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1. Introduction
In recent years, many efforts have been devoted to the
development of automatic diagnostic techniques based
on statistical or geometric methods, neural networks,
expert systems, fuzzy and neuro-fuzzy approaches
[22], [11], [15], [5], [7]. These techniques have proven
to be very effective but often remain “black boxes” as
to the interpretation of the physical relationships
underpinning the fault classification.
In an effort to overcome this limitation, a systematic
approach to fault classification has been introduced by
the authors leading to a Fuzzy Decision Tree (FDT)
[25], [26]. The main advantages of the proposed
approach from the operator point of view are the
transparency of the resulting classification model and
its visualization in the form of a DT [14], [20].
The construction of the Decision Tree (DT) is pursued
starting from the fuzzy rules of a Fuzzy Rule Base
(FRB) derived from a clustering algorithm tailored to
fault classification [25]. To do this, every Fuzzy Set
(FS) representing a deviation of the monitored signals
in the respective ranges of variability (Universes of
Discourse, UODs, in Fuzzy Logic terminology) is
associated to a symptom of a fault class and the FRB
of the model is translated into a Symptom Table in
which the relationships between fault classes and
symptoms are explicitly laid out.

In practice, however, it is often difficult to attribute the
detected symptoms to a given fault class, given that
one fault may cause several symptoms and dually a
symptom may describe more than one possible fault.
To solve this problem, the relationships between fault
classes and symptoms contained in the Symptoms
Table are systematically represented in a DT, which is
then quantified by applying the rules of Fuzzy Logic.
The design of the DT entails the successive
consideration of the symptoms. These can be
considered in different orders, leading to different
structures of the DT and thus different classification
performances. Hence, a combinatorial optimisation
problem arises with regards to the DT design.
In this paper, a single-objective genetic algorithm
search is devised to find the sequence of symptoms
leading to the optimal configuration of the DT, i.e. that
which achieves the maximum classification
performance.
The paper is organized as follows. Section 2 illustrates
the procedure adopted for the construction of the DT
and its fuzzy quantification. In Section 3, the results
related to its application to an artificial case study
regarding the classification of data randomly extracted
from six different Gaussian distributions are reported.
Section 4 presents the optimisation of the FDT by a
single-objective genetic algorithm maximizing the
percentage of correct classifications. A synthetic
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discussion of the findings of the work is provided in
the last Section.

2. From a Fuzzy Classification Model to a
Fuzzy decision Tree
Let us consider an industrial system or plant whose
“state of health” is monitored by a set of sensors,
which collect the relevant parameters data at a given
frequency. These data (also called “signals”) provide a
picture of the health state of the plant. A particular
picture corresponds to the plant functioning in nominal
conditions, with all the signals within their design
envelope. Deviations from the nominal states are due
to faults of different types (classes), which may occur
to the components of the plant, leading to different
“pictures” of the monitored signals.
When a generic fault of class jΓ , 1,...,j c= , occurs in
the plant, corresponding representative symptoms are
observed by the monitoring system, in terms of
variations in the signal values. A symptom associated
to the fault of class jΓ  is a deviation of a monitored
signal from its reference value, outside of the allowed
design envelope. The objective of fault identification is
to build a system capable of recognizing the fault as of
class jΓ  on the basis of the measured symptoms, i.e.
the monitored signals.
In this work, we assume that the classification of the
fault is performed by applying a previously built FRB
(for example, a possible method for building an FRB
from available pre-classified data is presented in [25]).
Such FRB has one fuzzy rule for each fault class: the
generic rule j  associates the symptoms of the
monitored signals (input data) to the fault class jΓ . In
the fuzzy rules, each one of the FSs of the antecedents
describes a deviation of a monitored signal, i.e. a
symptom, except those FSs representing the still
nominal conditions of those monitored signals which
are unaffected by the particular fault. Correspondingly,
the generic FS pjX  associated to the p -th antecedent
in rule j , 1,...,p n= , 1,...,j c= , represents a
symptom for the class of faults jΓ .
Notice that the relations between fault classes and
symptoms (signals deviations) are not univocal: the
faults of a given class may initiate several symptoms
and in turn one symptom may be a legitimate
representative of several possible fault classes.
On the other hand, an adequately designed monitoring
system should be capable of associating to each fault
class a unique set of symptoms (signal deviations).
This leads to a Symptom Table such as the one
reported in Table 1, where rS , 1,...,r s= , denotes the
generic symptom.

