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Abstract 
 
The paper deals with calculation methods for failure and repair frequencies of multi-state monotone 
systems, both for the instantaneous and steady state cases. Being based on the binary representation of 
multi-state structure, new general formula for the failure/repair frequency is derived. This formula is used 
to obtain simple rules for the calculation of failure/repair frequency. In particular, the use of the algebra of 
dual numbers is presented. 

 
 
1. Introduction 
  

The failure frequency, called also the rate of occurrence of failures (ROCOF), is defined as 
the mean number of failures per unit time. Let W(t) be the mean number of failures of an item 
(element or system) in time-interval (0, t]. When W(t) is absolutely continuous function in any finite 
time interval, then the failure frequency w(t) is defined as the density of W(t) with respect to the 
Lebesque measure on the real line, i.e. 

 

W(t) = ∫
t

ssw
0

d)( ,  w(t) = dW(t)/dt (a.e.). 

 
 The limiting (or steady-state) failure frequency w(∞) is defined as the limiting value of w(t) 
when t tends to infinity. The failure frequency is an important reliability measure of repairable 
items, since it may be used to compute the expected number of failures in given interval. 
Furthermore, w(∞) is equal to the reciprocal of the mean time between failures, and the following 
well known expressions hold true: 
 MUT = A(∞)/w(∞),   MDT = (1−A(∞))/w(∞), 
where MUT = mean up-time, MDT = mean down time and A(∞) is the limiting (or steady state) 
availability of the item. 
 MUT and MDT are of practical importance, because they well enough characterise the 
reliability performance of repairable systems. Furthermore, these indices are often included into 
customer’s requirements for reliability of newly designed systems, typically in industry and military 
areas. Therefore, calculations of MUT and MDT are needed during design and development phase 
in order to check if the requirements are met. According to the equation above, it is therefore 
important to calculate not only system availability, but also system failure frequency. 
 The repair (or restoration) frequency v(t) of an item is defined similarly as the failure 
frequency, by replacing failures with restorations (i.e. completion of repairs) of the item. That is, by 
integrating v(t) over given time-interval [a, b], we obtain the mean number of restorations of the 
item in that interval. 
 Considerable efforts have been devoted to the problem of finding the efficient calculation 
methods for the failure/repair frequency of binary monotone systems composed of independent 
binary components. See Amari (2000, 2002), Chang et al. (2004), Pavlov & Ushakov (1989), 
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Schneeweiss (1999) and the references given therein. The main objective of these researches was to 
obtain simple rules for transforming expressions of system availability/unavailability given in terms 
of element availability and unavailability into an expression for system failure frequency, and 
system repair frequency as well, both for time-dependent and steady-state cases. 
 In many real-life situations, however, the systems and their elements are capable of 
assuming a whole range of performance levels, varying from perfect functioning to the complete 
failure. A multi-state system (MSS) fails if its performance level is less than the desired 
performance level (demand). Beginning from the middle of 70s, the theory of binary systems is 
being replaced by the theory of MSS. The present state-of-art of the theory and practice of MSS 
may be found in recent monographs Kołowrocki (2004), Kuo and Zuo (2003), Levitin (2005), and 
Lisnianski and Levitin (2003). 
 In opposite to the binary case, rather little attention has been devoted to finding practical 
methods for computation of the frequency-type indices for MSS. Main results have been obtained 
by Murchland (1975), where very general relations for the computation of failure frequency and 
related indices were given. Similar relations were considered in Aven and Jensen (1999), Natvig 
and Streller (1984) and Franken et al. (1984) for the steady-state case of multi-state monotone 
systems (MMS). However the expressions obtained are stated in general form which is not very 
convenient for practical purpose due to its complexity. Another approach, based on the inclusion-
exclusion principle applied to the set of prime implicants of an MSS was suggested by Bossche 
(1984, 1986). This approach has however big computational complexity. None of the results 
mentioned so far has the form of simple rules converting availability expression to failure frequency 
expression, as in binary case. 
 The main aim of this paper is to show how to calculate the failure/repair frequency of multi-
state systems using conversion rules being generalizations of the rules known from the binary 
systems. These multi-state conversion rules are obtained using a new general formula for the 
failure/repair frequency of MMS, which has very simple form. The presentation of these results is 
based on recent works of Korczak (2006, 2007), with some improvements. Moreover, is shown that 
the calculation can performed using the algebra of dual numbers. 
 
