# AST ALGORITHMS OF ASYMPTOTIC ANALYSIS OF NETWORKS WITH UNRELIABE EDGES 

G.Sh. Tsitsiashvili<br>guram@iam.dvo.ru,<br>A.S. Losev<br>Alexax@bk.ru<br>690041, Vladivostok, Radio St. 7, Institute for Applied Mathematics Far Eastern Branch of RAS


#### Abstract

A problem of a reliability in networks with unreliable elements naturally origin in technical applications [1]. But a direct calculation of the reliability demands a number of operations which increases geometrically dependently on a number of edges. So it is necessary to use approximate methods and particularly asymptotic one. In [2] a reliability asymptotic is calculated in analogous asymptotic suggestions on the network edges. Main parameters in these asymptotic are a shortest way length and a maximal flow in a network. In this paper different partial classes of networks are considered and effective algorithms of their parameters calculations are suggested. These networks are networks originated by dynamic systems, networks with integer-valued lengths of edges, superposition of networks and bridge schemes.


## 1. Preliminaries

Define the graph $\Gamma$ with the finite nodes set $U$ and the set $W$ of edges $w=(u, v)$. The graph $\Gamma$ may contain cycles or not, its edges may be oriented or not. Denote by $\mathcal{R}(u)$ the set of all ways $R$ of the graph $\Gamma$, which connect the nodes $u_{0}, u$, and assume that $R(u) \neq \varnothing, u \in U$. Suppose that $\Gamma(u)$ is the sub-graph of the graph $\Gamma$, which consists of the ways $R \in \mathbb{R}(u)$. Consider the sets

$$
\mathcal{A}(u)=\left\{A \subset U: u_{0} \in A, u \notin A\right\}, L=L(A)=\left\{\left(u, u^{\prime}\right): u \in A, u^{\prime} \notin A\right\}
$$

And the set $\mathcal{L}(u)=\{L(A), A \in \mathcal{A}(u)\}$ of all sections of the sub-graph $\Gamma(u)$.
Characterize each edge $w \in W$ of the graph $\Gamma$ by the logic number $\alpha(w)=I$ (the edge $w$ works), where $I(B)$ is the indicator function of the event $B$. Denote

$$
\beta(u)=\underset{R \in \mathbb{R}(u)}{\vee} \wedge_{w \in R} \alpha(w)
$$

the characteristic of the nodes $u_{0}, u$ connectivity in the graph $\Gamma$. Suppose that $\alpha(w), w \in W$, are independent random variables, $P(\alpha(w)=1)=p_{w}(h), q_{w}(h)=1-p_{w}(h)$, where $h$ is small parameter: $h \rightarrow 0$. In [2] the following statements are proved.

Theorem 1. Suppose that $p_{w}(h) \sim \exp \left(-h^{-c(w)}\right), h \rightarrow 0$, where $c(w)>0, w \in W$. Then

$$
\begin{equation*}
-\ln P(\beta(u)=1) \sim h^{-D(u)}, \quad D(u)=\min _{R \in \mathcal{R}(u)} \max _{w \in R} c(w) . \tag{1}
\end{equation*}
$$

Theorem 2. Suppose that $q_{w}(h) \sim \exp \left(-h^{-c_{1}(w)}\right), h \rightarrow 0$, where $c_{1}(w)>0, w \in W$. Then

$$
\begin{equation*}
-\ln P(\beta(u)=0) \sim h^{-D_{1}(u)}, \quad D_{1}(u)=\max _{R \in \mathbb{R}(u)} \min _{w \in R} c_{1}(w) . \tag{2}
\end{equation*}
$$

Theorem 3. Suppose that $p_{w}(h) \sim h^{g(w)}, h \rightarrow 0$, where $g(w)>0, w \in W$. Then

$$
\begin{equation*}
-\ln P(\beta(u)=1) \sim T(u) \ln h, \quad T(u)=\min _{R \in \mathbb{R}(u)} \sum_{w \in R} g(w) . \tag{3}
\end{equation*}
$$

Theorem 4. Suppose that $q_{w}(h) \sim h^{g(w)}, h \rightarrow 0$, where $g(w)>0, w \in W$. Then

$$
\begin{equation*}
-\ln P(\beta(u)=0) \sim T_{1}(u) \ln h, \quad T_{1}(u)=\min _{L \in \mathcal{L}(u)} \sum_{w \in L} g(w) . \tag{4}
\end{equation*}
$$

Statement 1. Suppose that all $c(w)$ (all $\left.c_{1}(w)\right), w \in W$, are different. Then there is the single edge $w(u)$ (there is the single edge $w_{1}(u)$ ), so that $c(w(u))=D(u)\left(c_{1}\left(w_{1}(u)\right)=D_{1}(u)\right.$. It is called the critical edge.