The binary vector 1 2[ , ,..., ]j j j jsI I Iσ =  represents the

reference symptoms vector for fault class jΓ ,

1,...,j c= . Each element jrI  is a binary value that
corresponds to the presence or absence of symptom r
when a fault of class jΓ  has occurred, sr ,...,1= ,

cj ,...,1= .

Table 1. Symptom Table: Reference relations between
fault classes and symptoms [13]
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cΓ 1cI 2cI …
crI …

csI

During operation, the monitored signals could then be
translated into an observation vector

' ' ' '
1 2( , ,..., )sI I Iσ = , which carries the information on

the presence or absence of the symptoms. As explained
earlier, a symptom is present in the system if its
representative measured signal has deviated from its
nominal value beyond the design envelope. For
example, a patient has the symptom “fever” if his or
her monitored temperature rises to a “high” value, i.e.
above 37°C.
However, in practice often the presence or absence of a
symptom remains uncertain and ambiguous due to the
complexity of the non-linear signal behaviours
associated to the various faults, to the measurement
errors of the monitoring sensors and to the imprecise
and ambiguous definition of the signal deviation
ranges and the associated linguistic labels [25]. To
reflect this uncertainty, a fuzzy observation vector

' ' ' '
1 2( , ,..., )f sσ µ µ µ=  is associated to a pattern of
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deviations of the monitored signals measured in
correspondence of a given fault, where '

rµ , 1,...,r s= ,
is the value of the membership of the FS corresponding
to the symptom rS  and gives the degree with which it
is present in the monitored situation being examined.
The fault identification problem is then to identify
which fault class is occurring in the plant on the basis
of the fuzzy observation vector '

fσ . To tackle this
problem a systematic procedure for constructing a DT
is presented below [26].

2.1. Decision Tree
Based on the Symptom Table 1, a complete DT can be
diagrammed by examining all s  symptoms one by one
[7]. Taking into consideration all possible
combinations of symptoms, the DT will have 2s

branches given that each of the s  symptoms can be
either present or absent. On the other hand, only one
combination of symptoms corresponds to a given fault:
thus, only c  of the 2s  tree branches correspond to a
class while the remaining 2s c−  combinations of
symptoms cannot be associated to a class.
For building a smaller, more transparent and easier to
interpret DT, two main hypotheses are assumed [26],
[13]:
- if a symptom is indicated as present in the measured
observation vector 'σ , it is certainly present in the
system;
- the presence of a single symptom characteristic of a
fault suffices to conclude that the measured pattern of
signals belongs to that fault class.
In this context, defining an “unwanted” symptom as a
symptom that, although not present in the system,
somehow is present by mistake in the observation
vector and a “missing” symptom as a symptom that is
not observed although it is present in the system [13],
the first hypothesis can be called of “impossibility of
unwanted symptoms” and the second of “possibility of
missing symptoms”.
The procedure for building the DT proceeds as
follows:
1. A root node is placed at the top of the tree.
This node refers to all possible fault classes identified
for the system under analysis.
2. A symptom from the Symptom Table is
associated to this node.
3. The root node is split into two branches: the
left corresponding to the presence of the symptom, the
right to the absence of the symptom.
4. The fault classes for which the symptom is
present are associated to a node under the left branch.

If only one fault class is found to contain the symptom,
then the associated node is a terminal leaf of the branch
and its identification is guaranteed by the fact that it
has been assumed that a symptom that is absent in the
system cannot be indicated as present (impossibility of
unwanted symptoms hypothesis). The fault class
associated to the identified leaf may be also associated
to other leaves, at the end of other branches in the tree.
This accounts for the possibility that a symptom is not
indicated as present by the monitoring system although
it actually is (possibility of missing symptoms
hypothesis). If more than one fault class are associated
to the node characterized by the identified symptom, a
new symptom is searched in the Symptom Table and
associated to the node in order to differentiate between
the identified fault classes. To select the new
differentiating symptom, the previous procedure is
applied, starting from step 2.
5. The right branch from the root node is further
developed by first adding a node associated to all
possible fault classes. This node is then treated as a
local root node to which the branching procedure is
applied starting from step 2.
6. The tree development terminates when all
symptoms have been considered and their associated
branches developed down to the distinguishing leaves
of the individual fault classes.
A path through the branches of the tree, from the root
node to a leaf, identifies a crisp observation vector 'σ
of symptoms representative of the fault class
associated to the corresponding leaf. As pointed out
above, different paths may lead to different leaves
associated to the same fault class, due to the possibility
of missing symptoms.
In operation, the DT gives the correct diagnosis when
the measured symptom vector matches completely
with the reference symptom vector of a fault class; on
the contrary, the diagnosis is conservative in case of a
missing symptom, i.e. it is not necessary to have all the
symptoms to diagnose the fault.
Finally, in case of unwanted symptoms, the
classification is driven by the structure of the tree and
the classification will be wrong if the first symptom
considered is an unwanted symptom.
From the above it appears that an issue of adequate DT
design arises with respect to the order with which the
successive symptoms are considered for optimal
classification performance.

