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1. Introduction
Managing an industrial plant entails evaluating and
trading off the conflicting objectives of economic
service and safe operation. The first scientific
approaches to this management problem date back to
the 1950’s and 1960’s and can be found in the review
paper by McCall [1] and in the book from Barlow and
Proschan [3]. As a result, various so-called periodic
maintenance optimisation models were introduced in
which both costs and benefits of periodic maintenance
were quantified and an optimum compromise between
the two was sought. Well-known models originating
from this period are the so-called age and block
replacement models.
From the practical point of view, at that time,
preventive maintenance was strongly advocated as a
means to reduce failures, for safety reasons, and
unplanned downtime, for economic reasons. In many
companies, large time-based preventive maintenance
programs were set up.
Nowadays, modern production plants are expected to
run continuously for extended hours. In this situation,
unexpected downtime due to components and
equipment failures has become more costly than ever
before. The faults can degrade the quality of a product
line or even cause the entire plant to function
incorrectly, possibly resulting in downtime of the
production system with consequent economic loss.

On the other hand, proper monitoring of the
conditions of the components and systems can be
highly cost effective in minimizing maintenance
downtime by providing advanced warning and lead
time to prepare the appropriate corrective actions
upon an adequate fault diagnosis.
For this reason, condition monitoring has become a
popular approach for predicting component failures
using physical information on the actual state of the
equipment. The possibility of monitoring the system
state, continuously for operating systems or by tests
and inspections for stand-by safety systems, allows a
more dynamic preventive maintenance practice, called
condition-based maintenance (CBM), in which the
decision of maintaining the system is taken on the
basis of the observed condition of the system. This, in
principle, allows saving resources by preventively
maintaining the system only when necessary. In many
practical instances, this approach has proved more
effective than the previous large preventive
maintenance programs.
Analytical results for single-component deteriorating
systems have been established under simplifying
assumptions. Markov and semi-Markov models have
been the preferred approach in modelling CBM [4],
[12], [16]- [17], [21], [27] but other approaches, like
counting processes [1], have also been proposed. The
majority of the models appeared in the literature
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assume that the system’s degradation level can only
be known through periodic inspection as typical in
safety systems such as those employed in nuclear
plants [2]-[3], [26]-[27]; Kopnov [16] considers the
case in which the system is continuously monitored
and Lam [17] considers both cases. Another common
assumption is to consider that repairs/replacements
always restore the system to a ‘good-as-new’
condition, which, in practice, may not be very
realistic; Kopnov [16] has allowed also for partial
recovery.
The dynamic CBM policies for single-component
systems whose condition can only be known through
inspection, developed in [10], [12] and [19], are all
based on control-limit rules which define when to
repair/replace a component and when to schedule the
next inspection.
For the continuously inspected systems investigated
by Kopnov [16], the two-level policies from the
Inventory Theory have been adapted to the CBM
problem of degrading systems. Semi-Markov
processes are also considered; a death process is
proposed for a unit subject to corrosion and a Markov
chain is used for modelling fatigue crack growth.
A common feature of the models discussed is that the
state of the system is described as a state of a Markov
process and then the analysis proceeds to finding
analytically the probabilities of the various states.
However, if the system is made of several multi-state
components the analysis becomes excessively
complicated. Simulation tools are hence needed when
treating more complex systems. Bérenguer et al. [[4]
have extended the work of Grall et al. [10] by
investigating two-component deteriorating systems
using simulation. Their maintenance model takes into
consideration economic dependence between
components and again the state of the system is only
known through periodic inspections. Barata et al. [2]
developed a stochastic degradation model for
repairable multi-component systems and embedded its
simulation within a maintenance optimisation scheme.
The condition of each component is known
continuously. The novelty of the model stems from
the fact that the component’s failures can occur not
only because of excessive degradation which leads to
a critical state of the system, but also because of
random shocks which suddenly fail the system and
whose occurrence probability is degradation-
dependent. While in some cases the system
degradation level depends on the combination of
many mechanisms and can only be known through
inspection [4], [12], [12], [19], [26] there are other
mechanisms such as fatigue and corrosion of
structures in which deterministic laws are known and
the uncertainty is on the value of the parameters that
govern those laws.

