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Abstract 
Dependent failures are extremely important in reliability analysis and must be given adequate treatment so as 
to minimize gross underestimation of reliability. German regulatory guidance documents for PSA stipulate 
that model parameters used for calculating frequencies should be derived from operating experience in a 
transparent manner. Progress has been made with the process oriented simulation (POS) model for common 
cause failure (CCF) quantification. A number of applications are presented for which results obtained from 
established CCF models are available, focusing on cases with high degree of redundancy and small numbers 
of observed events. 
 
1. Common cause failure analysis in the frame of probabilistic safety assessment 
 
Design, operation and maintenance of systems are performed to minimize potential failures such as random, 
systematic and dependent failures. Dependent failures comprise secondary failures caused, e.g., by violation 
of operational conditions and so-called commanded failures like component fails due to violation of interface 
conditions. The residual part of the group of commanded failures is called common cause failures (CCF). To 
identify dependent failures, approaches have been extended to encompass potential interpendencies between 
systems or components.  Secondary and commanded failures are supposed to be modelled explicitly as far as 
possible in fault tree models of the system whereas common cause failures are taken into account in 
probabilistic safety assessment implicitly by parametric models. 
In general, the most important defence against accidental component or system failures is the 
implementation of principles such as separation, diversity and redundancy. However, experience 
has shown that redundancy itself is not sufficient to avoid undesired events just because of possible 
dependent failures. 
CCF of redundant safety relevant systems have been of concern since quantitative estimation of the 
reliability of these systems was developed starting in the early 70ies because this type of failures 
affect significantly their availability and reliability leading – in the worst case – to a simultaneous 
loss of all redundancies. 
Typical examples of CCF are miscalibration of sensors, incorrect maintenance, environmental impact on the 
field device and use of a not appropriate process fluid, which plugs valves in different redundancies. 
Experience from numerous probabilistic safety assessments has shown that, especially for highly 
redundant systems in nuclear power plants, common cause failures tend to dominate the results of 
these assessments such as the core damage frequency or large early release frequency. 
As a consequence of generally rather effective defence against common cause failures in place, the 
number of really observed events in nuclear power plants is limited, in particular with respect to 
events involving failures of all or at least many redundant components. However, the operational 
experience contains some information on potential common cause failures, i. e., partial failures that 
could have evolved into the complete failure- of the common cause component group within a short 
period of time. This in turn requires in one way or the other an extrapolation based on parametric 
models, which is extremely difficult to verify. 
Despite of these difficulties significant progress has been made in the last years due to increasing 
operational experience, more systematic data collection and analysis, growing experience in 
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probabilistic safety assessment and an enhanced exchange on data and methods both nationally and 
internationally.  
Although the use of plant-specific data in probabilistic safety assessment is preferred, in case of 
lack of events or of information it is helpful to provide a generic data base taking into account all 
national experiences and appropriate international data. Data bases like the OECD/NEA 
International Common Cause Failure Data Exchange Project allows collecting and analysing data of 
a lot of different components such as valves, pumps and diesel generators. Results of the analysis of 
these data also enable to assess and improve the effectiveness of defences against common cause 
failure events. For that purpose, data and information related to events observed in the operational 
experience with sufficiently detailed content have to be provided. 
In general, the treatment of common cause failures within probabilistic safety assessment requires 
four main steps: development of a system logic model, identification of common cause component 
groups, common cause modelling and data analysis as well as quantification and interpretation of 
the results. For the quantitative part of the common cause failure assessment, models have still to be 
further developed, in particular with respect to applicability to highly redundant systems, suitability 
and traceability. 
 
