). For the
calculation we will need only pyrotechnic cartridge
failure probability pm. On the basis of this calculation

we get an average number of pyrotechnic cartridges
required to repair a failure of one round.
In order to complete the mission a number of available
(operational) pyrotechnic cartridges should be at least
the same as a number of failed rounds. When we
multiply the mean values we obtain a total number of
pyrotechnic cartridges M which will guarantee
completing the mission (even in the situation when
besides failed rounds there are failed pyrotechnic
cartridges too)

M = E(Xn) . E(Xm)=
m

n

p
pn

−1
. .                                (12)

Logically a number of pyrotechnic cartridges which
are essential for completing the mission successfully is
continually proportioned to a number of rounds n and
to probability of their failure pn, and inversely
proportioned to probability of pyrotechnic cartridge
“success” 1-pm. The Figure 2 shows a typical course of
dependability M (pn;pm), it means a invariant M which
depends on variables pn a pm. This way might be the
first of the alternatives how to solve the problem. It
suggests a total number of pyrotechnic cartridges
which are essential for completing the mission but it
does not show the way how to quantify probability of
mission completion.
While recording distribution parameters we are going
to use an equivalent m standing for a value M.

Figure 2. Course of dependability of a number of
pyrotechnic cartridges M on variables pn and pm

Ad 2) To quantify generally probability of completing
the mission

In this case we follow the solution which has been
stated in the part Ad 1. We take into account that there
is a number of pyrotechnic cartridges required for
completing the mission. So, we determine an α fractile
which provides an upper limit of a number of rounds
which fail in probability α. After we specify β fractile
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which provides an upper limit of pyrotechnic
cartridges which fail in probability β.
While working with fractiles we follow the general
information. 100% fractile of a random variable X is a
number xp, and a probability p where 0<p<1 is denoted
by

P(X ≤ xp) ≥ p                                                         (13)

and

pxP
pxx

≤
−→

)(lim .                                                      (14)

The fractile of an observed random variable we are
working with is expressed by
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α

α

x

n
n nXPp

0

.                                              (15)

We put it into words this way – occurrence probability
n of a number of events is specified by a sum of
probabilities for the occurrence of all events from 0 to
n.
In our case we take into account that round failures´
distribution is binomial Bi=(n;pn) and a fractile
determining an upper limit of a number of rounds
which might fail in probability α will be designated as
xα. We put it that way

( ) αα =≤ xXP n .                                                   (16)

We suppose that a general distribution of a pyrotechnic
cartridge follows a binomial distribution too Bi(m;pm).
A fractile providing an upper limit of a number of
pyrotechnic cartridges which fail in probability β is
denoted by βy . Thus

( ) ββ =≤ yYP m .                                                  (17)

The equation can be put in a different way as

( ) ββ =−≥− ymYmPr m .                                  (18)

The following interpretation of a fractile yβ is useful
for other steps – at least βym −  of pyrotechnic
cartridges will be available with probability β.
As it was stated before we are supposed to know a total
number of pyrotechnic cartridges M which are
essential for completing the mission. The requirement
is shown in the following equation:

( ) αβ xyM ≥− .                                                     (19)

The equation shows that a number of available
pyrotechnic cartridges (we obtain it when we subtract
failed pyrotechnic cartridges from a total amount of all
applied pyrotechnic cartridges) will be at least the
same (it would be better to have a higher number) as a
number of failed rounds. If this assumption is fulfilled,
we can expect that the mission will be completed in
probability pmis. Probability of completing the mission
can be put that way

pmis = α . β .                                                           (20)

The formula can be described like this – probability of
completing the mission equals a multiplication of
probabilitiesα;β ∈(0;1) which provide us an upper
limit of failed rounds and an upper limit of failed
pyrotechnic cartridges for required levels of fractiles.
If the level of mission completion probability is known
in advance, e.g. it is specified by technical
requirements for a set, we can put it in the formula
which is based on an assumption that the mission will
be completed in case a number of available
pyrotechnic cartridges is at least the same as rounds
which are supposed to fail

βα ymx −≤ .                                                         (21)

If it goes this way, the mission will be completed in
probability expressed in the formula (20).
If we have the values α, n, β, pmis, we may find a value
m (M) using quantitative methods. At the end of my
contribution there is an example of this solution.