Regarding the deterioration models themselves,
Hontelez et al. [12] give several examples, all of
deterministic nature, from the civil engineering field.
Grall et al. [10] use a model in which the degradation
level increases randomly according to an exponential
distribution. Degradation models describing fatigue
and corrosion of metal structures are described by
Guedes Soares and Garbatov in [23], [24].
The success of condition monitoring and condition-
based maintenance strongly relies on the capability of
modelling the degradation processes and the
corresponding plant dynamic responses under
different configurations and conditions. However, the
complexity and non-linearities of the involved
processes are such that analytical modelling becomes
burdensome, if at all feasible without resorting to
unrealistic simplifying assumptions. For this reason,
empirical modelling is becoming very popular since it
does not require a detailed physical understanding of
the processes nor knowledge of the material
properties, geometry and other characteristics of the
plant and its components and it does not resort to
simplifying assumptions: the underlying dynamic
model is identified by fitting plant operational data,
with a procedure often referred to as ‘learning’ or
‘training’.
Among the various techniques of empirical modelling,
the so-called soft computing methods offer powerful
algorithms for constructing non-linear models from
operational data. As a fact, they are being used with
increasing frequency as an alternative to traditional
models in a variety of engineering applications
including monitoring, prediction, diagnostics, control
and safety.
The main soft computing methodologies are Neural
Networks (NNs), Fuzzy Logic Systems (FLSs) and
Genetic Algorithms (GAs). These methodologies are
inspired by biology and natural behaviour and provide
potentially powerful tools for effectively tackling
difficult multivariate, non-linear problems, which
often cannot be solved with ease by means of
traditional analytical or numerical methods.
In the present lecture notes, we shall try to give a brief
description of the concepts underlying the different
methodologies and point out their main advantages
and limitations. With this objective in mind, we shall
refer our discussion to a multidimensional non-linear
input/output mapping, for NNs and FLSs, or searching
space, for GAs optimisation.
NNs and FLSs are capable of establishing the existing
non-linear input/output relationships, which map the
inputs of a system to its outputs. They reconstruct the
complex non-linear relations by combining multiple
simple functions. More precisely, through an analogy
with the functioning of the human brain, NNs form
the shape of the mapping of interest by appropriately
combining a large number of sigmoid, radial or other
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simple parameterised functions, which are adjusted
(enlarged, shrunk, shifted, etc.) by means of
appropriate parameters and synaptic weights [20],
[21]. The great power of this technique lies in the fact
that the adjustments can be made ‘automatically’
through a training phase based on available
input/output data: this training phase allows to adjust
the NN-model parameters so as to obtain the best
interpolation of the multivariate, non-linear functional
relation between input and output.
FLSs, on the contrary, partition the input/output
spaces into several typically overlapping areas, whose
shapes are established by assigned membership
functions and whose mapping relationships are
governed by distinct, simple IF-THEN rules [28],
[13]. The great advantage of this method lies in the
inherent capability of handling imprecise data and in
the physical transparency and interpretability offered
by this particular way of representing the underlying
model relations.
Finally, if the input/output multidimensional space is
seen as a searching space in which the inputs are the
decision variables and the outputs are the performance
indicators of the search problem, the GAs offer a
powerful method for evaluating a best input solution
with respect to the optimisation (minimization or
maximization) of the performance indicators of
interest [9], [11]. The main advantages of the method
are that the search is performed by manipulation of a
population of points, contrary to classical methods
which proceed from a single solution point to another,
and that the search is solely based on the evaluation of
the performance indicators, with no need of other
information, e.g. of derivative nature.

2. Artificial Neural Networks
Artificial neural networks (ANNs) are information
processing systems composed of simple processing
elements (nodes) linked by weighted connections.
Their functioning is inspired by the biological neural
networks.
A biological neuron consists of dendrites, a cell body
and axons (Figure 1a). The connections between a
dendrite and the axons of other neurons are called
synapses. In correspondence of each synapse, electric
pulses from other neurons are transformed into
chemical information which is input to the cell body:
if the sum of the inputs received by the neuron
through all its synapses exceeds a given threshold,
then it fires an electric pulse which activates the
neuron function. The network of all these neurons
makes up the most essential part of the human brain
and its operation enables the incredible variety of
human activities. In synthesis, the function of a
biological neuron is ‘simply’ to output pulses, with
the characteristics of a quasi-step switching function,
according to a weighed combination of the multiple

signals received from the other connected neurons. A
second important function of the neuron is to
appropriately modify the rate of transition through the
different synapses to optimise the whole network.

Figure 1. A biological neuron (a) and an artificial
neuron model (b) [25]

An artificial neuron (node) aims at simulating the
operation of a biological neuron: thus, it accepts
multiple inputs 1 2, ,..., mx x x , it weighs them by means
of adaptive synaptic weights, 0 1, ,..., mw w w , and it
simulates the switching function characteristic of the
input/output relation to provide the output (Figure
1b). Connecting several artificial neurons together one
obtains an artificial neural network which, by
construction, constitutes an information processing
system composed of simple processing elements
(nodes) linked by weighted synaptic connections [21].
The adaptation of the synaptic weights is realized
through a training phase during which properly
devised learning algorithms are used to change the
synaptic weights of the network in an effort to
optimise its mapping performance [20].
Here, we limit ourselves to briefly describing the most
commonly used multi-layered feed-forward neural
network which, in its simplest form, consists of three
layers of processing elements: the input, the hidden
and the output layers, with in , hn  and on  nodes,
respectively (Figure 2). The signal is processed
forward from the input to the output layer. Each node
collects the output values, weighted by the connection
weights, from all the nodes of the preceding layer,
processes this information through a sigmoid function

( ) 1
( ) 1 xf x e

−−= +

and then delivers the result towards all the nodes of
the successive layer. Typically, both input and hidden
layers are provided with an additional bias node,
which serves as a threshold in the argument of the
activation function and whose output always equals
unity.
As for the determination of the connection weights,
i.e. the model parameters, the learning technique most
commonly employed is the so-called error back-
propagation algorithm, which follows from the
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general gradient-descent method [20]. In short,
starting from random values of the synaptic weights
the back-propagation algorithm performs the steepest
descent in the weight space on a surface whose height
at any point is equal to the error function; in practice,
it consists of an iterative gradient algorithm designed
to minimize the mean square error between the actual
network output and the true value. A number pn  of
sets (patterns) of input and associated outputs are
repeatedly presented to the network and the values of
the connection weights are modified so as to minimize
the average squared output deviation error function, or
Energy function, defined as:
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where nly  and €nly  are the true output value of the n-
th pattern and the corresponding network-computed
output value at the l-th node, 1, 2,..., ol n= . Through
this training procedure, the network is able to build an
internal representation of the input/output mapping of
the problem under investigation. The success of the
training strongly depends on the normalization of the
data and on the choice of the training parameters.
Typically, each signal is transformed by an affined
mapping in an interval such as (0.2, 0.8) or similar
and the connection weights are initialised randomly
within an interval such as (-0.3, 0.3) or similar.
After the training is completed, the final connection
weights are kept fixed. New input patterns are
presented to the network, which is capable of recalling
the information stored in the connection weights
during training to produce the corresponding output,
coherent with the internal representation of the
input/output mapping. Notice that the non-linearity of
the sigmoid function of the processing elements
allows the neural network to learn arbitrary non-linear
mappings [6], [15]. Moreover, each node acts
independently of all the others and its functioning
relies only on the local information provided through
the adjoining connections. In other words, the
functioning of one node does not depend on the states
of those other nodes to which it is not connected. This
allows for efficient distributed representation and
parallel processing, and for an intrinsic fault-tolerance
and generalization capability.
These attributes render the artificial neural networks a
powerful tool for signal processing, non-linear
mappings and near-optimal solution to combinatorial
optimisation problems.