2. German practice 
Probabilistic safety analyses (PSA) have been performed for all operating German nuclear power plants. 
Experience has shown that CCF in many cases tends to dominate the results of the PSA. Therefore, methods 
and results of CCF analyses receive a lot of attention in the discussions between regulator, technical experts, 
utilities and analysts. 
Regulatory guidance is available in Germany for level 1+ PSA (a level 1+ analysis is understood to end at 
the onset of core damage but to take into account active containment functions) as part of periodic safety 
reviews of nuclear power plants. According to the importance of CCF, a chapter in the German regulatory 
guidance documents is dedicated to dependent failures [6]-[7]. These failures comprise secondary failures 
caused by violation of operational or environmental conditions as well as commanded failures - intact 
component failing due to violation of interface conditions, for example in the case of erroneous signals or 
failed energy supply. The residual part of the group of dependent failures is the common cause failures 
mentioned before. Secondary and commanded failures are to be modelled explicitly as far as possible in the 
fault tree models of the system. CCF, on the other hand, are taken into account in PSA by parameter models 
[2]. 
The guidelines mentioned before – they are currently undergoing final steps of revision in view of 
the fact that the Atomic Energy Act as amended in 2002 makes Periodic Safety Reviews (including 
PSA) mandatory – do not prescribe specific CCF models. Rather, they demand that the parameters 
of any model used are to be derived in a clearly described way from operating experience. Thus, in 
German PSA practice, a variety of models have been used [1], [9], [10]. 
 
3. A process oriented simulation model (POS) for CCF quantification 
 
3.1. Rationale and objectives 
The question can be raised whether an approach aiming at modelling the entire CCF process from the point 
in time of the root cause impact to failures taking effect or being detected in the common cause component 
group (CCCG) in a more mechanistic manner could support and complement the established modelling 
which is mostly aiming at failure probabilities. Such a process oriented modelling approach is described and 
discussed in this paper. It represents a further elaboration of the modelling stages described in [3]-[4]. 
 
3.2. Model description 
The method of stochastic simulation offers a convenient way to describe the model and to quantify its 
results. The sequence of stochastic variables displayed in table 1 is supposed to adequately describe the CCF 
process. 
Based on simulation of this sequence, the associated unavailability’s can be calculated. 
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The following fixed-value parameters are used throughout a simulation sequence: 
• operation time         TB 
• number of components in the CCCG:        r 
• time between functional tests     TFT 

The sequence of variables and calculations defines a single simulation of the common cause failure process. 
It is described how the variables are either derived from a stochastic assumption or are calculated 
deterministically. 
The calculation of the probabilities W(m,r) for the event that the common cause impact will affect exactly m 
out of r components are calculated by a recursive scheme that is detailed in [3]. Here, only the formulae up 
to r = 4 are given. Model parameters are a and r0. 
 

( ) 12,2 =W ,                                                                                  (1) 
 

( ) aW =3,3 ,                                                                                 (2) 
 

( ) aW −= 13,2 ,                                                                              (3) 
 

( ) ( ) ( )( )0/3114,4 reaaaW −−⋅−+⋅= ,                                                                 (4) 
 

( ) ( )214,2 aW −= ,                                                                            (5) 
 

( ) ( ) ( )4,24,414,3 WWW −−= .                                                                    (6) 
 
To facilitate handling of the necessary equations, model parameter r0 is replaced by: 
 

( )01exp rc = .                                                                              (7) 
 
In the applications presented here, a model version has been used that is based on a simplified 
assumption regarding the CCF identification. It is assumed that non-staggered testing is applied and 
that a CCF-event is identified at the functional test following the first component failure. It is well 
known that conditions in the field are more complex. To account for that from the information 
provided in the literature sources effective test intervals have been estimated for the POS-analyses. 
The model assumptions can be modified to account for other situations like staggered testing in a 
straightforward manner. As the prime purpose of this paper is to demonstrate key features of the 
POS model such refinements have been postponed. 
 
3.3. Parameter estimation for the process oriented simulation model 
The parameter estimation routine used here is closely related to the one described in [4]. It has, however, 
been simplified without significantly lowering its precision. 
 
3.3.1. Frequency 
The model has essentially four parameters that have to be estimated. The first is the frequency of CCF-events 
for which the usual estimator for failure rates is used. 
 
