
M.Bebbington, C-D.Lai, R.Zitkis  -  LIFETIME ANALYSIS OF INCANDESCENT LAMPS: THE MENON-AGRAWAL MODEL REVISITED 
 

R&RATA # 1 (Vol.1) 2008, March 
 

 

- 97 - 

LIFETIME ANALYSIS OF INCANDESCENT LAMPS: 
THE MENON-AGRAWAL MODEL REVISITED 

 
Mark Bebbington, Chin-Diew Lai 

Institute of Information Sciences and Technology, Massey University, 
Private Bag 11222, Palmerston North, New Zealand.  

 
e-mail: M.Bebbington@massey.ac.nz, C.Lai@massey.ac.nz  

 
Ričardas Zitikis 

Department of Statistical and Actuarial Sciences, University of Western Ontario, 
London, Ontario, Canada, N6A 5B7.  

 
e-mail: zitikis@stats.uwo.ca  

  
 
Abstract 
 
The use of the Weibull distribution to model lifetimes of incandescent lamps was originally suggested by 
Leff (1990). Following this suggestion, Agrawal and Menon have offered and investigated, in a series of 
papers, an improved model constructed from physical considerations and laws of mathematical statistics. 
In the present paper we offer supplementary thoughts concerning the Agrawal-Menon model and its 
several modifications. In addition, we discuss the use of Pinelis's l’Hospital-type calculus rules in the 
analysis of ageing properties of lifetime distributions. 
 
Keywords: Survival function, hazard rate function, mean residual life function, Weibull distribution, 
normal distribution, truncated normal distribution, lognormal distribution. 

 
 

1.  Introduction 
 

The laws of physics are commonly taught using incandescent lamps (see, e.g., Evans, 1978; 
Leff, 1990; MacIsaac et al., 1999; Menon and Agrawal, 2003). Interestingly, statistical analysis of 
the lifetime of incandescent lamps does not appear to be an old science despite the fact that lamps 
have been around for more than two centuries: H. Davy created the first incandescent lamp in 1802, 
and T. Edison created the first practical incandescent lamp in 1879 (see, e.g., Wikipedia, 2007). 
Recently, Agrawal and Menon (1998), and Menon and Agrawal (2003, 2006, 2007, 2008) have 
analyzed their reliability characteristics based on theoretical models and experimental data. 

 
Leff (1990) argues that since the hazard rate (HR) function ( ) - '( ) / ( ) h t S t S t= of the 

exponential survival function, 
 

/( ) ( | ) t
EXP EXPS t S t e ββ −= = , 

 
is constant (i.e., ( ) 1/h t β= ), the lifetimes of incandescent lamps cannot follow the exponential law, 
unlike radioactive decay.  To include the necessary dependence on history and thus improve upon 
the model's fit to experimental data, Leff (1990) therefore suggested using the Weibull survival 
function 
 

( / )( ) ( | , ) ,t
W WS t S t e

αβα β −= =  
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where , 0α β >  are unknown parameters. The Weibull HR function 1( ) ( / )( / )h t t αα β β −=  is 
increasing for every 1α > . Leff (1990) notes that 5α =  has given a good fit to his data. It is 
interesting to note that when 5α =  the Weibull survival function is close to the normal survival 
function (see, e.g., Johnson et al., 1994, p. 632), which hints that the latter may be the basis for an 
alternative hazard formulation. 
 

Among other things, Leff (1990) also notes that the ‘average life’ indicated on bulb's package is 
actually the ‘median life’. From the mathematical point of view, the mean and median lifetimes are 
different, respectively: 
 

1 1
20

( )     and   ( )av medt S t dt t F
∞ −= =∫ , 

 
where 1( )F u−  is the inverse of the cumulative distribution function ( ) 1 ( )F t S t= − . Leff (1990) 
observes that despite being mathematically different, avt  and medt  are nearly equal in practice, thus 
hinting at the symmetric nature of the lifetime distributions of incandescent lamps. Menon and 
Agrawal (2003) corroborate this observation.  