Figure 2. Scheme of a three-layered, feedforward
neural network

2.1. Feedforward artificial neural networks for
regression
In order to understand further the way of functioning
of neural networks, let us consider an artificial
feedforward neural network to be trained for
performing the task of non-linear regression, i.e.
estimating the underlying non-linear relationship
existing between a multi-dimensional vector of input
variables x and an output target y, assumed mono-
dimensional for simplicity of illustration ( 0 1n = , in
esq. (1)), based on a finite set of input/output data
examples (the above mentioned patterns),

( ){ }, , 1, 2,...,n n pD x y n n≡ = .

It is assumed that the target y is related to the input
vector x by an unknown deterministic function ( )y xµ
corrupted by a white noise ε , viz.

2( ) ( ) ; ( ) (0, ( ))yy x x x N xεµ ε ε σ= + (2)

The objective of the regression task is to estimate
( )y xµ  by means of a regression function €( ; )f x w ,

dependent on a set of parameters €w  to be properly
determined on the basis of an available set of
input/output patterns D.
A feedforward neural network provides a non-linear
form of the function €( ; )f x w  for the regression task.
As above explained, the parameters €w  are called
network weights and are usually determined by a
training procedure which aims at minimizing the
quadratic error function
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where for simplicity of notation the output node
subscript l has been dropped since the case considered
concerns a single output.
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The network output corresponding to input nx  is  a
function of the weight values, € €( ; )ny f x w= . If the
network architecture and training parameters are
suitably chosen and the minimization done to
determine the weights values is successful, the
obtained function €( ; )f x w  gives a good estimate of
the unknown, true regression function ( )y xµ . Indeed,
it is possible to show that in the ideal case of an
infinite training data set and perfect minimization
algorithm, a neural network trained to minimize the
error function in (3) provides a function f which
performs a mapping from the input x into the expected
value of the target y conditioned on x, i.e. the true
deterministic function [ ] ( )yE y x xµ=  [5]. In other
words, the network averages over the noise on the
data and discovers the underlying deterministic
generator. Unfortunately, all the training sets are finite
and there is no guarantee that the selected
minimization algorithm can achieve the global
minimum.
The quadratic error function in (3) can be motivated
from the principle of maximum likelihood applied to
the set of available training patterns

( ){ }, , 1, 2,...,n n pD x y n n≡ = . The likelihood of the
observed data set D is defined as

( )

∏ ∏==
= =

pn

n

pn

n
nnnnn wxpwxypwyxp

DwL

1 1
)€()€,()€,(

€
(4)

where it is assumed that each pattern ( , )n nx y  is
drawn independently from the same distribution

( , )n nP x y . The unknown weights €w  of the neural
model €( ; )f x w  are determined by maximization of

the likelihood ( )€L w D  of observing the training set
D [5]. Instead of maximizing the likelihood, it is
computationally more convenient to minimize its
negative logarithm,
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The distribution of the input values nx , i.e. the second
term in the rhs of (5), is independent of the parameters
€w  of the neural model €( ; )f x w ; thus, the parameters
€w  can be found by minimization of the first term

only, i.e. the following error function

∑−=
=

pn

n
nn wxypE

1
)€,(ln (6)

Different forms of the conditional distribution
)€,( wxyp  lead to different error functions. In

particular, the assumption of a Gaussian distribution
for the target as in (2) leads to a quadratic error
function of the kind in (3) [20].
Indeed, from eq. (2) we have

( ))(,0~)()( 2 xNxyx y εσµε −=

and using the regression function )€;(€ wxfy =  to
estimate ( )y xµ , we get

)(2

2)€(
2
1

)(2
1)€,(

x

yy

e
x

wxyp εσ

εσπ

−
−

= (7)

and the error function in (6) becomes
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When the noise variance is independent of the input x,
i.e. 2 2( )xε εσ σ= ,
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and the error function reduces to the form (3) since the
other terms do not depend on the weights €w  of the
neural model.
Obviously, the quadratic error function in (3) can be
used also for regression on targets, which are not
Gaussian-distributed: in this case, the resulting
regression function €( ; )f x w  cannot distinguish
between the true distribution and any other with same
mean and variance.
Finally, notice that the value of the error function (3)
at the minimum gives a measure of the variance of the
target data, averaged over the input.
2.2. Neural network uncertainty
In practical regression problems, there are two types
of prediction that one may want to obtain in
correspondence of a given input x: an estimate
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€( ; )f x w  of the underlying deterministic function
( )y xµ  and an estimate of the target value y itself, as

given by eq.(2), with their corresponding measures of
confidence. This requires that the various sources of
uncertainty affecting the determination of the weights
€w  be properly accounted for [7].

For what concerns the estimate €( ; )f x w  of ( )y xµ , it
must be considered that, from a probabilistic point of
view, the data set ( ){ }, , 1, 2,...,n n pD x y n n≡ =
used for training the network is only one of an infinite
number of possible data sets. This variability in the
training data set is due to the variability in the
sampling of the input vectors , 1,2,...,n px n n=  and in
the random fluctuation of the corresponding target
output ny . Each possible training set D can give rise
to a different set of network weights €w .
Correspondingly, there is a distribution of regression
functions €( ; )f x w  with variance (with respect to the
training set D):

[ ][ ]{ }2)€,()€,( wxfEwxfE − (10)

Since in practice a neural network structure is not a
perfect algorithm, it systematically under/over
estimates the correct result, i.e. the expected value

[ ]€( , )E f x w  is not equal to the true underlying

deterministic function, ( )y xµ , their difference being
the so-called bias. Of course, the bias would be zero
in the case of a perfect neural network.
To quantify the confidence in the estimate €( ; )f x w  of
the true deterministic function ( )y xµ , it is customary
to refer to the confidence intervals of the error

)()€,( xwxf yµ−  whose variance with respect to all
possible training data sets is:
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where the first term is the variance of the distribution
of regression function values €( ; )f x w  and measures
the extent to which the network regression function

€( ; )f x w  differs from the ensemble average over
different training data sets, whereas the second term is
the square of the bias which measures the extent to
which the average (over all possible training data sets)
of the network regression function €( ; )f x w  differs
from the true underlying deterministic function,

( )y xµ .