3.3.2. Number of impacted components 
The approach selected consists of an estimation of the distribution of the number of impacted components 
based on the observed events: 
 

( ) ( ).11,
K

rNrmW m
est

−+
=                                                                (8) 
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The constant term 1/(r-1) is introduced into the estimator to avoid vanishing probabilities, which in practice 
are not expected. K serves for normalization. Nm is the number of events for CCCG size r and with number 
of impacted components m. 
On the other hand, the probabilities can be calculated as functions of the model parameters. It can be shown 
that 
   ( ) ( ) .1,2 2−−= rarW                                                        (9) 
 
Table 1. Overview of the POS model 
 
 

 
This relation suggests the following estimator: 
 

   ( ) ( ).1,2 21 −−= r
estest Wra                                                                      (10) 

 
In a second step, parameter c is estimated based on the mean of m: 
 

   .),(
2

∑ ⋅=><
=

r

m
estest rmWmm                                                                  (11) 

 
Again, the mean of m can be calculated as a function y of the model parameters a and c 
 

   ( ).,caym >=<                                                                            (12) 
 
This can be used to estimate c based on the estimates aest and West(m,r) already obtained 
 

   ( ).,1
estestest mayc ><= −                                                                    (13) 

 
Here, y-1 denotes function y(a,c) inverted with respect to c. 
 

Sequence of Modelling assumptions for the stochastic variables 
stochastic variables Model parameter Assumption 
Time tCCI of common cause impact Rate of common cause impacts rCCI Equally distributed in TB, rCCI TB << 1,
Number m < r + 1 of impacted components  a, ro Probability W (m, r), see formulae (1) 

to (6) and [3]  
Failure rate R of the impacted components Probability of instantaneous failure of all 

impacted components Winst, interval for 
rates of non- instantaneous failures RMIN 
to RMAX 

According to Winst the m components 
fail either instantaneously or are 
logarithmic equally distributed in the 
interval RMIN to RMAX 

Times of failure of the impacted components tF (m) Either all impacted components fail at 
tCCI or the times of failure are 
exponentially distributed with rate R 

Identification of CCF-process by the 
functional test 

 
  ⎯ 

For times > tF (i) the failure and the 
common cause process are identified, 
the components are immediately 
repaired and as good as new  

Time of CCF identification tID TFT The functional tests are performed at 
intervals TFT . The first test time after 
the first failure occurring at the 
minimum of the tF (m) is equal to tID 

Finally, from the failure times tF (i) (i = 1, ..., m) in the time interval between tCCI and tID the time periods are calculated in which 
zero, one, two, ... up to at most m components are failed: ( )mii ,..,2,1,0)( =Δ  
The average of Δ (i) / TB  (i ≥ 1) for many simulations is the unavailability.  
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There are, however, cases in which the non-linear equation (13) for cest does not have a meaningful solution. 
This is avoided by applying the following transformation to the estimated <m>est: 
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The following estimator does always lead to meaning-full results: 
 

   ( ).,1
estestest mayc >′<= −                                                              (15) 

 
3.3.3. Fraction of impacts leading to immediate 
failure 
 
The last parameter to be estimated is the fraction of events that lead to failure of all impacted components 
immediately, Winst. It can – in some cases – be derived from the event reports in a straightforward manner. 
A quantity sensitive to this parameter is the ratio of the number of events Nf in which all impacted 
components failed to the number of all events Ntotal 
 

   .totalf NNf =                                                                    (16) 

 
For the mean value of this parameter holds 

   ( ) ,1 continstinst FWWf ⋅−+>=<                                                           (17) 
 
Fcont denotes the probability that in case of a non-instantaneous failure event all impacted components fail. 
This quantity obviously depends on the time of CCF detection. The identity serves as motivation for the 
following estimator 
 

   ( ) ( ) ( ){ }.1,21max contconttotalinst FFfNW −−⋅=                                              (18) 
 
The estimation procedure described here is easier to handle than the approach described in [4] which is based 
on minimization of Kullback’s information measure [11]. 
The rationale for the estimation procedure is rather of heuristic nature and not supported by rigorous proof. It 
is therefore necessary to assess its appropriateness using a simulation test outlined in the following. 
 
