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Abstract 
The analysis of field lifetime data is much more complicated than the analysis of the results of reliability 
laboratory tests. In the paper we present an overview of the most important problems of the statistical 
analysis of field lifetime data, and present their solutions known from literature. When the input information 
is partial or imprecise, we propose to use interval arithmetics for the calculation of bounds on reliability 
characteristics of interest. When this information can be described in a more informative fuzzy form, we can 
generalize our interval-valued results to their fuzzy equivalents.  
 
 
1. Introduction 
 

Statistical analysis of results of lifetime tests has its over 50 years lasting history. In contrast to 
methods usually applied for the analysis of ordinary statistical data, in case of lifetime data we have to take 
into account such specific features like censoring of observations or the existence of covariates. First 
applications of this methodology were designed for the analysis of reliability data. However, starting from 
the 1970’s their main field of applications is the survival analysis applied not only to technical objects, but to 
human beings as well. 

In classical textbooks on reliability it is always assumed that n independent objects (systems or 
components) are put on test, and in the ideal case of no censoring we observe the realizations of n 
independent and identically distributed (iid) random variables nT,,T K1 . When the lifetime test is terminated 
after the r-th observed failure, e.g. when we observe a predetermined number of failures r at times 
( ) ( )rtt <<K1 , and the remaining n-r objects survive a random censoring time ( )rt , we have the case of the 

type-II censoring. On the other hand, when the lifetime test is terminated at the predetermined time Bt , and 
the number of observed failures is a random variable, we have the case of the type-I censoring. In more 
general models, we may also assume the cases of individual random censoring (when we observe random 
variables ( ) n,,iC,TminX iii K1== , where n,,i,Ci K1=  are random, and independent from n,,i,Ti K1=  
censoring times), multiple censoring (when for each subgroup of tested objects there exists a predetermined 
censoring time), or progressive censoring (when a predetermined number of objects are withdrawn from the 
test after each observed failure). The detailed description of these censoring schemes may be found in 
classical textbooks on the analysis of lifetime data, such as the book of Lawless [16]. 

Unfortunately, the practical applicability of well known methods is often limited to the case of 
precisely designed laboratory tests, when all important assumptions made by statisticians are at least 
approximately fulfilled. These tests provide precise information about lifetimes and censoring times, but due 
to the restricted (usually low) number of observed failures and/or the restricted test times, the accuracy of 
reliability estimation is rather low. Moreover, some types of possible failures may not be observed in such 
tests (e.g. due to their limited duration), and the obtained estimates of reliability may be overestimated. 

It is beyond any discussion that the most informative reliability data may come only from field 
experiments, i.e. from the exploitation of considered objects in real conditions. Unfortunately, we have very 
seldom statistical data that are obtained under field conditions and fit exactly to the well known theoretical 
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models. For example, test conditions are usually not exactly the same for all considered objects. Therefore, 
the random variables that describe their lifetimes are not identically distributed.  Another serious practical 
problem is related to the lack of precision in reported lifetime data. Individual lifetimes are often imprecisely 
recorded. For example, they are presented in a grouped form, when only the number of failures which 
occurred during a certain time interval is recorded. Sometimes, times to failures are reported as calendar 
times, and this does not necessarily mean the same as if they were reported as times of actual operation. 
Finally, reliability data that come from warranty and other service programs are not appropriately balanced; 
there exists more information related to a relatively short warranty time, and significantly less information 
about the objects, which survived that time. 

Statisticians who work with lifetime data have tried to build models that are useful for the analysis of 
field data. The majority of papers devoted to this problem are related to the methodology of dealing with data 
from warranty programs. These programs should be considered as the main source of reliability field data. 
Therefore, the presentation of the statistical problems of the analysis of warranty data shall be an important 
part of this paper. Some important mathematical models related to the analysis of warranty data are presented 
in the second section of this paper. In all these models it is assumed that all observations are described more 
or less precisely, and all necessary probability distributions are either known or evaluated using precisely 
defined statistical data. In many cases this approach is fully justified. However, close examination of real 
practical problems shows that in many cases available statistical data are reported imprecisely. We claim that 
making these data precise by force may introduce unnecessary errors. Therefore, we believe that in case of 
really imprecise data this fact should be taken into account in an appropriate way. In the third section of the 
paper we present the solution of some chosen practical problems when the input information is given in an 
interval form. These results are generalized in the fourth section to the case of fuzzy input data. Some 
conclusions and proposals for future investigations are presented in the last section of the paper. 
  