2.3. Sources of uncertainty
A first source of uncertainty comes from a wrong
choice of the network architecture. Indeed, in case of
a network with too few nodes, i.e. too few parameters,
a large bias occurs since the regression function

€( ; )f x w  has insufficient flexibility to model the data
adequately, which results in poor generalization
properties of the network. On the other side,
excessively increasing the flexibility of the model by
introducing too many parameters increases the
variance term because the network regression function
tends to over-fit the training data. Thus, in both cases,
the network performs poorly when fed with new input
pattern in the generalization phase. A trade-off is,
then, necessary. This trade-off is typically achieved by
controlling the model complexity (i.e., the number of
parameters) and the training procedure (by adding a
regularization term in the error function or by early
stopping of the training [5]) so as to achieve a good fit
of the training data but with a reasonably smooth
regression function which is not over-fit to the data.
An additional source of uncertainty in the network
performance, due to uncertainty in the weights €w ,
arises from the minimization algorithm itself, which
may get stuck in a local minimum of the error
function. Furthermore, the training may be stopped
prematurely, before reaching the minimum.
Besides the above uncertainties in the regression
function €( ; )f x w  due to uncertainty in the weights
€w , in practice there is also uncertainty in the input

values x due to noise and uncertainty in the model
structure ( )f ⋅  itself.
For what concerns the prediction of the target value, y,
it is clear that even in the ideal case of a regression
function €( ; )f x w  equal to the true deterministic
function, ( )y xµ , the target y could not be predicted
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with certainty due to the presence of the noise term
( )xε  in (eq. 2) which accounts for the intrinsic

random fluctuations. To quantify the accuracy of the
estimate of y, it is customary to refer to the prediction
intervals of the deviation

[ ] εµ +−=− )€,()()€,( wxfxwxfy y .

The variance of such deviation is:

[ ]{ }2)€,( ywxfE −

[ ]{ } [ ]{ }22)()€,( εµ ExwxfE y +−=                         (12)

[ ]{ } 22)()€,( εσµ +−= xwxfE y

Note that the first term is the variance of the
distribution of the error )()€,( xwxf yµ−  (eq. 11), so
that the prediction intervals include the confidence
intervals.
From the above said, it appears that artificial neural
networks are unstable predictors: small changes in the
training data may produce very different regression
models and consequently different generalization
performances on new, unseen data. For this reason,
the generalization performance of a single artificial
neural network, particularly if trained on small data
sets, should be tested by means of a k-fold cross
validation, where the available set of pn  input/output
patterns is divided into k subsets of (approximately)
equal size and the network is trained k times on a
training set in which each time one of the k subsets is
left out and used to verify the network generalization
performance. If k equals the sample size, the
procedure is called leave-one-out cross-validation
[14].

3. Fuzzy logic system
Fuzzy logic systems are founded on the theory of
fuzzy sets, which, in general, deals with vague
information, where vagueness is defined as the
uncertainty associated with linguistic or intuitive
information. For example, the quality of an image
may be judged as bad, medium or good. From this
example, it appears that vagueness is related to
immeasurable issues and involves situations in which
the transitions among linguistic statements occur
across boundaries, which are not sharp.
A few words on the concepts underlying fuzzy set
theory seem then in order [28]. Let us consider a
variable x, for example a measured output of a plant.
Mutating from classical logic, the set U which
contains all the possible values of x is usually called

the universe of discourse (UOD) of x or the universal
set. Suppose that the UOD U has been subdivided in a
sequence of subsets iX U⊂ . In classical set theory,
the iX ’s are mutually exclusives so that a given value
of x may belong to only one of them. These sets are
called crisp and the membership of a crisp value of x
to a set iX  is specified by the (rectangular)
characteristic function

iXχ , which is equal to unity or
zero according to whether the value of x belongs or
not to iX .
In fuzzy set theory, the situation is quite different: the
subsets iX  of the universe of discourse U of  a
linguistic variable x are not necessarily exclusive, so
that a given crisp value of x U∈ , may
simultaneously belong to more than one of them with
different degrees of membership. This feature clearly
distinguishes fuzzy set theory from probability theory,
which operates on crisp events. In fuzzy set theory,
then, the subsets are not identified by sharp
boundaries but by linguistic labels (words). For
example we may consider the linguistic variable
temperature defined in the universe of discourse

(0 , 40 )U = ° °  subdivided in the subsets

1 (0 ,20 )X = ° ° , 2 (10 ,30 )X = ° ° , 3 (20 , 40 )X = ° ° ,
labelled by the words cold, warm and hot,
respectively. Clearly a given temperature value may
belong to more than one set, e.g. 15° belongs to 1X
and 2X .
Fuzzy set theory aims at quantifying the meanings of
the words attached by the analyst to the subsets iX
(such as cold, warm or hot in the above example)
within the framework of set theory. To this aim, to
each set iX  the analyst associates, for all values of

x U∈ , the membership function )(x
iXµ , which

represents the degree to which he postulates that x
belongs to iX . As opposed to the characteristic
functions of classical set theory, which are rectangular
in shape and disjoint, the membership functions
associated to fuzzy sets have subjective shapes and
may overlap to describe a continuous transition from
one set to another, thus providing for the possibility
that a given value of x U∈  simultaneously belongs
to several sets with different degrees of membership.
In summary, in the fuzzy context we deal with
linguistic variables (e.g. temperature) whose
arguments are words, also called fuzzy values (e.g.
negative, approximately zero, low, positive, high).
Each of these words refers to a subset of the universe
of discourse and the degree of membership of the
crisp values within the subset is analytically specified
by the associated membership function.
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Fuzzy logic systems build on the theory of fuzzy sets
to realize a complex non-linear input/output relation
as a synthesis of multiple simple input/output
relations. This idea is similar to that of NNs. The
difference is that in FLSs each simple input/output
relation is embedded in a different IF-THEN rule with
‘fuzzy’, and not sharp, boundaries so that going from
one rule to the other the system output gradually
changes [28].
In general, the generic j-th fuzzy rule is made up of a
number of antecedent and consequent linguistic
statements, suitably related by fuzzy connections:

   IF ( 1x is 1 jX ) AND (…) AND ( mx is mjX )

   THEN ( 1y is 1 jY ) AND (…) AND ( ky  is kjY )

The linguistic variables , 1,2,...,px p m= , are the
antecedents, represented in terms of the fuzzy sets

pjX  of the universe of discourse (range) pX , with

membership functions ( )
pjX pxµ . The linguistic

variables , 1, 2,...,qy q k= , are the consequents,

represented by the fuzzy sets qjY  of the universe of

discourse qY , with membership functions ( )
qjY qyµ .

The connective operator AND links two fuzzy
concepts and it is generally implemented by means of
a t-norm, typically the minimum operator ∧  or the
algebraic product. Since one of the key features of
FLS lies in allowing the overlapping of the rules, a
given input vector (FACT) will typically activate
more than one rule.
Another feature of FLSs is the ability to separate logic
and fuzziness [25]. Conventional binary logic systems
are unable to do so and thus their governing rules have
to be modified when either the system logic or the
variables fuzziness needs to be changed. On the
contrary, FLSs modify their rules when the logic
needs to be changed whereas they modify the
supporting membership functions when fuzziness
should be changed. To clarify this, consider the
performance of an inverted pendulum controller [25].
Define as ω  and 'ω  the angle that the pole forms on
the right side with the vertical line and the associated
angular velocity, respectively. Let two correct logic
rules for the control of the pendulum be:

1) IF ω  is positive big AND 'ω  is big, THEN move
the car to the right quickly

2) IF ω  is negative small AND 'ω  is small, THEN
move the car to the left slowly

If the performance of the controller is unsatisfactory,
one needs not change the fuzzy rules themselves,

which are logically correct, but rather must only
modify appropriately the definition of fuzziness in the
linguistic terms big, small, quickly, slowly.
On the other hand, binary logic rules such as

3)IF 40 60ω° < < °  AND 1 ' 150 80s sω− −° < < ° ,
THEN move the car at 0.5 /m s

4)IF 20 10ω− ° < < − °  AND 1 ' 110 20s sω− −° < < ° ,
THEN move the car at 0.1 /m s−

must be modified whenever the logic of the system or
the quantitative definitions of angle, angular velocity
and car speed are changed.
To understand FLSs, we address on an intuitive basis
the problem of controlling a plant [25]. The
mathematical-based approach of classical and modern
control theory stems on the observation of the system,
the construction of its mathematical model and the
design of a model-based controller. The focus is
placed on the behaviour of the target system and on its
mathematical representation.
On the contrary, fuzzy-logic control does not utilize
the target system for modelling but it is based, in
principle, on the linguistic control rules used by
experienced and skilled operators. Although most
skilled operators do not know the mathematical
behaviour of the systems they are required to control,
they can still perform successfully. For example, a
skilled driver most likely ignores the mathematical
equations underlying the physical behaviour of the car
when turning to the right while driving up an unpaved
hill and, yet, he or she can still handle the car safely
and successfully. In this view, a fuzzy logic controller
aims at reproducing the knowledge and experience
supporting the control actions of skilled human
operators using IF-THEN fuzzy rules.
Clearly the set of IF-THEN fuzzy rules constitutes the
heart of the input/output mapping model provided by
the FLS. When the experience of the skilled human
operators is unavailable or insufficient, because of the
complexity of the system, input/output data can be
used to generate a set of fuzzy rules representative of
the mapping from the input space into the output one.
This phase of rule construction during which both the
system input and output are known is often referred to
with the term ‘training’, in analogy to the procedure
for determining the weights of a neural network model
illustrated in Section 2.

3.1. Establishing the antecedent part of a rule
The IF part of a rule is called antecedent. Establishing
the antecedent parts of the rules of the FLSs is related
to the partitioning of the multivariate input space. For
simplicity, let us consider a two-dimensional input
space 1 2( , )x x  and a one-dimensional output space y.
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Most of the times it is possible to assume that all input
variables are independent and, thus, partition
separately the input space in each direction (Figure 3).
This assumption makes it easy not only to partition
the input space but also to interpret the partitioned
areas in linguistic terms. For example, the rule IF
temperature is 1A  AND humidity is 2A , THEN …, is
easy to understand because the variables of
temperature and humidity are separated. The
difference between ‘crisp’ and ‘fuzzy’ rule-based
systems lies in the way the input space is partitioned
(Figure 3). The idea behind FLSs is that in the real
analog world, changes are not sudden and sharp but
gradual in nature so that overlapping of rules domains
should be allowed. The degree of overlapping is
defined in terms of membership functions and the
intrinsic gradual property allows for smooth control.