3.4. Test for the estimation procedure 
The estimation procedure is seen as a practical approach that is not underpinned by sophisticated 
mathematics but rather by direct testing. The latter is possible because the POS model can be used to 
generate fictitious failure data which can than be subjected to parameter estimation. Comparing the estimated 
parameters with the “true” parameters used in the simulation will display the balance of the strengths and 
weaknesses of the estimation procedure. The possibility to carry out such a test is a further advantage of 
simulation modelling. 
 
3.4.1. Failure data and comparison to estimated 
parameters 
 
From the data given Table 2, a set of 30 simulated CCF event data sets was produced, comprising on average 
some three CCF events each. 
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Table 2. ‘True’ parameters and derived CCF failure multiplicities (assuming CCF rate of 0,075 a-1) used for 
the model test 
Parameters a =  0,5 c =  2,0 Winst = 0,1 
Failure 
multiplicities 2-out-of-4 3-out-of-4 4-out-of-4 
Failure 
probabilities 1,3·10-4 a-1 8,3·10-5 a-1 9,7·10-5 a-1 
This exercise representing a straightforward test of principle, all simulated failure events were supposed to 
affect CCCG of size r = 4. The low number of simulated events corresponds to the well-known fact that CCF 
events as such are rather scarce. For the parameter estimation, only the number of CCF events, the number of 
failed and the number of affected – but not failed – components in each event were used, together with the 
supposed observation time, given in component group years. To assess the predictive power of the model, 
the parameters estimated for each of the 30 data sets were used to predict a 4-out-of-4 failure probability 
which was compared to the ‘fictitious reality’ as given in Table 2. 
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Figure 1. ‘True’ vs. estimated CCF probabilities for 4-out-of-4 failures 

 
The result is shown in Figure 1 above. In all cases, a CCF-detection time of 1.5 months has been assumed. 
Obviously, the estimation procedure gives rather satisfactory results. The conservatism introduced by the 
heuristic assumption of eqn. (18) results in a very moderate overestimation of the true value. 
 
 
3.4.2. Data base and quality of prediction  
 
In order to test the POS model’s performance in case of a scarce data base, the estimation procedure as 
detailed above was repeated, this time using a data set of simulated CCF events based on a CCF impact rate 
corresponding, on the average, to one event in the observation period. Obviously, a data set with zero events 
does not make sense; therefore, in such cases the fictitious observation time was extended until an event was 
simulated. 
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Figure 2. Comparison of predicted vs. ‘true’ unavailability’s for 4-out-of-4 CCF on the basis of, on average, 
one or three events per database. Medians and standard error bars are given based on ten data sets for each 

case. 
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As can be expected, the conservative assumption implicit in equation (18) takes more effect in this case. 
Figure 2 gives a comparison of predicted vs. ‘true’ failure rates for 4-out-of-4 CCF. As is evident from the 
comparison, the predictions based on scarce data tend somewhat to the conservative side. 
 
On the other hand, it is demonstrated in Figure 3 how the estimation is improved if more events are included 
in the database for a representative example. The parameter Winst being rather sensitive to failure of all 
components is overestimated in the upper part of figure 3 based on 3 events in the average in the data set. In 
the lower part of figure 3, it can be seen how the enhanced number of events improves the estimate. 
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Figure 3. Dependency of parameter estimation quality on the number of events in the database. 

Estimated parameter: Winst; true value: Winst = 0.1 (cf. Table 2). 
 
Upper diagram corresponds to 3 events on average, lower diagram corresponds to 10 events on average, 
showing improved estimation. 
 
 
4. Analysis of a highly redundant system with the POS model 
 
Hauptmanns [8] has published a challenging case study on a highly redundant CCCG. It concerns the 
combined impulse pilot valves which in German nuclear power plants govern the function of pilot operated 
safety or relief valves. For German Boiling Water Reactors (BWR), there are up to 22 such impulse pilot 
valves governing the function of the automatic depressurisation system (ADS).  
 
CF quantification for such highly redundant systems is demanding, due to the sparse base of observed 
events, which, in addition, will mostly consist of events with only a limited number of failed components. 
Even in Hauptmanns’ case, where the database consists of twelve events, there are only two cases with more 
than half of the CCCG actually failed (cf. Table 3 below). 
 