In a series of papers, Menon and Agrawal (2006, 2007, 2008) suggest and investigate an 
improved model for the survival function based on laws of physics and the normal approximation to 
the binomial distribution. Specifically, Menon and Agrawal (2007) argue that on the unit-less scale 
of an argument τ  (see below) the survival function is 
 

(1) 
2

0

1 erf( (1 )) 2( )      with   erf ( ) ,
2

t yS t e dyγ ττ
π

−+ −
= = ∫      

where γ  is a parameter associated with variability (see below). We note that the survival function 
( )S τ  can be written as 0,1( (1 ) 2)γ τΦ − , and we thus have the equation 

 
(2) 2

2 2
,

( ) 1 ( ),    where  1  and  1/(2 ),S
μ σ

τ τ μ σ γ= −Φ = =  

   
where 2,μ σ

Φ denotes the normal distribution function. Thus, the unit-less τ scale has been chosen in 

such a way that the mean lifetime μ  is equal to 1, and thus we have the equation 
 

(3) 
av

t
t

τ =  .        

 
Hence, on the t-scale we have the following representation for the Agrawal-Menon survival 

function: 
 
(4) 2

2 2 2
,

( ) 1 ( ),    where    and  /(2 )av avS t t t t
μ σ

μ σ γ= −Φ = = .    

 
We shall find it convenient to use the notation 
 

2 2( ) /(2 )

2

1( ) ( | , )
2

y
N N t

S t S t e dyμ σμ σ
πσ

∞ − −= = ∫  

for the normal survival function 2,
1 ( )t

μ σ
−Φ . 
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Since (4) is the normal survival function, it is strictly smaller than 1 for all (- , )t∈ ∞ ∞ , even 
though we expect the survival function to be exactly 1 for all 0t ≤ . When the mean lifetime is 
notably larger than the variance, the survival function is close to 1 for all 0t ≤ . In practical terms 
this justifies the use of the normal distribution for modeling the lifetime of lamps under the 
aforementioned caveat. Nevertheless, from the rigorous point of view we expect lamp lifetimes to 
follow distributions whose survival functions are exactly 1 at 0t = . Menon and Agrawal (2006) 
scaled the distribution to have unit mass on the positive half-line, which is the truncated normal 
survival function 
 

2 2( ) /(2 )

2 2

1( ) ( | , )
2

y
TN TN t

S t S t e dy
a

μ σμ σ
πσ

∞ − −= = ∫ , 

 
where the normalizing constant is 0,1( / )a μ σ= Φ . Note also that the constant a  is practically equal 
to 1 when the mean μ is larger than, say, 3σ  (see Table 1 below) and so we have 
that ( ) ( )TN NS t S t≈ . The latter observation and our numerical findings in Table 1 below do indeed 
justify the use of the normal distribution in the current context, as is done by Menon and Agrawal 
(2007, 2008). 
 

Given the practical performance of the Menon and Agrawal (2006, 2007) models, we expect 
that any candidate survival function should be close to the normal survival function. For this reason 
we suggest considering the lognormal survival function  
 

2 2(log ) /(2 )

2 2

1( ) ( | , )
2

y
LN LN t

S t S t e dy
y

μ σμ σ
πσ

∞ − −= = ∫ . 

 
This is defined for 0t ≥  and is equal to 1 at 0t = . Limpert et al. (2001) provide a discussion on 
which distribution - normal or lognormal - should be preferred in various situations, accompanied 
with numerous illustrative examples. The fundamental difference between the two is that, while 
both are based on a variety of forces acting independently, in the former the effects are additive, 
while in the lognormal case they are multiplicative. Lamps can fail from a variety of causes, any 
one of which is sufficient, even though the other factors may not impede the lamps functionality. 
Thus lamps can be modeled as a series system, where the reliability function is a product of 
individual factors. Hence the lognormal with its multiplicative interpretation is an attractive 
alternative. When the coefficient of variation is small, it is difficult to distinguish the lognormal 
distribution from the normal distribution (Limpert et al., 2001). The major observable difference 
between them is that the lognormal is non-symmetric, i.e., the median and mean may differ. 
 

Interestingly, in a survey of published data sets, Limpert et al. (2001) found that the only ones 
that were not fitted satisfactorily by the lognormal consisted of differences, sums, means or other 
functions of original measurements. However, for many data sets where a lognormal distribution 
was acceptable, a normal distribution was statistically rejected. We note also that Xie and Pecht 
(2003) selected a lognormal distribution to model the reliability of semiconductor light emitting 
devices. 
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2.  Analysis of the data set of Menon and Agrawal (2008) 
 
 
Menon and Agrawal (2008) provide the data of the failure times of 50 new Phillips (India) lamps, 
which we will use to examine the fit of the following four survival functions: ( ),  ( ),  ( )W N TNS t S t S t  
and ( )LNS t . The lamps were monitored at regular time intervals of twelve hours to count the fused 
lamps. The instants when at least one fused lamp was found were recorded and there were thirty-
two such instances. The minimal recorded value was 840 and the maximal one was 2568. Naturally, 
several fused lamps were found at some instances. 
 