2.2. Classification by the FDT
In the realistic case of ambiguity in the actual presence
or absence of a symptom, in correspondence of a given
pattern of signal deviations the degree of activation of
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Figure 1. Propagation of fuzzy information through the DT

each symptom rS , 1,...,r s= , is computed from the
MF of the corresponding FS. The DT then becomes a
FDT and the possibility classification of a given
pattern of measured signal deviations is performed by
proceeding through all the branches of the tree and
computing the MFs to each fault class, at the tree
leaves.
The symptoms degrees of activation are then
propagated through the DT according to the rules of FS
theory. In particular, the logic operator of negation of a
symptom rS  is implemented by ( )1

rSµ−  in the right
branch corresponding to the absence of the symptom
whereas its complement

rSµ  is propagated along the
left branch associated to its presence (Figure 1). The
connection between two nodes of the tree represent a
logic operator of intersection (and), implemented as
the algebraic product of the membership values in this
work.
Finally, since more than one terminal leaf can indicate
the same class, the final membership to a given class is
computed through the logic operation of union (or) of
all the leaves associated to that class. The logic
operator or is here implemented as the MFs sum
limited to 1, accordingly to the rules of FS arithmetic.
As mentioned at the end of Section 2.1, different
sequences of symptoms lead to different DTs and,
implicitly, to different classification performances. For
realistic problems, the number of possible sequences of
symptoms for building the DT is combinatorial, so that
a trial and error process for finding the optimal
structure of the tree, i.e. that which allows obtaining
the maximum classification performance, would not be
practical. For example, the number of possible
sequences of a group of 15 symptoms, would be
approximately 1110  and to each sequence corresponds
a different DT whose classification performance must
be evaluated.

3. Application of the FDT to an artificial case
study
The classification approach has been applied to the
artificial four-dimensional, six-classes data set of
Figure 2. The data have been obtained by random
sampling from 6 different Gaussian distributions and
can be assumed to represent the system response
signals resulting from 6 different types of system
faults.
The previously illustrated procedure for classifying the
data into the six classes (Section 2) consists of two
main steps: the first one is the building of the FRB, i.e.
a set of transparent and accurate fuzzy rules and the
second one is the construction and quantification of the
corresponding FDT.
A fuzzy clustering – based method has been used for
obtaining the FRB from available pre-classified data
[25]. The resulting FRB is composed of 6=c  rules,
one for each class (Table 2).
To build the associated DT, first each antecedent of the
rules in the FRB is associated to a symptom, resulting
in 15 possible symptoms, indicated as iS ,

1, 2,...,15i = , in Table 2. This allows the translation
of the FRB in the Symptom Table 3.

Then, by applying the steps 1.– 6. of the procedure for
building the DT (Section 2.1) on the sequence of
symptoms 0 1 2 15[ ; ; ... ; ]S S SΣ = , one obtains the DT
reported in Figure 3.
The possibility quantification of the degree of
membership to different classes can be performed as
described in Section 2.2, i.e. propagating through the
branches of the tree the degree of activation of each
symptom according to the rules of Fuzzy Logic. The
final assignment of an incoming pattern of signals to a
class is conservatively realized as follows:
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Figure 2. Four-dimensional data set comprised of six classes