In [8], Hauptmanns compares CCF rates predicted for 1-out-of-22 through 22-out-of 22 failure multiplicities 
using the classical binomial failure rate (BFR) model to those predicted with his improved multi-class 
binomial failure rate (MCBFR) model. For the latter, the events in the database are sorted into different 
classes according to engineering judgement, and attempts to estimate individual coupling factors p for all of 
the defined event classes. Detailed information on the models and the calculation method are in [8]. 
 
Table 3. Observed CCF and degradations for combined impulse pilot valves (failure mode: does not open); 
adapted* from [8] 
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Event No. failed     No. degraded    CCCG     Operation 
No. components  components      size r       time TB [a]  
1 2  0  9 9 
2 6  2  8 10 
3 2  0  22 7 
5* 1  15  16 9 
6 2  5  16 7 
7 2  10  12 6 
8 7  1  8 10 
9 1ª  13ª  14 9 
11* 2  6  12 6 
12 2  0  4 9 
* H’s events # 4 and 10 were omitted because with 1 failed and 0 degraded but not failed components they do not correspond to the 
definition of a CCF used in this paper, which is based on at least two components impacted by the common cause. 
ª In H’s event # 9, one of the 14 components found degraded is assumed failed, because the analyses with the POS model presented 
here do not handle ‘zero failure’ events. 
 

In case there is at least one CCF event in the database where all or nearly all components of the CCCG 
were failed, the MCBFR model can be expected to yield less unrealistic failure rates for high failure 
multiplicities than the classical BFR model.  

Using the raw data as given in [8] with the exception of omitting events #4 and #10 and assigning 
event #9 one failed and 13 affected components instead of 0 failed and 14 affected, cf. table 3 – the CCF 
rates for a CCCG of size 22 were calculated. Total operation time of 165 component group years was used in 
estimating the CCF rate. 

The results obtained with the POS model do not exhibit the unrealistic low failure rates for higher 
multiplicities. They do not coincide with the MCBFR results but are comparable especially in the range of 
higher failure multiplicities. Key difference to the MCBFR approach is that for the POS application no 
decomposition of the event base had to be performed. The approach is integral. It can be concluded that the 
POS model is a candidate for CCF analyses of highly redundant systems. 
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Figure 4. CCF-rates for pilot valves in German NPP according to Hauptmanns for the (BFR) and the 
(MCBFR) model. The results with the POS model have been obtained with the parameter estimation 

procedure described in this paper. 
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5. Calculating alpha-factors with the POS model 
 
In [13], approaches to CCF quantification are outlined, especially the use of parametric models. In the report 
[12], common cause failure parameter estimations have been provided for some 40 different component 
types, various failure modes and common cause component group sizes from two up to six.  One of the 
models for which parameter distributions have been derived is the Alpha-Factor Model. From the point of 
view of demonstrating the usefulness of the POS model, this large amount of systematically derived 
information was seen as a possibility to apply POS and compare to results obtained with established 
methods. 
As pointed out before, for the POS parameter estimation information is required on the number of 
components, which are affected by the event. This kind of information is not available in [12]. Therefore, for 
this exercise a simplified approach has been selected [5].  
The alpha factor α(k,l) is by definition the probability that in a CCF component group of size l exactly k 
components have failed as consequence of a CCF basic event. Hence, the quantities are normalized with 
respect to the failure multiplicity k = 1,2, ...l. The first simplifying assumption is that the failures with k 
equal to 2 and greater are determined by dependent failures only. The conditional probabilities w(k,l) for 
these events are calculated with the POS model. In [7], the numbers of independent and dependent events are 
given and thus the ratio q of dependent to total number of events is at hand. The alpha factors than can be 
calculated as follows: 
 

   α(k,l) = w(k,l) ⋅ q  + (1 – q) ⋅ δ(k,1)                                                          (19) 
 

   δ(k,1) = 0 for k > 1 and δ(1,1) = 1                                                           (20) 
 