## 2. Graphs generated by dynamic systems

Suppose that the set $U$ consists of non-intersected subsets $U_{0}, U_{1}, \ldots, U_{m}$, and the set $U_{0}$ contains the single vertex $u_{0}$, which is called initial. All edges of the oriented graph $\Gamma$ are represented as $\left(u_{i}, u_{j}\right), 1 \leq i<j \leq m, u_{i} \in U_{i}, u_{j} \in U_{j}$, and each vertexis accessible from the initial vertex $u_{0}$. Described graphs are generated by dynamic systems with a delay. In this section we calculate $D(u), D_{1}(u), T(u)$ and find critical edges $w(u), w_{1}(u)$ for a fixed $u_{0}$.

A main idea of this section is an application of the Floyd algorithm [3], when a solution is calculated for all $u \in U$. To construct fast algorithms it is natural to constrict a class of considered graphs. An idea of such a constriction is illustrated in [4] but for a fixed $u$.

Suppose that $D\left(u_{0}\right)=D_{1}\left(u_{0}\right)=T\left(u_{0}\right)=0$, for all $u \in U_{1}$ put

$$
D(u)=D_{1}(u)=T(u)=c(u), w(u)=w_{1}(u)=\left(u_{0}, u\right) .
$$

For $u \in U$ define $S(u)=\{v:(v, u) \in W\},|S(u)|$ a number of elements in the finite set $S(u)$. Assume that for all $u \in U_{1}, \ldots, U_{k}$ the meanings $D(u), D_{1}(u), T(u), w(u), w_{1}(u)$ are defined. Take $u \in U_{k+1}$ and in an accordance with the formulas (1), (2) put

$$
\begin{equation*}
D(u)=\min _{v \in S(u)} \max (c(v, u), D(v)), \quad D_{1}(u)=\max _{v \in S(u)} \min \left(c(v, u), D_{1}(v)\right), \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
T(u)=\min _{v \in S(u)}(c(v, u)+T(v)), k \geq 1 \tag{6}
\end{equation*}
$$

To calculate each element from the set $D(u), D_{1}(u), T(u), u \in U$ it is necessary $2|S(u)|-1$ arithmetic operations and this number can not be decreased. So the algorithm (5), (6) is optimal. And if for fixed $u \in U \quad D(u), D_{1}(u), T(u)$ are calculated by the algorithm (5), then we find $D(v), D_{1}(v), T(v)$ for all nodes $v$ from which the vertex $u$ is accessible.

To define critical edges it is necessary to complement the formulas (5) by

$$
\begin{gather*}
w(u)=w_{1}(u)=\left(u_{0}, u\right), \text { if } u_{0} \in S(u), \\
w(u)=\left\{\begin{array}{l}
w(v), \text { if } D(u)=\max (D(v), c(v, u))>c(v, u), \\
(v, u), \text { if } D(u)=\max (D(v), c(v, u))>D(v),
\end{array}\right.  \tag{7}\\
w_{1}(u)=\left\{\begin{array}{c}
w_{1}(v), \text { if } D_{1}(u)=\max \left(D_{1}(v), c(v, u)\right)<c(v, u), \\
(v, u), \text { if } D_{1}(u)=\max \left(D_{1}(v), c(v, u)\right)<D(v) .
\end{array}\right. \tag{8}
\end{gather*}
$$