Figure 3. Rule partition of an input space (a) partition
for crisp rules and (b) partition for fuzzy rules [25]

3.2. Establishing the consequent part of a rule
The THEN part of a rule is called consequent. In the
control case, establishing the consequent parts of the
rules of the FLSs must eventually lead to defining the
control action value corresponding to each rule. In this
respect, fuzzy models are classified into three types
according to the form used for the consequent y:

Model
type

Consequent
expression Characteristic

Mamdani Y is Y Y is a fuzzy set

Takagi
Sugeno
Kang
(TSK)

y = c0+Σiaixi

ia ’s are constant
and the ix ’s are

the input
variables

Simplified
fuzzy y = c c is constant

In the Mamdani type FLSs the consequent is a fuzzy
variable defined by a membership function. These
systems are more difficult to compute than those
whose consequents are numerically defined but they
better describe the qualitative knowledge related to
the consequent.
The consequents of the TSK models are expressed as
a weighed linear combination of the input variables. It

is also possible to use non-linear combination for
better performance, but at the expense of the
transparency of the rules.
The simplified fuzzy model has fuzzy rules whose
consequents are constant values. Thus, it is a special
case of both Mamdani and TSK types. Even if the
output of each rule is a constant, the overall FLS
output is non-linear because it contains the
characteristics of the underlying model membership
functions.

3.3. Inferring the output corresponding to a
given input: fuzzy reasoning and aggregation
Now that the IF and THEN parts of the rules have
been designed, the next step is to infer the output of
the FLS resulting from a given m-dimensional crisp
input vector (*)x , also called FACT. This is done in
two steps: 1) determination of the rules strengths; 2)
aggregation of each rule output into the final FLS
numerical output.
As mentioned, the connective operator AND links two
fuzzy concepts in a rule and it is generally
implemented by means of a t-norm applied to the
membership functions of the rule’s antecedents
evaluated in correspondence of the crisp input vectors

(*)x  constituting the FACT. Typically, the minimum
operator ∧  or the algebraic product is employed. This
gives the strength of the rule for the given FACT: a
measure of how active that rule is for the given FACT
or, in other words, how much the FACT is described
by the antecedents of the rule. Considering a generic
rule l, the strength (*)( )ls x  is given, in the case of the
algebraic product, by the product of its antecedent
membership values in correspondence of the crisp
inputs:

(*) (*)

1

( ) ( )
pl

m

l X p
p

s x xµ
=

= ∏ (13)

where plX  denotes the fuzzy set characterizing the p-
th antecedent of the l-th rule.
In the case of the min operator:

(*) (*)( ) min( ( ))
pll X ps x x

µ
µ= (14)

Obviously, if the l-th rule is not activated by (*)x  then
its strength is zero. This occurs if at least one of the
elements of the crisp input vector, say (*)

px , does not

belong to plX , the corresponding fuzzy set in the rule.
Let us now consider the aggregation step and denote
by fR  the number of rules, which are activated (fired)
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by the input (*)x  and by ly  the consequent in the l-th
activated rule, 1, 2,..., fl R= . The output y can be
determined as a normalized weighed sum of the
consequents ly  of the fR  active rules, the weights
being the strengths of the rules,

∑

∑
=

=

=
fR

l
l

fR

l

l
l

xs

yxs
y

1

(*)

1

(*)

)(

)(

r

r

(15)

Figure 4 shows an example of a simple TSK-type
FLS with four fuzzy rules [25]. The first rule for
example could be:

   IF 1x  is small AND 2x  is small,
   THEN 1 23 2 4y x x= + −

Corresponding to the input vector 1 2( , ) (10,0.5)x x = ,
the membership functions of the fuzzy sets
constituting the antecedents of the first rule are readily
evaluated as 0.8 and 0.3.
If the algebra product is used as the t-norm operator
for the AND connection, then the rule strength is

1(10,0.5) 0.8 0.3 0.24s = ⋅ = . Similarly, the strengths
of the second, third and fourth rules are

2 (10,0.5) 0.8s = , 3(10,0.5) 1.0s = , 4 (10,0.5) 0.3s = ,
respectively. The output of each rule corresponding to
the given input vector is 1 27y = , 2 23.5y = ,

3 9y = − , 4 20.5y = − , respectively. Then, the final
system output is

3.00.18.024.0
)5.20(3.0)9(15.238.02724.0

+++
−⋅+−⋅+⋅+⋅

=y

33.4≈                                                                   (16)

In the Mamdani type model, with fuzzy consequents,
the output of the fuzzy inference engine consists of a
fuzzy set Y Y′ ⊆  with compact support 1 2( , )η η ,
whose membership function is ( )Y yµ ′ . However,
eventually we are interested in finding a crisp number

*y  that represents the information encoded in the
output fuzzy set 'Y . This conversion, called
defuzzification, may be done in several ways, the most
commonly used being the Centre of Area (COA)
method:

2

1

2

1

*
( )

( )

Y

COA

Y

y y dy
y y

y dy

η

η
η

η

µ

µ

′

′

⋅
= =

∫
∫

(17)

The crisp number *y  thereby obtained can be taken as
the output resulting from the given input vector
(FACT) (*)x .

Figure 4. Example aggregation of TSK model [25]

3.4. Interpretation of fuzzy rules
The major difference between fuzzy systems and
other non-linear approximates, such as neural
networks, is the possibility of interpretation of the
rules underlying the fuzzy model. This, however, does
not automatically follow from the existence of a rule
structure. Therefore, it is relevant to discuss the
circumstances under which a fuzzy system is really
interpretable and this depends on the application. Yet,
some general guidelines can be given. The following
factors may influence the interpretability of a fuzzy
logic system [25]:
• Number of rules. If the number of rules is too

large, the fuzzy system can be hardly interpreted.
Especially for systems with many inputs, the
number of rules often becomes overwhelmingly
large if all antecedent combinations are realized.

• Number of antecedents in the rule premise. Rules
with premises that have many, say more than
three or four, antecedents are hard to interpret. In
the human language, most rules include only very
few antecedents even if the total number of inputs
relevant for the problem is large.

• Dimension of input fuzzy sets. One-way to avoid,
or at least, reduce the difficulties with high-
dimensional input spaces and to decrease the
number of rules is to resort to multi-dimensional
input fuzzy sets. However, multidimensional input
fuzzy sets with more than three inputs are
certainly beyond human imagination and it is
precisely the conjunction of one-dimensional
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input fuzzy sets that make a fuzzy logic model
interpretable.