 
2. Basic definitions and assumptions 
 
2.1. Multi-state monotone systems and their binary representations 
 
 Let <C, K, K1, ..., Kn, ϕ> be a multi-state system consisting of n multi-state elements with 
the index set C = {1, 2, ..., n}, where K = {g(0), g(1), ..., g(M)}⊆[0, +∞) is the set of the system 
states, Ki = {gi(0), gi(1), ..., gi(Mi)}⊆[0, +∞) is the set of the states of element i∈C, and ϕ: V → K is 
the system structure function, where V = Kl×K2×...×Kn is the space of element state vectors. We 
assume that the states of the system [element i] represent successive performance rates ranging from 
the perfect functioning level g(M) [gi(Mi)] down to the complete failure level g(0) [gi(0)], that is 
0≤g(0)<g(1)<...<g(M) and 0≤gi(0)<gi(1)<...<gi(Mi). The system is a multi-state monotone system 
(MMS) if its structure function ϕ is non-decreasing in each argument, ϕ(g(0)) = g(0) and ϕ(g(M)) = 
g(M), where g(0) = (g1(0), g2(0), ..., gn(0)), g(M) = (g1(M1), g2(M2), ..., gn(Mn)). We refer to Kuo and 
Zuo (2003), Levitin (2005) and Lisnianski and Levitin (2003) for detailed description and numerous 
examples of MMS. Throughput the paper, we will consider MMS only. 
 A vector y = (y1,y2,...,yn)∈V is said to be a path [cut] vector to level c∈K of an MMS if 
ϕ(y) ≥ c [ϕ(y) < c]. It is called a minimal path [cut] vector to level c if in addition x < y [x > y] 
implies ϕ(x) < c [ϕ(x) ≥ c], where x < y means xi ≤ yi for i=1,...,n, and xi < yi for some i. The set of 
all minimal path [cut] vectors to level c is denoted by Uc [Lc], where Ug(0) = {g(0)} and Lg(0) = ∅. 
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 The state (performance level) of element i at time t is represented by a (random) variable 
Xi(t), which takes values in Ki. The state (performance level) X(t) of the system at time t is fully 
determined by the states of the elements through the multi-state structure function ϕ, i.e., X(t) = 
ϕ(X(t)), where X(t) = (X1(t), X2(t), ..., Xn(t)). 
 Let us introduce level indicator processes Xi(e,t) = 1(Xi(t)≥e) and X(d,t) = 1(X(t)≥d), e,d≥0, 
where 1(.) is the indicator function. Let ϕd = 1(ϕ≥d), d∈K−{0}, be the system level indicators. 
They can be considered as functions of vector of binary variables )(tX  = [Xi(r,t): i∈C, 
r∈Ki−{gi(0)}], so that ))(( td Xϕ  = X(d,t), resulting in the binary representation of MMS; see Block 
and Savits (1982), Korczak (2005) and Lisnianski and Levitin (2003) for more details. 
 From the definition of minimal path and minimal cut vectors, we obtain so-called, min-path 
and min-cut forms: 

 ))(( td Xϕ  = ),(minmax
)0(:

tyX iigyi iid >∈∈ CUy
,  ))(( td Xϕ  = ),1(maxmin

)(:
tzX iiiMgzi iiid

⊕
<∈∈ CLz

            (2.1) 

 
where r⊕i1 = min(Ki∩(r,∞)), for r∈Ki−{gi(Mi)}, is the next state in Ki better than state r. 
 
 There are several algebraic forms of ϕd, which can be obtained from (2.1) using inclusion-
exclusion, SDP or other methods, see Korczak (2005, 2007). For example, the pseudo-polynomial 
form is given by: 

 ))(( td Xϕ  = ∑
=

β+β
m

k
kk tB

1
0 ))((X ,                                             (2.2) 

where 

 ))(( tBk X  = ∏
∈

−
Ci

ii tikbXtikaX ))),,(()),,((( ,                             (2.3) 

βk are integer coefficients, a(k,i),b(k,i)∈Ki∪{gi(Mi)+1}, a(k,i) < b(k,i) for all i and k, and the 
products Bk are non-trivial. The term Xi(a(k,i),t)−Xi(b(k,i),t) reduces to Xi(a(k,i),t) if b(k,i) = 
gi(Mi)+1, to 1−Xi(b(k,i),t) if a(k,i) = gi(0), and to 1, if b(k,i) = gi(Mi)+1 and a(k,i) = gi(0). 
 When reliability structure of a binary system is complex, the Shannon decomposition is 
frequently used to simplify the structure. The corresponding multi-state Shannon decomposition (or 
pivotal decomposition, or factoring) formulae are: 
 