The selection of POS-parameters is – as pointed out before – simplified. The values of Winst = 0.1 and of r0 = 
3 are taken as default values throughout the exercise. These values are typical values based on other 
applications. Parameter a is the fitted such that α(4,4) is equal to the value tabulated in [12] for the 
component type and failure mode under consideration.  
This program has been carried out for six different combinations of components and failure modes. These 
were selected primarily based on large numbers of dependent failures to make sure that the comparison has a 
solid statistical basis. Furthermore, a mix of technically different components has been chosen. Furthermore, 
only those components were included for which CCF group sizes up to 6 are covered in [12].  
For the comparison with the empirical data from [12] a metric for the deviation of the quantities is required. 
In [12], the mean, but also the 5-, the 50- and the 95-percentile of the alpha factor distributions are 
displayed. This suggested to use the logarithm of the ratio of the alpha factor derived from the POS model to 
the 50-percentile from [12], divided by logarithm of the ratio of the values of the 95-percentile to the 50-
percentile. This means a deviation X = 1 if the calculated value equals the value of the 95-percentile  
 

   X = log ( αPOS / α50) / log ( α95 / α50).                                                       (21) 
 
Eq. (21) holds for values of αPOS larger than the median of the distribution, the analogous measure is used 
for αPOS smaller than the median. In that case, the deviation X = -1 is obtained if the calculated value equals 
the value of the 5-percentile. 
A similar picture is obtained by considering complete CCFs (failure of all components). This is displayed in 
Figure 5. It is not surprising that the agreement is better for α(5,5) and α(3,3) than for α(2,2) as the 
parameter adjustment was done for α(4,4). For small sizes of the component group the deviations are larger. 
The assumption that the failure multiplicities > 1 are due to dependent failures only might here be wrong 
and thus lead to greater deviations. 
Considering the severe simplifications that were made in the exercise, the results obtained with the POS 
model adjusting only one of three possible parameters are satisfactory especially for high failure 
multiplicities.  
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Deviation X of the alfa factors α(k,k) 
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Figure 5. Deviation X of the alfa factors α(k,k) calculated with the POS-model from values tabled in [13]. 
 

6. Summary, conclusions and outlook 
 
The POS model for CCF quantification is based on the following model structure: 
• Time of CCF impact, simulated with a constant 
 CCF impact rate, 
• Number of components of the CCCG affected by 
 the impact and subsequently failing immediately or 
 time-delayed, 
• Times of failure of the impacted components, and 
• Time of detection of the CCF process by 
  inspection or functional testing. 
 
As a last step to prepare practical application of the model, a procedure for estimating the four free model 
parameters – rate of CCF impact, parameters a and c determining the probabilities of the number of impacted 
components and fraction of instantaneous failures – has been suggested and tested. 
The POS model can be used to generate fictitious failure data which can than be subjected to parameter 
estimation. Comparing the estimated parameters with the “true” parameters used in the simulation gave a 
good agreement with a slightly conservative tendency. The low number of events – roughly three on the 
average – on which the estimation has been based, makes this observation remarkable. In situations with 
even less events the conservative overestimate of the unavailability becomes more visible but still results are 
not totally out of bounds.  
CCF analyses for pilot valves in German nuclear power plants present a real challenge as component group 
seizes range up to 22. The POS application has no problem whatsoever with this situation. It does not show 
the totally unrealistic behaviour predicted by the BFR-model. The results show some agreement with a 
multi-class-BFR approach suggested by Hauptmanns without the need to decompose the observed events 
into different technical classes. 
As a bottom line, the results obtained increase the confidence into the model and the parameter estimation 
procedure. The next steps will be directed towards enhancing the number of applications. This work will be 
directed to areas of application where CCF failure data covering many component types and a larger range of 
component group sizes have been produced with well established models, [12] cf. e. g.  In such cases, 
parameter estimates can be obtained from data derived from events in component group sizes up to 4 and 
extrapolated to higher degrees of redundancy. This will constitute a real test of the model and the parameter 
estimation procedure. 
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