Hence, we have ‘grouped data’ with each failure time that has occurred during a twelve-hour 
period 1( , ]i it t−  recorded as it . To simplify the estimation procedure, we follow the obvious course, 
and instead of randomly ‘dispersing’ the observations throughout the corresponding time periods 

1( , ]i it t−  we replace them by the mid-values 1 1( ) / 2i i it t t− −+ − . Hence, the fifty failure times have 
been reassigned one of the values 6 12k+  hours, for 0,1,2,...k = Denoting these fifty ‘observations’ 
by * *

1 50,...,t t , we fit the survival functions using the maximum likelihood method. The numerical 
results are presented in Table 1 with the corresponding survival functions shown in Figure 1. 
 
 
Table 1. Fitted distributions for the data set from Menon and Agrawal (2008) 
 
Distributions Parameters LL avt  medt  
Weibull 4.2556α =  1541.4β =  -364.25 1402.1 1414.3
Normal 1407.8μ =  343.10σ =  -362.84 1407.8 1407.8
Truncated normal 1407.8μ =  343.10σ =  -362.84 1407.8 1407.8
Lognormal 7.2198μ =  0.24968σ = -362.06 1409.5 1366.3

 
 

Note that the Weibull distribution has estimated shape parameter α =4.2556, less than the value 
5α =  suggested by Leff (1990), but still making the Weibull distribution fairly close to the normal 

(see, e.g., Johnson et al., 1994, p. 632). The log-likelihood values in Table 1 show that the Weibull 
distribution has poorest fit of the four, the normal and truncated normal are tied for second place, 
and the lognormal is slightly superior. The difference between the mean avt  and median medt  is 
largest for the lognormal distribution. Not surprisingly, the mean and median lifetimes of the 
normal and truncated normal are same. 
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Figure 1. The empirical (stepwise) and four fitted survival functions: Weibull (dotted), normal 
(solid), truncated normal (dot-dashed, coinciding with solid), and lognormal (dashed). 
 

Here we see that the reason the lognormal fits better is that it models the skewness, in particular 
the right-hand tail. May et al. (2000) note that for samples with 30n > , data fit well by the normal 
has significantly smaller skewness than that not well fit by the normal, and suggest the use of the 
Shapiro-Wilk (or Ryan-Joiner) test for normality to identify the better of the normal and lognormal 
distributions. The lamp failure data has skewness of 0.51, compared to -0.21 after taking logs. The 
Ryan-Joiner test for normality provides P-values of 0.075 and “ 0.1> ” for the raw and logged data, 
respectively. Both of these results are evidence in favor of the lognormal over the normal 
distribution. We note that it is common when data is skewed to reject some observations as outliers, 
leaving a symmetric distribution. The question, which can only be resolved by the collection of 
more data, is whether this tail is a real phenomenon. 

 
We will now look at some other characteristics of the four candidate distributions. In the two 

panels of Figure 2 we show graphs of the estimated hazard rate (HR) functions (top panel) and the 
mean residual life (MRL) functions  
 

( ) ( ) / ( )
t

t S x dx S tμ
∞

= ∫   

 
(bottom panel). 
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Figure 2. The fitted HR (top panel) and MRL (bottom panel) functions: Weibull (dotted), normal 
(solid), truncated normal (dot-dashed, coinciding with solid), and lognormal (dashed). The saw-like 
function in the bottom panel is the empirical MRL function.  
 