))(( td Xϕ  = ∑
∈

ϕ⊕−
ir

idiii trtrXtrX
K

Xe ))(),(()),1(),(( , 

 = ∑
∈

−ϕ−ϕ+ϕ
ir

iididiiid trtrtrXtg
K

XeXeXe ))](),1(())(),(([),())()),0((( ,      (2.4) 

where ))(,)(( tr i X  = (X1(t), ..., Xi−1(t), r, Xi+1(t), ..., Xn(t)),  )(rie  = (1(u≤r): u∈Ki−{gi(0)}), r∈Ki, 
gi(Mi)⊕i1 = gi(Mi)+1, and r−i1 = max(Ki∩(−∞,r)), for r∈Ki−{gi(0)}, is the best state preceding state 
r, and gi(0)−i1 = gi(0), so that )1)0(( iii g −e  = ))0(( ii ge . Observe that for r = gi(k), )(rie  = 

))(( kgiie  = )0...,,0,1...,,1(
321321
kMk i −

, ))0(( ii ge  = )0...,,0(
321
iM

, ))(( iii Mge  = )1...,,1(
321
iM

. 

 Note that ϕ((r)i, x) is an extended structure function (i.e. it can be degenerated), taking its 
values in the set {ϕ((r)i, g(0)), ..., ϕ((r)i, g(M))}. When r>gi(0), it may happen that ϕ((r)i, g(0)) > 
g(0) = ϕ(g(0)). However, if ϕ((r)i, g(0)) < ϕ((r)i, g(M)), then ϕ((r)i, x) fits our definition of MMS 
with the lowest performance levels being not necessarily 0. 
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 Unless otherwise stated, we make the following assumptions regarding stochastic properties 
of the elements of an MMS. 
Assumption 2.1. The system’s elements, that is, the stochastic processes {Xi(t)}, i∈C, are mutually 
s-independent. 
 
Assumption 2.2. {Xi(t)}, i∈C, are regular jump processes, i.e.: have jump right-continuous sample 
paths with left-side limits, and have finite expected number of jumps in bounded intervals. 
 For any r,s∈Ki, r≠s, let )(tN sr

i
→  be the number of transitions of element i from its state r to 

its state s in time interval (0, t]. Its expected value is denoted by )(tW sr
i
→  = )]([ tNE sr

i
→ . When 

)(tW sr
i
→  is locally absolutely continuous on [0, ∞), its density )(tw sr

i
→  is called the instantaneous 

frequency of transitions from r to s: 
 

 )(tW sr
i
→  = ∫ →

t
sr

i ssw
0

d)( ,   )(tw sr
i
→  = ttW sr

i d/)(d → .                                      (2.5) 

 
Assumption 2.3. (transient, or instantaneous case) For any i∈C, all the functions )(tW sr

i
→ , r,s∈Ki, 

r≠s, are locally absolutely continuous on [0, ∞), i.e. the interstate frequencies )(tw sr
i
→  exist. 

 Let pi(r; t) = Pr{Xi(t) = r}. The steady state frequency )(∞→sr
iw  of transitions of element i 

from its state r to its state s and the steady state probability pi(r; ∞) that element i is in r are defined 
by: 
 

 )(∞→sr
iw  = )(lim tw sr

it

→

∞→
,   pi(r; ∞) = );(lim trpit ∞→

.                                    (2.6) 

 
Assumption 2.4. (steady state, or asymptotic case) For any i∈C and r,s∈Ki, r≠s, the steady state 
frequencies )(∞→sr

iw  and steady state probabilities pi(r; ∞) exist. 
 From assumptions 2.1 and 2.3, it follows that the processes {Xi(t)}, i∈C, have no common 
jump times with probability 1. And in consequence, any change of the system’s state is caused, with 
probability one, by a jump of exactly one element. 
 