• Arrangement of fuzzy sets. Fuzzy sets should be
arranged in proper order over the universe of
discourse so that, for example, very small is
followed by small, followed by medium, large and
so on. If the fuzzy model is developed on the basis
of expert knowledge such ordering comes natural.
However, if rule construction by training on
input/output data is used to optimise the FLS, the
ordering of the fuzzy sets might be lost if no
precautions are taken. This typically leads to
constraint optimisations in which for example the
ordering of the input membership functions is
constrained. This not only leads to an easier
interpretation of the fuzzy system but, often, also
provides an improved performance.

4. Genetic algorithms
Search or optimisation algorithms inspired on the
biological laws of genetics are called evolutionary
computing algorithms [8]. The main features of these
algorithms are that the search is conducted i) using a
population of multiple solution points or candidates,
ii) using operations inspired by the evolution of
species, such as breeding and genetic mutation, iii)
based on probabilistic operations, iv) using only
information on the objective or search function and
not on its derivatives. Typical paradigms belonging to
the class of evolutionary computing are genetic
algorithms (GAs), evolution strategies (ESs),
evolutionary programming (EP) and genetic
programming (GP). In the following we shall focus on
the more popular GAs.
As a first definition, it may be said that genetic
algorithms are numerical search tools aiming at
finding the global maximum (or minimum) of a given
real objective function of one or more real variables,
possibly subject to various linear or non linear
constraints [11]. Genetic algorithms have proven to be
very powerful search and optimisation tools especially
when only little about the underlying structure in the
data is known. They employ operations similar to
those of natural genetics to guide their path through
the search space. Essentially, they embed a survival of
the fittest optimisation strategy within a structured, yet
randomised, information exchange [9].
Since the GAs owe their name to the fact that their
functioning is inspired by the rules of the natural
selection, the adopted language contains many terms
borrowed from biology, which need to be suitably
redefined to fit the algorithmic context. Thus, when
we say that the GA operates on a set of (artificial)
chromosomes, these must be understood as strings of
numbers, generally sequences of binary digits 0 and 1.
If the objective function has many arguments, each

string is partitioned in as many substrings of assigned
lengths, one for each argument and, correspondingly,
we say that each chromosome is analogously
partitioned in (artificial) genes. The genes constitute
the so-called genotype of the chromosome and the
substrings, when decoded in real numbers called
control factors, constitute its phenotype. When the
objective function is evaluated in correspondence of
the values of the control factors of a chromosome, its
value is called the fitness of that chromosome. Thus
each chromosome gives rise to a trial solution to the
problem.
The GA search is performed by constructing a
sequence of populations of chromosomes, the
individuals of each population being the children of
those of the previous population and the parents of
those of the successive population. The initial
population is generated by randomly sampling the bits
of all the strings. At each step, the new population is
then obtained by manipulating the strings of the old
population in order to arrive at a new population
hopefully characterized by an increased mean fitness.
This sequence continues until a termination criterion
is reached. As for the natural selection, the string
manipulation consists in selecting and mating pairs of
chromosomes in order to groom chromosomes of the
next population. This is done by repeatedly
performing on the strings the four fundamental
operations of reproduction, crossover, replacement
and mutation, all based on random sampling. These
operations will be detailed below [18].
Finally, it is by now acknowledged that GAs take a
more global view of the search space than many other
optimisation methods. The main advantages are i) fast
convergence to near global optimum, ii) superior
global searching capability in complicated search
spaces, iii) applicability even when gradient
information is not readily achievable. The first two
advantages are related to the population-based
searching property (Figure 5). Indeed, while the
gradient method determines the next searching point
using the gradient information at the current searching
point, the GA determines the next set of multiple
search points using the evaluation of the objective
function at the current multiple searching points.
When only gradient information is used, the next
searching point is strongly influenced by the local
geometric information of the current searching point
so that the search may remain trapped in a local
minimum. On the contrary, the GA determines the
next multiple searching points using the fitness values
of the current searching points, which are spread
throughout the searching space, and it can also resort
to the additional mutation to escape from local
minima.
The key disadvantage of a GA is that its convergence
speed becomes slow near the global optimum.
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Figure 5. GA search and gradient-based search [25]

4.1. Definitions
It is important to be acquainted with the technical
terms of GAs.
Individuals and Population: An individual is a
chromosome, constituted by 1n ≥  genes and a
population is a collection of individuals. To
code/decode the i-th gene in a control factor, that is in
an argument of the objective function, the user:
• defines the range ( , )i ia b of the corresponding

argument in the objective function;
• assigns the resolution of that independent variable

by dividing the range ( , )i ia b  in in2 intervals. A
number ni of bits is then assigned to the substring
representative of the gene and the relation
between a real value ),( ii bax ∈ and its binary
counterpart β is

in
ii

i
abax

2
−

+= β (18)

The values ia , ib , in are called the phenotyping
parameters of the gene.
Figure 6 shows the constituents of a chromosome
made up of three genes and the relation between the

genotype and the external environment, i.e. the
phenotype, constituted by three control factors,

1 2 3, ,x x x , one for each gene. The passage from the
genotype to the phenotype and vice versa is ruled by
the phenotyping parameters of all genes, which
perform the coding/decoding actions. Each individual
is characterized by fitness, defined as the value of the
objective function calculated in correspondence of the
control factors pertaining to that individual. Thus a
population is a collection of points in the solution
space, i.e. in the space of f.

Figure 6. Components of an individual (a
chromosome) and its fitness

An important feature of a population is its genetic
diversity: if the population is too small, the scarcity of
genetic diversity may result in a population dominated
by almost equal chromosomes and then, after
decoding the genes and evaluating the objective
function, in the quick convergence towards an
optimum which may well be a local one. At the other
extreme, in too large populations, the overabundance
of genetic diversity can lead to clustering of
individuals around different local optima: then the
mating of individuals belonging to different clusters
can produce children (newborn strings) lacking the
good genetic part of either of the parents. In addition,
the manipulation of large populations may be
excessively expensive in terms of computer time.
In most computer codes the population size is kept
fixed at a value set by the user so as to suit the
requirements of the model at hand. The individuals
are left unordered, but an index is sorted according to
their fitnesses. During the search, the fitnesses of the
newborn individuals are computed and the fitness
index is continuously updated.