## 3. Graphs with integer-valued lengths of edges

In this section we consider a calculation of $T(u)$ for all $u \in U$ in graphs with integer-valued lengths of edges. Suppose that $g(w), w \in W$, are natural numbers, $g(w) \leq \bar{g}<\infty$ and define

$$
\begin{equation*}
G_{\Gamma}=\sum_{w \in W} g(w) . \tag{9}
\end{equation*}
$$

Divide each edge of the graph $\Gamma$ into edges with unit lengths by an introduction of intermediary nodes. As a result obtain the graph $\Gamma^{1}$ with the nodes set $U^{1}, U \subseteq U^{1}$ and with the edges set $W^{1}$. Denote $N\left(u^{1}\right)$ the minimal number of the graph edges in ways, which connect the nodes $u_{0}, u^{1}$. It is easy to obtain that

$$
\begin{equation*}
N(u)=G(u), u \in U . \tag{10}
\end{equation*}
$$

Consider now an algorithm of $N\left(u^{1}\right), u^{1} \in U^{1}$ calculation.
Suppose that all nodes of the graph. $\Gamma^{1}$ are not marked. Mark the vertex $u_{0}$, and put $U_{0}^{1}=\left\{u_{0}\right\}$. Then construct a recurrent procedure of non-intersected sets $U_{k}^{1}, k \geq 0$, definition. Suppose that the sets $U_{k}^{1}, V_{k}^{1}=\bigcup_{0 \leq i \leq k} U_{i}^{1}$ are known and all nodes of the set $V_{k}^{1}$ are marked and all other nodes are not marked. Define the set. $U_{k+1}^{1}$ as a set of all unmarked nodes from $U^{1}$, which are
connected directly with some vertexfrom the set $U_{k}^{1}$. By a definition the set $U_{k+1}^{1}$ satisfies the formula

$$
U_{k+1}^{1}=\left\{u^{1}: N\left(u^{1}\right)=k+1\right\} .
$$

Mark all nodes of the set $U_{k+1}^{1}$ and define the set $V_{k+1}^{1}=V_{k}^{1} \cup U_{k+1}^{1}$.
Estimate a number of operations which are necessary to calculate $U_{k+1}^{1}$ if each vertexof the graph $\Gamma$ is connected directly with no more $l$ nodes. Then a number of operations to define $U_{k+1}^{1}$ does not exceed $l\left|U_{k}^{1}\right|$. Define $M$ by the formula

$$
V_{0}^{1} \subset V_{1}^{1} \subset \ldots \subset V_{M}^{1}=V_{M+1}^{1}=\ldots,
$$

then to construct the sequence $U_{1}^{1}, \ldots, U_{M}^{1}$ it is necessary no more $l G_{\Gamma}$ operations where $l G_{\Gamma} \leq l^{2} \bar{g}|U|$. Compare these results with the results of Deikstra [4], in a case when $c(w)$ is not integer-valued. To calculate $D(u), u \in U$ in a general case it is necessary no more $K_{1}|U|^{2}$ operations and for a dendriform graph - no more $K_{2}|U| \ln |U|$ operations, where $K_{1}, K_{2}<\infty$.

## 4. Superposition of graphs

Fix in the graph $\Gamma$ some vertex $v_{0}$. Assume that $\Gamma^{\prime}$ is non-oriented graph with the nodes set $U^{\prime}=\left\{1^{\prime}, \ldots, m^{\prime}\right\}, U \cap U^{\prime}=\varnothing$ and with the edges set $W^{\prime}\left(i^{\prime}, j^{\prime}\right),\left(i^{\prime}, i\right) \notin W^{\prime}$. Distinguish in the graph $\Gamma^{\prime}$ initial and final nodes $u_{0}{ }^{\prime}, v_{0}{ }^{\prime}$ and in the set $U$ - two nodes $\bar{u}, \bar{v}$ so that $\bar{w}=(\bar{u}, \bar{v}) \in W$. Denote by $R^{\prime}$ the set of all ways $R^{\prime}$ of the graph $\Gamma^{\prime}$ from $u_{0}{ }^{\prime}$ to $v_{0}{ }^{\prime}$.