2.2. Basic reliability measures of MMS 
  

For an MMS, one can define various reliability and performance measures, see Aven and 
Jensen (1999), Levitin (2005), and Lisnianski and Levitin (2003). In this paper we will consider 
basic reliability indices only, which, however, may be used to calculate many other measures. For 
any fixed performance level d, g(0)<d≤g(M), we define the system reliability measures like for 
binary systems, considering the sets G(d) = K∩[d,∞) and F(d) = K−G(d) as up and down states 
respectively. The system availability to level d (or to demand d) is defined as A(d,t) = Pr{X(t) ≥ d} 
= E[X(d,t)] = ))](([ tE d Xϕ . The system unavailability to level d (or to demand d) is defined as 
U(d,t) = Pr{X(t) < d} = 1 − A(d,t). A transition from G(d) to F(d) is called d-failure, and the reverse 
transition is called d-repair. The instantaneous failure [repair] frequency to level d (shortly: d-failure 
[repair] frequency) is denoted by w(d,t) [v(d,t)] and defined as the density of the function W(d,t) 
[V(d,t)], the expected number of d-failures [d-repairs] in (0, t], i.e.: 

 W(d,t) = ∫
t

dssdw
0

),( ,  V(d,t) = ∫
t

dssdv
0

),( .                                           (2.7) 
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 We set A(g(0),t) ≡ U(u,t) ≡ 1 and w(g(0),t) ≡ w(u,t) ≡ A(u,t) ≡ U(g(0),t) ≡ 0 for u>g(M). 
Binary-like reliability indices of the system elements are defined similarly, and are denoted as 
Ai(u,t), Ui(u,t), wi(u,t) and vi(u,t) for i∈C and gi(0)<u≤gi(Mi), with Ai(gi(0),t) ≡ Ui(s,t) ≡ 1, wi(gi(0),t) 
≡ wi(s,t) ≡ Ai(s,t) ≡ Ui(gi(0),t) ≡ 0 for s>gi(Mi). They can be calculated from known state 
probabilities pi(r; t) and interstate frequencies )(tw sr

i
→ : 

 
 Ai(u,t) = ∑

≥
∈

ur
r

i
i

trp
K

);( ,   wi(u,t) = ∑
≥<

∈

→

urus
sr

sr
i

i

tw
,

,

)(
K

,   vi(u,t) = ∑
≥<

∈

→

urus
sr

rs
i

i

tw
,

,

)(
K

.                     (2.8) 

 
 The steady state (or limiting, asymptotic) reliability indices are defined as the limiting values 
of the corresponding instantaneous indices, by letting t → ∞, if the limits exist. In steady state, the 
failure and repair frequencies of system, and each of its element as well, are equivalent: 
 

 w(d,∞) = v(d,∞),   wi(r,∞) = vi(r,∞).                                                (2.9) 
 
 The steady state system failure frequency is important for applications, since under rather 
mild assumptions, see Cocozza-Thivent (1997) and Cocozza-Thivent and Roussignol (2000) (for 
example when system’s elements are modelled by irreducible time-continuous Markov chains, or 
by its functions), we have the following familiar relations: 
 

 MUT(d) = A(d,∞)/w(d,∞),   MDT(d) = U(d,∞)/w(d,∞),                          (2.10) 
 
where MUT(d) [MDT(d)] is the mean up-time [down-time] to level d of the system. 
 In the simplest case, when the stochastic evolution of element i is described by a 
homogeneous time-continuous Markov chain with transition rate matrix [λi(r,s): r,s∈Ki], we have: 
 

 )(tw sr
i
→  = ),();( srtrp ii λ ,                                                (2.11) 

 
where t ≥ 0 or t = ∞ (for the limiting case). 
 
 
2.2. System availability calculation 
 
 For any fixed i∈C, stochastic processes {Xi(e,t)}, e∈Ki−{gi(0)}, are dependent, as 1 ≥ 
Xi(gi(1),t) ≥ Xi(gi(2),t) ≥ ... ≥ Xi(gi(Mi),t) ≥ 0. However, by stochastic independence of elements, the 
processes belonging to different elements are independent. Therefore, having ))(( td Xϕ  written in a 
suitable form, and knowing availability/unavailability of independent elements, calculation of the 
system availability is very easy. For example, if ))(( td Xϕ  is given in the form (2.2), then: 

 ∑
=

β+β=
m

k
kk tBtdA

1
0 ))((),( A ,                                       (2.12) 

where Ai(gi(0),t) ≡ 1, Ai(u,t) ≡ 0 for u>gi(Mi+1), and 
 

 ))](([))(( tBEtB kk XA =  = ∏
∈

−
Ci

ii tikbAtikaA ))),,(()),,((( .            (2.13) 

 
with A(t) = [Ai(r,t): i∈C, r∈Ki−{gi(0)}]. 
 Applying the factoring formula (2.4), we get: 
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A(d,t) = ∑
∈