 
Note that (0)μ  is the mean avt  whose numerical values are recorded in Table 1. The set of Menon 
and Agrawal (2008) data  shows that the last fused lamp was found at 2568 hours. This explains our 
choice of the range [0, 3000] in the plots of Figures 1 and 2.  A visual assessment of Figure 2 
suggests that all the fitted HR functions are increasing and the fitted MRL functions are decreasing. 
Theoretical results (see Section 3 below) confirm these observations for the Weibull, normal, and 
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truncated normal distributions. In the case of the lognormal distribution, however, the HR function 
is upside-down bathtub-shaped and the MRL function is bathtub-shaped. (We refer to Section 3 for 
the definition of UBT and BT shapes.) Thus we have plotted the lognormal HR and MRL functions 
on the interval [0, 10000] in Figure 3 using the same parameters as those in the bottom line of Table 
1. Naturally, as in classical regression analysis, fitting distributions well beyond the data range - the 
interval [840, 2568] for the Menon and Agrawal (2008) data set - can be, and indeed frequently is, 
parlous. Hence, although they may be real, rather than artificial, we should not be too disturbed by 
the decreasing nature of the HR function and the increasing nature of the MRL function outside the 
interval [0, 3000]. In fact, even the monotonically increasing and decreasing, respectively, HR and 
MRL functions beyond the interval [0, 3000] may not be natural even for the Weibull, normal, and 
truncated normal distributions. Indeed, the discussion in Agrawal and Menon (1998) indicates that 
more realistic monotonicity patterns of the HR and MRL functions should likely be more 
pronounced on the right-hand tails, due to physical properties such as nearly instantaneous fusing of 
light bulbs at the end of their lifetimes. 

 
Figure 3. The HR (solid) and MRL (dashed) functions corresponding to the lognormal distribution 
with the parameters as in Table 1 
 
 

3.  Shapes of HR and MRL functions and Pinelis's calculus rules 
 
We have described above the shapes of the HR and MRL functions of the Weibull, normal, 
truncated normal, and lognormal distributions. These shapes have been known for a long time (see, 
e.g., Lai and Xie, 2006, and references therein). The shapes of HR functions are usually identified 
using the result of Glaser (1980) concerning the similarity of the shapes of the ratios ( ) / ( )f t S t  
and ( ) / ( )f t S t′ ′ . In the case of MRL function, the results of Gupta and Akman (1995) have 
frequently been employed. In this section we will describe how to achieve the same goals using 
general results, reported by I. Pinelis in a series of papers, concerning the similarity of the shapes of 
generic ratio-functions ( ) / ( )u t v t  and ( ) / ( )u t v t′ ′ . We believe that this is the first instance of 
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Pinelis's calculus rules being utilized in the context of reliability engineering and, specifically, for 
analyzing the ageing properties of lifetime distributions. 
 

Determining the shape of the Weibull HR function does not actually require sophisticated tools 
of analysis, since the function is easy to calculate and possesses the simple form: 
 

1( )Wh t tαα

α
β

−= . 

 
Hence, we have that 
 

(i)  the HR function ( )Wh t  is decreasing when 1α < , constant when 1α =  and increasing when 
1α > . 

 
The corresponding MRL function, on the other hand, is difficult to derive explicitly and is 

therefore challenging to analyze. We shall therefore employ one of Pinelis's results:  
 
Theorem 1. (Pinelis, 2001; see Proposition 1.1). Let ( )u t  and ( )v t  be differentiable functions on 
the interval ( , )a b  where a b−∞ ≤ < ≤ ∞ . Assume that ( )v t  and its derivative ( )v t′  are non-zero on 
the interval ( , )a b  and ( )v t′  does not change its sign on ( , )a b . Furthermore, assume that 

( ) 0 ( )u b v b− = = − . The following two statements hold:  
 
(1) If ( ) / ( )u t v t′ ′  is increasing on ( , )a b , then ( ) / ( )u t v t  is also increasing on ( , )a b . 
(2)  If ( ) / ( )u t v t′ ′  is decreasing on ( , )a b , then ( ) / ( )u t v t  is also decreasing on ( , )a b .  
 
 

We can now finish our discussion of the Weibull distribution by determining the shape of its 

MRL function. Note that the condition ( ) 0 ( )u b v b− = = −  is satisfied for the functions ( )
t

S x dx
∞

∫  

and ( )S t  when t b↑ = ∞ . Let us write the equation 
 

( )( )
( )

W
W

W

u tt
v t

μ = , where ( ) ( )W Wt
u t S x dx

∞
= ∫   and ( ) ( )W Wv t S t= . 