Define the superposition $\bar{\Gamma}=\stackrel{\bar{w}}{\otimes} \Gamma^{\prime}$ of the graphs $\Gamma, \Gamma^{\prime}$ with a replacement of the edge $(\bar{u}, \bar{v})$ from the graph $\Gamma$ by the graph $\Gamma^{\prime}$ and with an aliasing of the nodes $\bar{u}$ with $u_{0}{ }^{\prime}$ and of the nodes $\bar{v}$ with $v_{0}{ }^{\prime}$ correspondingly. Denote by $\bar{U}$ the nodes set, by $\bar{W}$ - the edges set and by $\overline{\mathcal{R}}$ - the set of ways from the vertex $u_{0}$ to the vertex $v_{0}$ in the graph $\bar{\Gamma}$. Put $\mathcal{R}$ the set of ways from $u_{0}$ to $v_{0}$ in the graph $\Gamma, \mathcal{R}^{\prime}$ - the set of ways from $u_{0}^{\prime}$ to $v_{0}^{\prime}$ in the graph $\Gamma^{\prime}$. Analogously define $\overline{\mathcal{L}}, \mathcal{L}, \mathcal{L}^{\prime}$ the sets of sections in the graphs $\bar{\Gamma}, \Gamma, \Gamma^{\prime}$ with pairs of initial and final nodes $\left(\overline{u_{0}}, \overline{v_{0}}\right),\left(u_{0}, v_{0}\right)$, $\left(u_{0}{ }^{\prime}, v_{0}^{\prime}\right)$ correspondingly. Define

$$
\beta=\underset{R \in \mathcal{R},}{\vee} \hat{w \in R}^{\wedge} \alpha(w), \bar{\beta}=\underset{\bar{R} \in \overline{\mathcal{R}}, \underset{w \in \bar{R}}{\vee}}{\wedge} \alpha(w)
$$

characteristics of a connectivity between the nodes $u_{0}, v_{0}$ in the graphs $\Gamma, \bar{\Gamma}$ correspondingly. Then from the theorems 1-4 it is possible to obtain asymptotic formulas for the superposition $\bar{\Gamma}$.
Theorem 5. Suppose that $p_{w}(h) \sim \exp \left(-h^{-c(w)}\right), h \rightarrow 0$, where $c(w)>0, w \in \bar{W}$. Then

$$
-\ln P(\bar{\beta}=1) \sim h^{-\bar{D}}, \quad \bar{D}=\min _{R \in \mathcal{R}} \max _{w \in R} \bar{c}(w),
$$

$$
\bar{c}(w)=c(w), w \neq \bar{w}, \quad \bar{c}(\bar{w})=\min _{R^{\prime} \in R^{\prime}} \max _{w \in R^{\prime}} c(w) .
$$

Theorem 6. Suppose that $q_{w}(h) \sim \exp \left(-h^{-c_{1}(w)}\right), h \rightarrow 0$, where $c_{1}(w)>0, w \in \bar{W}$. Then

$$
\begin{gathered}
-\ln P(\bar{\beta}=0) \sim h^{-\bar{D}_{1}}, \quad \bar{D}_{1}=\min _{L \in L} \max _{w \in R} \bar{c}_{1}(w), \\
\bar{c}_{1}(w)=c_{1}(w), w \neq \bar{w}, \quad \bar{c}_{1}(\bar{w})=\min _{L^{\prime} \in L^{\prime}} \max _{w \in L^{\prime}} c_{1}(w) .
\end{gathered}
$$

Theorem 7. Suppose that $p_{w}(h) \sim h^{g(w)}, h \rightarrow 0$, where $g(w)>0, w \in \bar{W}$. Then

$$
\begin{gathered}
\ln P(\bar{\beta}=1) \sim \bar{T} \ln h, \quad \bar{T}=\min _{R \in \mathbb{R}} \sum_{w \in R} \bar{g}(w), \\
\bar{g}(w)=g(w), w \neq \bar{w}, \quad \bar{g}(\bar{w})=\min _{R^{\prime} \in \mathcal{R}^{\prime}} \sum_{w \in R^{\prime}} g(w) .
\end{gathered}
$$

Theorem 8. Suppose that $q_{w}(h) \sim h^{g(w)}, h \rightarrow 0$, where $g(w)>0, w \in \bar{W}$. Then

$$
\begin{gathered}
\ln P(\bar{\beta}=0) \sim \bar{T}_{1} \ln h, \quad \bar{T}_{1}=\min _{L \in \mathcal{L}} \sum_{w \in L} \bar{g}_{1}(w), \\
\bar{g}_{1}(w)=g_{1}(w), w \neq \bar{w}, \quad \bar{g}_{1}(\bar{w})=\min _{L^{\prime} \in L^{\prime}} \sum_{w \in L^{\prime}} g_{1}(w) .
\end{gathered}
$$

It is obvious that the formulas from these theorems allow calculating asymptotic of a reliability for superposition of networks with unreliable elements rationally. These formulas may be used to calculate a reliability in recursively defined networks which are widely used in the solid state physics and in the nanotechnology.