⊕−
ir

ri
iii tdAtrAtrA

K

),()),1(),(( ),(  

 = ∑
∈

−−+
i

ii

r

riri
i

gi tdAtdAtrAtdA
K

)],(),([),(),( )1,(),())0(,( , (2.14) 

 
where A(i,r)(d,t) = })(|))((Pr{ rtXdt i =≥ϕ X  = }))(,)((Pr{ dtr i ≥ϕ X  = ))](),(([ trE id Xeϕ  is the 
availability to level d of the system with indicator structure function ))(),(( trid Xeϕ , or in other 
words, A(i,r)(d,t) is the availability of the system with structure function ϕ, given that element i is 
strapped in state r. 
 
3. Failure and repair frequency calculation 
 
3.1. The main formula 
  

According to general results obtained by Murchland (1975), we have: 
 
 w(d,t) = ∑ ∑

∈
≠
∈

→<ϕ≥ϕ
Ci

sr
sr

sr
iii

i

twdtsdtr
K

XX
,

)(}))(,)((,))(,)((Pr{                          (3.1) 

 v(d,t) = ∑ ∑
∈

≠
∈

→<ϕ≥ϕ
Ci

sr
sr

rs
iii

i

twdtsdtr
K

XX
,

)(}))(,)((,))(,)((Pr{                          (3.2) 

 
for both monotone and non-monotone systems. For monotone systems considered in this paper we 
have }))(,)((,))(,)((Pr{ dtsdtr ii <ϕ≥ϕ XX  = 1(r>s)⋅(A(i,r)(d,t) − A(i,s)(d,t)), hence these general 
expressions reduce to the following: 
 

 w(d,t) = ∑ ∑
∈

>
∈

→−
Ci

sr
sr

sr
i

siri

i

twtdAtdA
K,

),(),( )()),(),((                                      (3.3) 

 v(d,t) = ∑ ∑
∈

>
∈

→−
Ci

sr
sr

rs
i

siri

i

twtdAtdA
K,

),(),( )()),(),((                                     (3.4) 

  
The main disadvantages of these formulae are that they depend on a number of element’s 

inter-state transition frequencies, and that the format of input data { )(tw sr
i
→ } is different from the 

format of output data {w(d,t), v(d,t)}. As a result, recursive application of these formulae for 
complex systems with hierarchical structure is difficult, or even impossible. More convenient are 
formulae stated in terms of element’s failure/repair frequencies, wi(r,t) and vi(r,t). Observe that for r 
> s, r,s∈Ki: 

 
 ),(),( ),(),( tdAtdA siri −  = ∑

≤<
∈

−−

rus
u

uiui

i

i tdAtdA
:

)1,(),( )),(),((
K

.                            (3.5) 

Substituting (3.5) into (3.3) and (3.5), interchanging the order of summation and using relations 
(2.8), we obtain: 
 

 w(d,t) = ∑ ∑
∈ −∈

−−
Ci gr

i
riri

ii

i trwtdAtdA
)}0({

)1,(),( ),()],(),([
K

,                       (3.6) 

 v(d,t) = ∑ ∑
∈ −∈

−−
Ci gr

i
riri

ii

i trvtdAtdA
)}0({

)1,(),( ),()],(),([
K

.                                   (3.7) 
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 According to (2.14), 

 ),(),( )1,(),( tdAtdA iriri −−  = 
),(
),(

trA
tdA

i∂
∂ ,                                              (3.8) 

 
where we consider any Ui(r,t) appearing in the expression for A(d,t) as 1−Ai(r,t), so that 
∂Ui(r,t)/∂Ai(r,t) = ∂(1−Ai(r,t))/∂Ai(r,t) = −1. Thus we have proved the following main result: 
 

 w(d,t) = ∑ ∑
∈ −∈ ∂

∂

Ci gr i
i

ii
trA
tdAtrw

)}0({ ),(
),(),(

K

,                                                 (3.9) 

 

 v(d,t) = ∑ ∑
∈ −∈ ∂

∂

Ci gr i
i

ii
trA
tdAtrv

)}0({ ),(
),(),(

K

.                                              (3.10) 