4.2. Creation of the initial population
As said above, the initial population is generated by
random sampling the bits of all the strings. This
procedure corresponds to uniformly sampling each
control factor within its range. The chromosome
creation, while quite simple in principle, presents
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some subtleties worth to mention: indeed it may
happen that the admissible hypervolume of the control
factors is only a small portion of that resulting from
the Cartesian product of the ranges of the single
variables, so that one must try to reduce the search
space by resorting to some additional condition in
terms of suitable physical criteria to be satisfied. This
remark also applies to the chromosome replacement,
below described.

4.3. The traditional breeding algorithm
The breeding algorithm is the way in which the
( 1)-thn +  population is generated from the n-th
previous one.
The first step of the breeding procedure is the
generation of a temporary new population. Assume
that the user has chosen a population of size N
(generally an even number). The population
reproduction is performed by resorting to the Standard
Roulette Selection rule: to find the new population,
the cumulative sum of the fitnesses of the individuals
in the old population is computed and normalized to
sum to unity.  The new population is generated by
random sampling individuals, one at a time with
replacement, from this cumulative sum, which then
plays the role of a cumulative distribution function
(cdf) of a discrete random variable (the position of an
individual in the population). By so doing, on the
average, the individuals in the new population are
present in proportion to their relative fitness in the old
population. Since individuals with relatively larger
fitness have more chance to be sampled, most
probably the mean fitness of the new population is
larger.
The second step of the breeding procedure, i.e. the
crossover, is performed as indicated in Figure 7: after
having generated the new (temporary) population as
above said, N/2 pairs of individuals, the parents, are
sampled at random without replacement and
irrespectively of their fitness, which has already been
taken into account in the first step. In each pair, the
corresponding genes are divided into two portions by
inserting at random a separator in the same position in
both genes (one-site crossover): finally, the first
portions of the genes are exchanged. The two
chromosomes so produced, the children, are thus a
combination of the genetic features of their parents. A
variation of this procedure consists in performing the
crossover with an assigned probability cp  (generally
rather high, say 0.6cp ≥ ): a random number R is
uniformly sampled in (0,1] and the crossover is
performed only if cR p< . Vice versa, if cR p≥ , the
two children are copies of the parents.

Figure 7. Crossover in a population with
chromosomes constituted by three genes

The third step of the breeding procedure, performed
after each generation of a pair of children, concerns
the replacement in the new population of two among
the four involved individuals. The simplest recipe,
again inspired by natural selection, just consists in the
children replacing the parents: children live, parents
die. In this case, each individual breeds only once.
The fourth and last step of the breeding procedure
eventually gives rise to the final ( 1)-thn +  population
by applying the mutation procedure to the (up to this
time temporary) population obtained in the course of
the preceding steps. The procedure concerns the
mutation of some bits in the population, i.e. the
change of some bits from their actual values to the
opposite one (0 → 1) and vice versa. The mutation is
performed on the basis of an assigned mutation
probability for a single bit (generally quite small, say

310− ). The product of this probability by the total
number of bits in the population gives the mean
number µ  of mutations. If 1µ <  a single bit is
mutated with probability µ . Those bits to be actually
mutated are then located by randomly sampling their
positions within the entire bit population.

The sequence of successive population generations is
usually stopped according to one of the following
criteria:
1. when the mean fitness of the individuals in the

population increases above an assigned
convergence value;

2. when the median fitness of the individuals in the
population increases above an assigned
convergence value;

3. when the fitness of the best individual in the
population increases above an assigned
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convergence value. This criterion guarantees that
at least one individual is good enough;

4. when the fitness of the weakest individual in the
population drops below an assigned convergence
value. This criterion guarantees that the whole
population is good enough;

5. when the assigned number of population
generations is reached.

More sophisticated techniques of reproduction,
crossover and replacement can be employed for a
more effective search.
Furthermore, in general, the initial population sampled
contains a majority of second-rate individuals together
with few chromosomes, which, by chance, have
moderately good fitnesses. Then, the selection rules
are such that, in a few generations, almost all the
moderately good chromosomes, which are actually
mediocre individuals, are selected as parents and
generate children of similar fitnesses; thus, almost all
the second-rate individuals disappear, and most of the
population gathers in a small region of the search
space around one of the mediocre individuals. In this
case, the genetic diversity is drastically reduced and
the algorithm may achieve a premature convergence
of the population fitness to a local maximum. In the
course of the successive generations, the crossover
procedure generates mediocre individuals, which are
substituted in place of other mediocre individuals, so
that the genetic selection may be seen as a random
walk among mediocres. To obviate to this unpleasant
premature convergence to mediocrity, a pre-treatment
of the fitness function is often welcome. This is
typically done by means of an affined transform of the
fitnesses. Instead of applying the selection rules to the
fitness ( )f x  one works with its affined transform

'( )f x , viz.,

bxfaxf += )()(' (19)

where a and b are chosen so as to favour, at the
beginning, the less fit individuals, thus maintaining
genetic diversity and avoiding premature convergence
[18].

5. Conclusion
These lecture notes have briefly sketched some of the
concepts underlying the modern computational
paradigms of neural networks, fuzzy logic systems
and genetic algorithms, which are becoming of
significant interest for application to condition
monitoring and fault diagnostics for maintenance. Due
to the limitation in the number of pages, only an
intuitive and non-exhaustive treatment has been
provided. Whereas some examples of practical

application will be illustrated during the lecture, the
interested reader is invited to refer to the specialized
literature for further, in-depth details on the different
techniques.
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