Ad 3) To quantify exactly probabilities of completing
the mission

In the last step we are going to examine how to
quantify an exact value of mission completion
probability pmis. On the basis of the assumption
described above we know that probability of
completing the mission depends on reliability of two
key blocks. It is an ammunition block (B) and a
pyrotechnic cartridges´ block (C). Following the last
two alternatives we might specify both a required total
number of pyrotechnic cartridges which is essential to
complete the mission (in case all conditions are met),
and a general value of mission completion probability
in case general conditions are followed. This solution
might satisfy us under certain circumstances but it is
not always like that. Therefore we suggest the last way
how to quantify probability of completing the mission
based on more exact method.
It is necessary to define indices and quantities which
effect directly probability of completing the mission
pmis. These are a number of rounds n, probability of a
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round failure occurrence pn, a number of pyrotechnic
cartridges m, and probability of a pyrotechnic cartridge
failure occurrence pm. A general function of mission
completion probability and its variables is put that
way:

pmis(n,pn,m,pm).                                                       (22)

Further steps follow well known assumptions. The
function of a rounds´ failure takes form of a binomial
distribution with parameters n and pn – Bi(n,pn), and
the rounds which may fail can be marked with k where
k ∈ {0;1;2;…..;n}. Moreover, we introduce functions
of a pyrotechnic cartridges´ failure Yk where k∈
{0;1;2;…..;m}. They show us possibility of a
pyrotechnic cartridge failure while shooting as soon as
it is necessary to remove a failed round. Let us assume
that a sum of functions of a pyrotechnic cartridges´
failure will be lower than a number of available
pyrotechnic cartridges used for removing a failed
round. We put it in the following formula

∑
=

≈≤
m

k
k mY

0
mYYY k ≤++ ......10 .                         (23)

Following the assumption mentioned above we
consider the case that the first available pyrotechnic
cartridge follows geometrical distribution of a function
of its activity Ge(pm) during the failure of the k-th
round Yk. The function pm means probability of
pyrotechnic cartridge failure occurrence. It can be
described as

Yk ~ Ge(pm).                                                           (24)

The equation showing probability of completing the
mission is put that way
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0
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,,,
                   (25)

where in case k=0 (it reflects a situation where there is
no round failure) a function would be specified
additionally provided that P(Y1+….Yk ≤ m)=1. And in
order to solve a probability value of completing the
mission we would use so called completing the
formula taking advantage of forming functions. From a
mathematical point of view this is much more
demanding but it offers a very exact value expressing
probability of completing the mission pmis while using
a variation of function factors. On its basis it is easy to
prove a dependability of a total number of used
pyrotechnic cartridges on a level of mission
completion probability pmis.

An example of a possible solution:

Given:
pn = 0,000 1 - round failure probability;
n = 200 - maximum rounds´ number during one
process;
pm = 0,01 - pyrotechnic cartridge failure probability;
pmis = 0,99 - probability of mission success.

Solution according to “Ad 1)”: We are looking for a
sufficient number of pyrotechnic cartridges used for
removing a possible failure

02,0
01,01
0001,0.200

1
.

≅
−

=
−

=
β

αnM .

The formula shows us that having at least one
pyrotechnic cartridge is enough to complete the
mission successfully. However, we cannot quantify
probability for completing the mission.

Solution according to “Ad 2)”: We are looking for a
level of mission completion probability pmis as well as
a required number of pyrotechnic cartridges. We
follow the values described above. The solution is put
in the table.

Table 1. Results of example

αx
α

β misp
= m

0,991 1 0,998991 2
0,992 1 0,997984 2
0,993 1 0,996979 2
0,994 1 0,995976 2
0,995 1 0,994975 2
0,996 1 0,993976 2
0,997 1 0,992979 2
0,998 1 0,991984 2
0,999 1 0,990991 2

If we take into account this solution and starting
marginal conditions, two pyrotechnic cartridges will be
enough to complete the mission successfully in 0,99
probability.

6. Conclusion
This contribution is supposed to serve as one of the
alternatives solving the problems connected with
providing a function of an object whose function is
redundant (backed up) because its failure is important
to complete the mission. In order to solve the problem
we chose the methods which are supposed to be the
most suitable for it. Other ways are also likely to be
used in order to reach the aim but it is not the intention
of this contribution.
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