 
 Now the input and output data are of the same format as the failure/repair frequencies. 
Moreover, the expressions obtained are easy to remember, and are very similar to the formulae 
known from the binary system theory. 
 Since the expressions for w(d,t) and v(d,t) are similar, we will restrict our consideration to 
w(d,t). Repair frequency formulae can be obtained from failure frequency formulae by replacing w 
with v. Furthermore, for sake of brevity, we will time parameter t in what follows. Thus we will 
write: 
Ai(r), Ui(r), wi(r), A(d), U(d), w(d)  instead of  Ai(r,t), Ui(r,t), wi(r,t), A(d,t), U(d,t), w(d,t). 
 Let us consider some alterative forms of (3.9). When the system unavailability U(d) is given 
as a function of Ui(r) and Ai(r), then: 

 w(d,t) = ∑ ∑
∈ −∈ ∂

∂

Ci gr i
i

ii
rU
dUrw

)}0({ )(
)()(

K

,                                                        (3.11) 

 
where we consider any Ai(r) appearing in the expression for U(d) as 1−Ui(r), so that ∂Ai(r)/∂Ui(r) = 
∂(1−Ui(r))/∂Ui(r) = −1. 
 When Ui(r) and Ai(r) appearing in the expression for A(d) or U(d) are considered as 
independent variables, so that ∂Ui(r)/∂Ai(r) = ∂Ai(r)/∂Ui(r) = 0, then according to the chain rule of 
differentiation, we may write (3.9) and (3.11) as: 

 w(d) = ∑ ∑
∈ −∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

Ci gr ii
i

ii
rU

dA
rA
dArw

)}0({ )(
)(

)(
)()(

K

,                                                   (3.12) 

 

 w(d) = ∑ ∑
∈ −∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

Ci gr ii
i

ii
rA
dU

rU
dUrw

)}0({ )(
)(

)(
)()(

K
.                                                   (3.13) 
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3.2. Conversion rules for the failure frequency calculation 
 
 Fairly general conversion rule that converts an availability expression of an MMS into its 
failure frequency expression can be described as follows. Suppose that the availability A(d) is given 
in the following sum of products form: 

 A(d) = ∑ ∏
= ∈

β+β
L

k m
mkk

k

G
1

,0 )(
E

A ,                                                (3.14) 

 
where Ek is a non-empty index set, and )(, AmkG , m∈Ek, are functions having no common relevant 
variable belonging to the same system’s element, i.e. if )(, AmkG  depends on the variable Ai(r) 
(belonging to element i), then other functions ))(, AlkG , l≠m, do not depend on variables Ai(s), 
s∈Ki−{gi(0)}. This relevant variable disjointness property relates to each product separately. We 
assume that )(, AmkG  are differentiable with respect to each variable (the derivatives being 0 for of 
non-relevant variable). By applying (3.9) to A(d) given by (3.14), and using usual algebra and 
calculus, we obtain: 
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where, by convention, a/0 = 0 for any a, and 
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∈ −∈

⋅
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.                                         (3.16) 

 
 According to (3.9), when )(, AmkG  is the availability [unavailability] to a given level of a 
multi-state subsystem, then wk,m [−wk,m] is its failure frequency to this level, and, in the steady state, 
wk,m/ )(, AmkG  = 1/MUTk,m [−1/MDTk,m] of that subsystem to the given level. 

 By a suitable choice of functions )(, AmkG  in the above general rule, we may obtain several 
special cases, being multi-state generalizations of conversion rules known for binary systems. By 
applying (3.15) with A(d) given by (2.12), we obtain: 

w(d) = ∑ ∑
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where, a/0 = 0 for any a, and 
 

 ∏
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−=
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zi

ii
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C

A .                                              (3.18) 

 
 As a very simple example, let us consider an MMS with structure function ϕ(X) = min(X1, 
max(X2, X3)). Then ))(Xdϕ  = X1(d)[1 − (1 − X2(d))(1 − X3(d))] and: 

 A(d) = A1(d)[1 − U2(d)U3(d)] = A1(d) − A1(d)U2(d)U3(d).                                (3.19) 
 



E. Korczak   -   COMPUTATION OF FAILURE/REPAIR FREQUENCY OF MULTI-STATE MONOTONE SYSTEMS 
 

R&RATA # 1 (Vol.1) 2008, March 
 

 

- 92 - 

Using (3.15)-(3.16) yields: 

 w(d) = w1(d)[1 − U2(d)U3(d)] + A1(d)[w2(d)U3(d) + U2(d)w3(d)],                           (3.20) 
 
or, in steady state: 
 

w(d) = A1(d)[1−U2(d)U3(d)]/MUT1(d) + A1(d)U2(d)U3(d)[1/MDT2(d) + 1/MDT3(d)] 
 = A1(d)/MUT1(d) − A1(d)U2(d)U3(d)[1/MUT1(d) − 1/MDT2(d) − 1/MDT3(d)].                  