Table 2. The Table of rules of the FRB

R
ul

e

IF

1x 2x 3x 4x

THEN

1Γ 2Γ 3Γ 4Γ 5Γ 6Γ

1 Low 1S  Low 4S  Low 9S  Medium 12S Yes No No No No No

2 High 2S  Medium 5S  Medium 10S  High 13S No Yes No No No No

3 High 2S  High 6S  Medium 10S  High 13S No No Yes No No No

4 High 2S  Low 4S  Medium 10S  Low 14S No No No Yes No No

5 High 2S  Higher 7S  Medium 10S  Medium 12S No No No No Yes No

6 Higher 3S  Highest 8S High 11S Higher 15S No No No No No Yes
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         Table 3. Symptom Table
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1S 2S 3S 4S 5S 6S 7S 8S 9S 10S 11S 12S 13S 14S 15S

1Γ 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0

2Γ 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0

3Γ 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0

4Γ 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0

5Γ 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0

6Γ 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1

- the pattern is declared assigned to a class (in
possibility terms), if the membership grade to the
respective class is larger than a confidence
threshold γ  (here chosen equal to 0.6);

- the pattern is declared ‘atypical’, if none of the
membership grades is larger than γ ;

- the pattern is declared ‘ambiguous’, if more than
one membership grade is larger than γ .

A test on a set of 600 data has resulted in only 40.67%
correct classifications to the six fault classes, while

10.5% of the data are considered as atypical, 2.33% as
ambiguous and 46.5% are assigned to the wrong class.
The obtained performance is obviously unacceptable
and motivates the search for an optimal or near-optimal
sequence of symptoms upon which to build the DT.
The objective of the optimisation algorithm is to find
the sequence of symptoms that leads to the DT with the
best classification performance in terms of percentage
of correct classifications. The number of possible
sequences of symptoms is 15! (~ 1110 ), in Section 4,
this combinatorial optimisation problem is tackled by a
single-objective genetic algorithm.
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Figure 3. DT for classification, built with the ordered sequence of symptoms 0Σ

4. Genetic algorithm optimisation of the
decision tree design
, a procedure based on a single-objective genetic In
this Section algorithm (Appendix A) is carried out for
determining the sequence of symptoms to which
corresponds the FDT with the maximum classification
performance. The genetic algorithm can be seen as
performing a wrapper search [12] around the
classification algorithm (Figure 4): the symptoms
sequence selected during the search is evaluated using
as criterion (fitness) the percentage of correct classified
data achieved by the FDT itself.
The data and rules of the genetic algorithm search are
given in Table 4. These parameters have been
established through a systematic procedure of
experimentation. The objective (fitness) function to be

maximized is the percentage of correct data
classifications; the decision variable is the symptoms
sequence.

Table 4. GA run parameters

Number of chromosomes in the
population

100

Number of generations (termination
criterion) 50

Selection Standard
Roulette

Replacement Children -
Parents

Mutation probability 0.01

Crossover probability (one-site) 1

Figure 4. Single-objective genetic algorithm “wrapper” search
Each chromosome is made up by 15 genes, one gene
for each symptom. The single gene can assume any

integer value in [0,15] that encodes the “swap”
position of the symptom along the sequence. An
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example of a chromosome coding a particular
sequence is given in Figure 5. To decode the
chromosome in its corresponding symptom sequence, a
15 – steps procedure is performed, one for each gene.
At the generic step 1, 2,...,15i = , the ordered
sequence 1i−Σ  and the value k  contained in the i -th
gene are considered: the symptom in the i -th position
of 1i−Σ  is swapped with the symptom in the k -th
position of the sequence. For example in the first step
of Figure 5, the value 7 in gene 1 means that the
symptom 1S  is placed in position 7 of the sequence
and simultaneously the symptom that occupied
position 7 is swapped to position 1. This operation is
carried out until the 15th gene of the chromosome is
worked out, leading to the final sequence:

15 3 11 5 12 6 8 7 2 1 10 13 9 14 4 15[ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ]S S S S S S S S S S S S S S SΣ =

Note that this original chromosome random design
leads to a coherent symptom sequence, i.e. without
repetition of symptoms, thus avoiding computationally
burdensome chromosome coherence checking a
posterior.
The optimal sequence found at convergence of the
genetic algorithm is:

1 4 6 7 3 12 10 13 15 5 1 14 11 8 9 2[ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ]S S S S S S S S S S S S S S SΣ =

The FDT built following this sequence ends into 46
leaves and achieves a classification performance of
91.34%, while 5.33% of the data are considered as
atypical, 0.33% as ambiguous and only 3% are
assigned to the wrong class.