 
2. Mathematical models of reliability field data coming from warranty programs 
 

Lifetime data collected during precisely controlled laboratory test provide important, albeit limited, 
information about reliability of tested equipment. This limitation has different reasons. First, the number of 
tested units and/or the duration of a lifetime test are usually very limited due to economic constraints. 
Second, controlled laboratory conditions do not reflect real usage conditions. For this reason, for example, 
some of important types of failures cannot be revealed during the test. Finally, only field data can provide 
useful information about dependencies between reliability characteristics of tested units and specific 
conditions of exploitation. In contrast to laboratory lifetime data, reliability field data may yield much more 
interesting information to a manufacturer. Unfortunately, the information that is characteristic for laboratory 
data is seldom available in case of field data. First of all, warranty programs that serve as the main source of 
reliability field data are not designed to collect precise data. For example, reliability data are collected only 
from those items that have failed during the warranty period. Moreover, this period may not be uniquely 
defined. It is a common practice to define the warranty period both in calendar (for example, one year) and 
operational (for example, in terms of mileage) time. Therefore, in many practical cases reliability data are 
intrinsically imprecise. Also exploitation conditions, important for the correct assessment of reliability, are 
not precisely reported. All those problems, and many others, make the statistical analysis of reliability field 
data a difficult problem. Therefore, despite its practical importance, the number of statistical papers devoted 
to the analysis of reliability field data is surprisingly low. 

Statistical analysis of reliability field data coming from warranty programs can be roughly divided into 
two related, but distinct, parts: analysis of claims processes and the analysis of lifetime probability 
distributions. From the point of view of a manufacturer the most important information is contained in the 
description of the process of warranty claims. Comprehensive description of this type of analysis can be 
found in the papers by Lawless [17] and Kalbfleisch et al. [14]. In the analysis of claims processes statistical 
data are discrete, and are described by stochastic count processes like the Poisson process or its 
generalizations. By analysing count reliability data we can estimate such important characteristics as, e.g., 
the expected number of warranty claims during a specific period of time, the expected costs of such claims, 
etc. This type of information is extremely important for designing of warranty programs, planning of the 
supply of spare parts, and the evaluation of the efficiency of service activities, but does not yield precisely 
enough information about the intrinsic reliability characteristics of investigated units. Information of this 
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type is much more useful for improving the quality on the design stage of a product, especially for the 
comparison of different solutions, etc.  

In this paper we limit the scope of our investigations to the statistical analysis of probability 
distributions of lifetimes. Throughout the paper we will denote by T the continuous random lifetime whose 
probability density function is denoted by ( )θx;|tf , where x is a vector of parameters (covariates) that 
describe exploitation conditions, and θ  is a vector of parameters that describe the lifetime distribution.   
 
 
2.1. Estimation from truncated lifetime data 
 

 
In case of the analysis of warranty data we often face situations when we observe both failure times 
,...i,ti 1=  and corresponding vectors of covariates xi, ,...i 1=  are observed only for failed units. Let Tc  be a 

certain prespecified censoring time such that failures are observed only when ci TT ≤ , where ,...i,Ti 1=  
denote random variables describing lifetimes of failed units. If only lifetimes of failed units are available, 
and the form of the lifetime probability distribution is known, the statistical inference about parameters θ  
can be based on a truncated conditional likelihood function 
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where ( ) { }θxθx ;|tTP;|tF ≤= . This likelihood function arises from the conditional (truncated at time Tc) 
probability distribution of the random lifetime T. It is interesting to note, that the likelihood function (1) does 
not depend upon the number N of units in the considered population of tested items. Therefore, (1) is suitable 
for the estimation of θ  when this number is unknown. Moreover, in case of a low proportion of failed items, 
this likelihood function can be quite uninformative, as it was noticed by Kalbfleisch and Lawless [13]. They 
showed using computer simulations that the variance of the estimators of unknown parameters is 
substantially larger than in the case when some information about non-failed units is available. 