(3.21) 
 
 As a more general example, observe that Shannon’s decomposition formulae (2.14) for the 
availability A(d) are of the form (3.14). Hence, by using (3.15) with A(d) given by (2.14), we obtain 
at once the following Shannon’s decomposition formulae for the failure frequency w(d): 
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(3.22) 
 
where w(i,r)(d) is the failure frequency to level d of the system with indicator structure function 

)),(( Xe ridϕ , or in other words, w(i,r)(d) is the failure frequency to level d of the system with 
structure function ϕ, given that element i is strapped in state r. 
 
3.3. Application of dual numbers 
 
 A dual number is one of the form a + εb, where a and b are real numbers and ε is an 
algebraic (imaginary) unit having the formal property that ε2 = 0. The set  of all dual numbers is a 
commutative ring with basic algebraic operations defined by: 
 

(a + εb) + (c + εd) = a + c + ε(b + d),   (a + εb)⋅(c + εd) = ab + ε(ad + bc). 

 
Since ε2 = 0, a pure dual number εd has no inversion, so the ring  is not a field (has zero divisors). 
However, if c ≠ 0, then 1/(c + εd) = 1/c − εd/c2. 
 The concept of the dual number was introduced by Clifford (1873) and the name was given 
by Study (1903). Application areas of dual numbers include kinematics, geometry, mechanics, 
robotics, etc. We refer to (Angeles 1998), (Dimentberg 1978), (Fischer 1999), (Veretennikov and 
Sinitsyn 2006) and (Yaglom 1968, 1979) for more detailed historical account, discussion of 
properties and applications of dual numbers. 
 Observe that 
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Let f(x1,x2,...,xn) = x1⋅x2⋅…⋅xn, where x1, x2, ..., xn are real variables. By replacing each xi by dual 
number xi + εyi, we obtain dual function F of n dual numbers. According to (3.23), we have the 
following representation for the function F: 
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where x + εy = (x1+εy1, ..., xn+εyn), x = (x1, ..., xn), y = (y1, ..., yn). 
  

It is easy to see that this representation holds true for dual functions F defined in the above 
way using a real analytic functions f(x). In particular, it holds for polynomial, multi-linear and more 
general functions f(x) defined by elementary algebraic expressions. 
 Let A(d) = A(d; A) be given in appropriate algebraic form. e.g. in the form (2.12) or (3.14). 
Replacing each variable Ai(r) by dual variable Ai(r) + εwi(r) in A(d; A) we obtain dual function 
A°(d; A + εw), where w = (wi(r): i∈C, r∈Ki−{gi(0)}). According to representation (3.24) and 
formula (3.9), we have: 
 

 A°(d; A + εw) = A(d; A) + εw(d; A, w) = A(d) + εw(d).                          (3.25) 
 
This formula leads to simple calculation method of failure frequency using dual number algebra: 

(1)  write A(d) in appropriate algebraic form, 

(2)  replace all Ai(r) [Ui(r)] by dual variables Ai(r) + εwi(r) [1 − (Ai(r) + εwi(r)) = Ui(r) − εwi(r)], 

(3)  perform calculation using dual number algebra to obtain dual number a + εb, 

(4)  w(d) = b. 
 For example, if A(d) = A1(d)(1 − U2(d)U3(d)), then  
 
 A°(d; A + εw) = {A1(d) + εw1(d)}(1 − {U2(d) − εw2(d)}{U3(d) − εw3(d)}) 
 = {A1(d) + εw1(d)}{[1 − U2(d)U3(d)] + ε[w2(d)U3(d) + U2(d)w3(d)]} 
 = A1(d)(1 − U2(d)U3(d)) + ε{w1(d)[1 − U2(d)U3(d)] + A1(d)[w2(d)U3(d) + U2(d)w3(d)]} 
 = a + εb = A(d) + εw(d); (compare with (3.20)). 
 