Figure 5. Example of a chromosome and the corresponding sequence
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5. Conclusion
In realistic applications, fault classification is usually
based on ambiguous information, which can be
effectively handled within a fuzzy logic framework. A
Fuzzy Decision Tree can then be built to logically
structure the uncertain information available. To each
fault class corresponds a classification rule, with
mono-dimensional Fuzzy Sets representing the
characteristic symptoms for the corresponding fault
class.
The classification performance by the resulting FDT is
dependent on the order in which the symptoms are
considered in the building procedure of the DT. This
leads to an optimisation problem with respect to the
construction of the tree. In this work, this problem has
been tackled by means of a single-objective genetic
algorithm in which the different sequences of
symptoms are coded into the chromosomes of the
genetic population by an original procedure, which
guarantees coherence, i.e. no repetition of symptoms in
the sequence.
The genetic algorithm-based optimisation procedure
developed has been successfully applied to a test case
regarding the development of Fuzzy Decision Trees for
the classification of artificial data. Undergoing
research concerns the application of the developed
classification procedure to a real diagnostic problem.

Appendix A: A brief recall of Genetic
Algorithms
In the following, only a concise snapshot is provided
on the basics of genetic algorithms optimisation. For
an extensive and detailed presentation of this
computational paradigm, the interested reader is
invited to consult the available copious literature [18],
[17], [3], [6], [9], [4], [2].
Genetic Algorithms (GAs) are optimisation methods
aiming at finding the global optimum of a set of real
objective functions, { },)(⋅≡ fF  of one or more decision
variables, { }uU ≡ , possibly subject to various linear
or non linear constraints. Their main properties are that
the search is conducted i) using a population of
multiple solution points or candidates, ii) using
operations inspired by the evolution of species, such as
breeding and genetic mutation, iii) using probabilistic
operations, iv) using only information on the objective
or search function and not on its derivatives [16].
GAs owe their name to their operational similarities
with the biological and behavioural phenomena of
living beings. After the pioneering theoretical work by
John Holland [10], in the last decade a flourishing
literature has been devoted to their application to real
problems. The basics of the method may be found in

Goldberg [8]; some applications in various contexts are
included in Chambers [1].
The terminology adopted in GAs contains many terms
borrowed from biology, suitably redefined to fit the
algorithmic context. Thus, GAs operate on a set of
(artificial) chromosomes, which are strings of numbers,
generally sequences of binary digits 0 and 1. If the
objective function of the optimisation has many
arguments (typically called control factors or decision
variables), each string is partitioned in as many
substrings of assigned lengths, one for each argument
and, correspondingly, we say that each chromosome is
partitioned in (artificial) genes. The genes constitute
the so-called genotype of the chromosome and the
substrings, when decoded in real numbers, constitute
its phenotype. When the objective functions are
evaluated in correspondence of a set of values of the
control factors of a chromosome, its values are called
the fitness of that chromosome. Thus, each
chromosome gives rise to a trial solution to the
problem at hand in terms of a set of values of its
control factors.
The GA search is performed by constructing a
sequence of populations of chromosomes, the
individuals of each population being the children of
those of the previous population and the parents of
those of the successive population. The initial
population is generated by randomly sampling the bits
of all the strings. At each step, the new population is
then obtained by manipulating the strings of the old
population in order to arrive at a new population
hopefully characterized by increased mean fitness.
This sequence continues until a termination criterion is
reached. As for the natural selection, the string
manipulation consists in selecting and mating pairs of
chromosomes in order to groom chromosomes of the
next population. This is done by repeatedly performing
on the strings the four fundamental operations of
reproduction, crossover, replacement and mutation, all
based on random sampling: the parents’ selection step
determines the individuals which participate in the
reproduction phase; reproduction itself allows the
exchange of already existing genes whereas mutation
introduces new genetic material; the substitution
defines the individuals for the next population. This
way of proceeding enables to efficiently arrive at
optimal or near-optimal solutions.
With regards to their performance, it is acknowledged
that GAs takes a more global view of the search space
than many other optimisation methods. The main
advantages are i) fast convergence to near global
optimum, ii) superior global searching capability in
complicated search spaces, iii) applicability even when
gradient information is not readily achievable.
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