 
The derivative  ( ) ( )W Wv t f t′ = −  is always negative on (0, )∞  and thus neither vanishes nor changes 
its sign on (0, )∞ . Hence, according to Theorem 1, whatever monotonicity we have for the ratio 

( ) / ( )W Wu t v t′ ′ , the same monotonicity holds for the ratio ( ) / ( )W Wu t v t  as well. Writing the former 
ratio as follows: 
 

(5) ( ) ( ) 1
( ) ( ) ( )

W W

W W W

u t S t
v t S t h t
′ −

= =
′ ′

,      

 
we see that monotonicity of ( ) / ( )W Wu t v t′ ′  is just the opposite to that of the HR function ( )h t  which 
has already been determined in (i) above. We thus have that  
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(ii)  the MRL function ( )W tμ  is increasing when 1α <  and decreasing when 1α > . When 
1α = , then the function ( )W tμ  is constant; easy to check.  

 
We shall also use statement (1) of Theorem 1 to investigate the HR functions of the normal and 

truncated normal distributions. Note that the condition ( -) 0 ( -) u b v b= = is satisfied for the 
functions ( )f t and ( )S t  when t b↑ = ∞ . Furthermore, we shall use statement (2) of Theorem 1 to 
investigate the MRL functions of the normal and truncated normal distributions. Note that the 

condition ( -) 0 ( -) u b v b= = is satisfied for the functions ( )
t

S x dx
∞

∫ and ( )S t when t b↑ = ∞ . 

 
Consider now the normal distribution. We start with the equation 

 

(6) ( )( )
( )

N
N

N

u th t
v t

= , where ( ) ( )W Nu t f t=   and ( ) ( )N Nv t S t= .    

 
The derivative ( ) ( )N Nv t f t′ = −  is negative on ( , )−∞ ∞  and thus neither vanishes nor changes its sign 
on ( , )−∞ ∞ . Hence, according to Theorem 1, whatever monotonicity we have for the ratio 

( ) / ( )N Nu t v t′ ′ , the same monotonicity holds for the ratio ( ) / ( )N Nu t v t  as well. Note that 
 

2

( )
( )

N

N

u t t
v t

μ
σ

′ −
=

′
, 

 
which is an increasing function of t . Hence, we have that 
 

 (iii)  the HR function ( )Nh t is increasing. 
 

As to the shape of the normal MRL function, we proceed analogously to the Weibull case (see 
equation (5) in particular). Since we have already established that ( )Nh t  is increasing, we therefore 
have that 
 

(iv)  the MRL function ( )N tμ  is decreasing. 
 

From the mathematical point of view, the only difference between the normal and truncated 
normal survival functions on [0 , )∞ is the constant a, which does not influence the shapes of the 
HR and MRL functions. Hence, from (iii) and (iv), we conclude that 
 

 (v)  the HR function ( )TNh t  is increasing, and 
 
 (vi) the MRL function ( )TN tμ  is decreasing. 

 
Finally, we will check the shapes of the lognormal HR and MRL functions. With 
( ) ( )LN LNu t f t=  and ( ) ( )LN LNv t S t= , we have that  

 

(7) 
2

2

( ) log
( )

N

N

u t t
v t t

σ μ
σ

′ + −
=

′
.       
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The derivative of ratio (7) is  2 2(1 log ) /( )t tμ σ σ+ − −  and so the ratio must be increasing on 
(0,  ) c  and decreasing on ( , )c ∞ , where 2exp{1 }c μ σ= + − . Such functions are called upside-
down bathtub (UBT) shaped. Similarly, if a function is first decreasing and then increasing, it is 
called bathtub (BT) shaped. (We understand `increasing' and `decreasing' in the strict sense 
throughout the current paper.) The following result of Pinelis tells us what to expect from the ratio 

( ) / ( )u t v t  when ( ) / ( )u t v t′ ′  is either UBT or BT. 
 
Theorem 2. (Pinelis, 2006; third and fourth lines of Table 4.1). Let ( )u t  and ( )v t  satisfy same 
assumptions as in Theorem 1, including ( ) 0 ( )u b v b− = = − . Then the following two statements hold: 
 
(1) If ( ) / ( )u t v t′ ′  is UBT, then ( ) / ( )u t v t  is either decreasing or UBT. 
 
 (2) ( ) / ( )u t v t′ ′  is BT, then ( ) / ( )u t v t  is either increasing or BT. 
 

Since ratio (7) is UBT, part (1) of Theorem 2 implies that the lognormal HR function must be 
either decreasing or UBT. In turn, the latter statement together with part (2) of Theorem 2 (see also 
equations (5)  above) imply that the lognormal MRL function must be either increasing or BT. To 
find out which of these alternatives are true, we appeal to Proposition 4.4 in Pinelis (2006), which 
requires us to calculate the ratio 
 

2

0

( / ) ( )lim ( )
| ( ) |t

u v tv t
v t↓

′
Δ =

′
. 