Estimation of θ  using the likelihood function (1) is rather complicated, even in simple cases. A 
comprehensive presentation of this problem can be found in the book by Cohen [2]. A relatively simple 
solution was proposed by Cohen [1] for the lognormal probability distribution of lifetimes, i.e. when 
logarithms of observed lifetimes are distributed according to the normal distribution. In this case the 
maximum likelihood estimators based on (1), and the moment estimators based on the first two moments 
coincide, but computation requires either special tables or the usage of numerical procedures. Cohen [1] 
considered a single left truncation at X0. In this case the kth sample moment is calculated from 
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For the estimation of the unknown parameters � and �� Cohen [1] proposed to use three first 

moments defined by (2). The obtained estimators can be calculated from the following simple formulae: 
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These formulae are derived for the left truncated sample. However, they can be applied in case of right 
truncated samples, in which case the odd moments are negative. The solution given by (3) and (4) is 
theoretically less efficient than the maximum likelihood estimators obtained from (1). However, Rai and 
Singh [21] have shown using extensive Monte Carlo simulations that there is no significant difference 
between these two methods. However, the efficiency of these estimators decreases, as expected, significantly 
when the percentage of truncated (i.e. not observed) lifetimes is larger than 30%. 

 
 

2.2. Estimation from censored lifetime data with full information about censored lifetimes 
 
 

In the previous subsection we considered the case when only the data from units failed prior to a 
certain time Tc are available. The situation when the information about non-failed units is available is well 
known as “censoring”. Following Hu and Lawless [9] let us present the general mathematical model of 
lifetime data. We consider population P consisting of n units described by their lifetimes, n.,i,ti K1= , 
random censoring times, n.,i,i K1=τ , and vectors of covariates n.,i,i K1=z , respectively. Triplets 
( )iii z,,t τ  are the realizations of a random sample from a distribution with joint probability function 
 

   ( ) ( ) qR,,t,,dG,;|tf ∈>> zzz 00 τττθ ,                                  (5) 

 
where lifetimes and censoring times are usually considered independent given fixed z, and ( )z,G τ  is an 
arbitrary cumulative distribution function. Let O be the set of m units for whom the lifetimes are observed, 
i.e. for whom n,,i,t ii K1=≤τ . The remaining n-m units belong to the set C of censored lifetimes for whom 
only their censoring times iτ  and covariates iz  are known. The function ( ) ( )zz ,;|tF,;|tS τθτθ −=1 , where 
( )z,;|tF τθ  is the cumulative distribution function of the lifetime, is called in the literature the survivor 

function or the survival function. The likelihood function that describes the lifetime data is now given by [9] 
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The special cases of (6) are well known, and comprehensively described in many reliability textbooks, 

such as an excellent book by Lawless [16]. However, they are rather well suited for the description of 
laboratory life tests, where all censoring times are known, and the values of covariates that describe test 
conditions are under control. In this paper we recall only those results, which in our opinion are pertinent to 
the analysis of field lifetime data. 

One of the features that distinguish reliability field tests from laboratory tests is the variety of test 
conditions. In the laboratory test these conditions are usually the same for all tested units. Only in case of 
accelerated lifetime these test conditions are different for different groups of tested units. In contrast to this 
situation, in reliability field tests usage conditions may be different for all tested units. Therefore, statistical 
methods that allow taking into account different test conditions are especially useful for the analysis of 
reliability field data. 

There exist two general mathematical models that link lifetimes to test conditions and are frequently 
used in practice: proportional hazard models, and location-scale regression models. In the proportional 
hazard models the hazard function, defined as ( ) ( ) ( )zθzθzθ ,;tS/,;tf,;th = , is linked to the test conditions 
by the following equation 

 
   ( ) ( ) ( )zz gth|th 0= ,                          (7) 

 
where functions h0(.) and g(.) may have unknown parameters which have to be estimated from statistical 
data. Another representation of the proportional hazard model is the following: 
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   ( ) ( ) ( )zz gtS|tS 0= .                                                             (8) 

 
The most frequently used model is given by the following expression 

   ( ) ( ) zβz eth|th 0= ,                                                                    (9) 
 
where qqzz ββ ++= L11zβ , and ��’s are unknown regression coefficients. This model was investigated by 
many authors. To give an illustration of its application let us recall the results given in Lawless [16] for the 
case of the Weibull distribution of lifetimes. 