 
4. Extension to random demand rate 
  

Many real technical systems operate under demand randomly changing in time. Examples of 
such systems are power generating systems, transportation systems, distributed computer networks 
and production systems. We refer to Levitin (2005) and Lisnianski and Levitin (2003) for more 
examples and further discussion. 
 Let D(t) be the demand rate at time t. The fixed (time-independent) demand rate D(t) ≡ d 
was considered in section 3. Now we consider randomly changing in time demand rate {D(t)}. We 
assume that the process {D(t)} takes its state in finite set D ⊆ [0, ∞) and that it satisfies 
Assumptions 2.2 and 2.3. The system with performance process X(t) = ϕ(X(t)) is operating at time t, 
if X(t) ≥ D(t). Otherwise the system is failed. It is assumed that the processes {X(t)} and {D(t)} are 
independent. We show how to apply the results of section 4 to the case of randomly changing 
demand. 
 Let the demand states in D be indexed in decreasing order: 
 0 ≤ d(m) < d(m−1) < ... < d(1), m ≥ 1. 
 Let H = {1, 2, ..., m} be the index set of demand levels and let L(t) be the index of demand 
level at time t, so that D(t) = d(L(t)). Define a function ψ: H×K → {0,1} by: 
 

 ψ(k, x) = 1(x ≥ d(k)).                                                                  (4.1) 
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 Since d(k) is decreasing in k, ψ(k, x) is a monotone increasing binary structure, which can be 
considered as the structure function of a binary system consisting of two multi-state elements. The 
first element corresponds to the demand level index and its stochastic behaviour is described by 
{L(t)}. The second element corresponds to the original system with stochastic behaviour described 
by {X(t)}. We have: 
 

 ψ(L(t), X(t)) = 1(X(t) ≥ d(L(t))) = ∑
=

+−
m

k

tkdXtkLtkL
1

))),(()),1(),(( ,           (4.2) 

 
where L(k, t) = 1(L(t) ≥ k),  L(m+1, t) ≡ 0 and X(c, t) = 1(X(t) ≥ c). Therefore: 
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1
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1
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where AL(k; t) = Pr{L(t) ≥ k} = Pr{L(k, t) = 1}. 
 
 Let )(tw lj

L
→  be the frequency of transitions of the process {L(t)} from state j to state l at 

time t (assumed to exist). Then we can apply the factoring formula (3.22) to obtain the failure 
frequency w(t) and the repair frequency v(t) of the system operating under random demand {D(t)}: 
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where 

 wL(k,t) = ∑∑
=

−

=

→
m
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with wL(1,t) ≡ wL(m+1,t) ≡ 0 and vL(1,t) ≡ vL(m+1,t) ≡ 0. 
 
 The failure [repair] frequency of system with variable demand rate has two contributors, 
designated by w(L)(t) and w(X)(t) [v(L)(t) and v(X)(t)]: 
1) w(L)(t) and v(L)(t) are related to failures caused by changes of demand rate, and correspond to the 
first sum in equations (4.4) and (4.5) respectively, and 
2) w(X)(t) and v(X)(t) are related to failures caused by changes of the state of the system of elements, 
and correspond to the second sum in these equations. 
 Of course, for the steady state (t = ∞), the failure and repair frequencies, and their two 
separate contributors as well, coincide: w(∞) = v(∞),  w(L)(∞) = v(L)(∞),  w(X)(∞) = v(X)(∞). 
 Notice that the results presented in this section also include, as a special case, the random 
demand, which does not change in time: D(t) ≡ D and consequently, L(t) ≡ L (D and L are just 
random variables). Then all )(tw lj

L
→  are equal to 0, and thus the demand related contributors w(L)(t) 

≡ v(L)(t) ≡ 0, i.e. the first sum in each right-hand side of each equation (4.4) and (4.5) disappear. 
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5. Conclusions 
  

New general formula for the failure/repair frequency of a multi-state monotone system was 
derived in the paper. Using this formula simple conversion rules from an availability or 
unavailability expression into an expression for failure/repair frequency, were obtained. Application 
of dual number algebra was also discussed. 

 
 As further investigations in the area, we may mention: 
 
1) developing other efficient algorithms, considering, for example, application of the Universal 

Generating Function (UGF) technique, Levitin (2005); 
2) considering some statistical dependencies among system’s elements (e.g. common-cause 

failures), and between demand rate and elements performance processes as well; 
3) obtaining approximations useful for analysing very complex and large systems; 
4) generalisation to multi-state systems which are not necessarily monotone (thought in this 

case not so simple conversion rules are expected). 
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