 
Theorem 3. (Pinelis, 2006; lower half of Table 4.2).  Let ( )u t  and ( )v t  satisfy same assumptions as 
in Theorem 1, including ( ) 0 ( )u b v b− = = − . Then the following two statements hold:  
 
(1) If 0Δ ≤ , then the ratio ( ) / ( )u t v t  in part (1) of Theorem 2 is decreasing, and if 0Δ > , then the 
ratio is UBT.  
 
(2) If 0Δ ≥ , then the ratio ( ) / ( )u t v t  in part (2) of Theorem 2 is increasing, and if 0Δ < , then the 
ratio is BT. 
 

Consider the lognormal HR function ( )LNh t . The corresponding ratio Δ  is: 
 

2
2

20 0 0

( ) ( ) loglim ( ) lim lim
| ( ) | ( )

LN LN
LNt t t

LN LN

h t f t tv t
v t f t t

σ μ
σ↓ ↓ ↓

′ ′ + −
Δ = = = − = ∞

′
. 

 
Hence, according to part (1) of Theorem 3, we have that 
 

(vii)  the HR function ( )LNh t  is UBT. 
 
Consider next the lognormal MRL function ( )LN tμ . The corresponding ratio Δ is: 
 

2

0 0 0

( ) ( ) ( )lim ( ) lim lim
| ( ) | | ( ) | ( )

LN LN LN
LNt t t

LN LN LN

t t S tv t
v t v t f t
μ μ

↓ ↓ ↓

′ ′ −
Δ = = = − = −∞

′ ′
. 

 



M.Bebbington, C-D.Lai, R.Zitkis  -  LIFETIME ANALYSIS OF INCANDESCENT LAMPS: THE MENON-AGRAWAL MODEL REVISITED 
 

R&RATA # 1 (Vol.1) 2008, March 
 

 

- 107 - 

Hence, according to part (2) of Theorem 3, we have that 
 

 (viii)  the MRL function ( )LN tμ  is BT. 
 
 

4.  Concluding remarks 
 

We have shown that the (truncated) normal and lognormal distributions satisfactorily describe 
the lifetimes of incandescent lamps. The latter is slightly superior statistically and easier to interpret 
in terms of failure being due to any one of a number of possible causes. The main difference 
resulting from the use of the lognormal is that the mean and median lifetimes diverge, but the 
available data set appears to be too small to distinguish this or, equivalently, the tail behavior of the 
distribution.   
 
The shapes of the HR and MRL functions corresponding to the four distributions employed above 
to analyze the lifetime of incandescent lamps were analyzed using general calculus results for the 
ratios of functions and derivatives. Reflecting on these derivations in the context of the existing 
literature (see, e.g., Lai and Xie, 2006, and references therein), we note that except in some trivial 
cases such as the Weibull HR function, monotonicity of the HR and MRL functions has been 
investigated mainly using Glaser's (1980) η -function  ( ) ( ) / ( )t f t f tη ′= − . (It is of course the 
l'Hospital-type ratio ( ) / ( )f t S t′ ′  corresponding to the HR function ( ) / ( )f t S t .) In this sense, 
therefore, Glaser (1980) is a precursor to Pinelis's research of the past decade, and so are Gupta and 
Akman (1995) in the context of determining MRL shapes in terms of the corresponding HR shapes. 
We again refer to Lai and Xie (2006) for various uses of, and further theoretical developments 
related to, Glaser's η -function and Gupta and Akman's (1995) results; see also Bebbington et al. 
(2008) for a recent application of ( )tη  to the Birnbaum-Saunders distribution. We conclude the 
discussion with a passage from Pinelis (2004) which refers to the shapes of the generic ratio-
functions ( ) / ( )u t v t and ( ) / ( )u t v t′ ′ : 
 

“...In contrast, the argument just presented is straightforward and rather mechanical. This is 
exactly the point that we wish to make in this paper. Now a wide class of inequalities 
become almost trivial in that ad hoc creativity is no longer needed for many such problems. 
But then is there any excitement left? Yes, what is exciting now is to have such general 
rules for monotonicity!” (Pinelis, 2004, p. 908)  

 
We concur. 
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