## 5. Asymptotic analysis of bridge scheme

The simplest superposition of graphs is parallel-sequential graphs. But there are graphs widely used in the reliability theory, which are not parallel - sequential. One of them is a bridge scheme.

Consider the non-oriented graph $\Gamma$ with the nodes set $U=\left\{u_{i}, i=0, \ldots, 3\right\}$ and with the edges set $W=\left\{w_{j}, j=1, . ., 5\right\}$, where

$$
w_{1}=\left(u_{0}, u_{1}\right), w_{2}=\left(u_{0}, u_{2}\right), w_{3}=\left(u_{1}, u_{3}\right), w_{4}=\left(u_{2}, u_{3}\right), w_{5}=\left(u_{1}, u_{2}\right) .
$$

The vertex $u_{0}$ is initial and the vertex $u_{3}$ is final. The edge $w_{5}$ is a bridge element in the graph $\Gamma$. The graph $\Gamma$ is called the bridge scheme in the reliability theory. Define the $\Gamma_{1}$ by a deleting of the edge $w_{5}$ from the graph $\Gamma$. Introduce the graph $\Gamma_{2}$ by an aliasing of the nodes $u_{1}, u_{2}$ in the graph $\Gamma_{1}$.


Fig. 1. Graph $\Gamma$.


Fig. 2. Graph $\Gamma_{1}$.


Fig. 3. Graph $\Gamma_{2}$.
Suppose that the edges $w_{1}, \ldots, w_{5}$ work independently and define positive numbers $c\left(w_{i}\right)=c_{i}, 1 \leq i \leq 5$,

$$
C_{1}=\min \left(\max \left(c_{1}, c_{3}\right), \max \left(c_{2}, c_{4}\right)\right), C_{2}=\max \left(\min \left(c_{1}, c_{2}\right), \min \left(c_{3}, c_{4}\right)\right), C_{2} \leq C_{1} .
$$

If random logical variables $\beta, \beta_{1}, \beta_{2}$ characterize the nodes $u_{0}, u_{3}$ connectivity in the graphs $\Gamma, \Gamma_{1}, \Gamma_{2}$, correspondingly, then from the complete probability formula we have:

$$
\begin{equation*}
P(\beta=1)=p_{w_{5}}(h) P\left(\beta_{2}=1\right)+\left(1-p_{w_{5}}(h)\right) P\left(\beta_{1}=1\right), P\left(\beta_{1}=1\right) \leq P\left(\beta_{2}=1\right) \tag{11}
\end{equation*}
$$

From the theorem 1 and the equalities (11) obtain ) the statement which characterizes a role of the bridge element.

Theorem 9. If $p_{w}(h) \sim \exp \left(-h^{-c(w)}\right), h \rightarrow 0$, where $c(w)>0, w \in W$, then

$$
\begin{equation*}
-\ln P(\beta=1) \sim h^{-D}, D=\min \left(C_{1}, \max \left(C_{2}, c_{5}\right)\right) \tag{12}
\end{equation*}
$$

## References

1. Riabinin I.A. . Reliability and safety of structural complicated systems. St. Petersburg: Edition of the Petersburg University. 2007. 276 p. (In Russian).
2. Tsitsiashvili G.Sh. Asymptotic Analysis of Logical Systems with Unreliable Elements// Reliability: Theory and Applications. 2007, Vol. 2, № 1. Pp. 34-37.
3. Floyd R.W, Steinberg L. An adaptive algorithm for spatial grayscale// SID 75 Digest. 1975. Pp. 36-37.
4. Kormen T., Leizerson Ch., Rivest R. Algorithms: construction and analysis. Moscow: Laboratory of basic knowledge. 2004. 955 p. (In Russian).