The Weibull probability distribution is the most frequently used mathematical model of lifetime data. 
In the considered case of the proportional hazard model its survivor function is given by the following 
expression 

 

   ( ) ( ) ⎥⎦⎤⎢⎣
⎡−= − δzβz teexp|tS ,                                                         (10) 

 
where �>0 is the shape parameter, responsible for the description of the type of failure processes. If we use 
the transformation TlogY = , the logarithms of lifetimes are described by simple linear model 
  

   WY σ+= zβ ,                                                                   (11) 
 

where ���, and the random variable W has a standard extreme value distribution with the probability 
density function  ( )[ ]wexpwexp − . 

Suppose that n units are tested, and independent observations ( ) n,,i,,x ii K1=z  are available, where xi 
is either a logarithm of lifetime or logarithm of censoring time of the ith tested unit. Additionally suppose 
that exactly r failures are observed. If we apply the maximum likelihood methodology to this model, we 
arrive at the following set of equations [16]: 
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where ( ) σ/zyx iii β−= . The solution of q+1 equations given by (12) and (13) yields the maximum 
likelihood estimators of � (and hence for the shape parameter �), and regression coefficients q,, ββ K1 . The 
formulae for the calculation of the asymptotic covariance matrix of these estimators can be found in [16]. 

A second regression model commonly used for the analysis of lifetimes is the location-scale model for 
the logarithm of lifetime T. In this model the random variable TlogY =  has a distribution with the location 
parameter ( )zμ , and a scale parameter �, which does not depend upon the covariates z. This model can be 
written as follows: 

 
   ( ) σξμ += zY ,                      (14) 

 
where 0>σ  and ξ  is a random variable with a distribution that is independent on z. Alternative 
representation of this model can be written as 
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Both models, i.e. proportional hazard model and location-scale model, have been applied for different 

probability distributions of lifetimes. The detailed description of those results can be found, for example, in 
[16]. However, it is worth to note, that only in the case of the Weibull distribution (and the exponential 
distribution, which is a special case of the Weibull distribution) both models coincide. 

When the type of the lifetime probability distribution is not known and the proportional hazards model 
seems to be appropriate we can apply distribution-free methods for the analysis of lifetimes. Let (8) be of the 
form 

 
   ( ) ( )zβz tS|tS 0= .                                                                     (16) 

 
Cox [5] proposed a method for the separation of the estimation of the vector of regression coefficients 

� from the estimation of the survivor function S0(t). Suppose that the observed lifetimes are ordered as 
follows: ( ) ( )mtt <<L1 . Let ( )( )ii tRR =  be the set of all units being at risk at time ( )it , that is the set of all 
non-failed and uncensored units just prior to ( )it . Note, that in this model censoring times of the remaining n 
– m units may take arbitrary values. For the estimation of  �Cox  [5] proposed to use a pseudo-likelihood 
function given by 
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Slight modification of (17) has been proposed in Lawless [16]. This modification allows for few 

multiple failures at times ( ) m,,i,t i K1= . Let Di be the set of units that fail at ( )it , di  be the number of those 

units, i.e |D|d ii = , and ∑∈
=

iDl li zΞ . The likelihood function is now given by [16] 
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The maximum likelihood estimators of the regression coefficients � are found from the following 

equations: 
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where irΞ  is the rth component in ( )iqii ,, ΞΞ K1=Ξ . Formulae for the calculation of the asymptotic 
covariance matrix of these estimators are given in [16]. When the vector of the regression coefficients �has 
been estimated,  we can use a distribution-free method, such as the Kaplan-Meier estimator [15], for the 
estimation of S0(t). 
 
2.3. Estimation from censored lifetime data with incomplete information about censored 
lifetimes 

 
In case of real field lifetime data the full information about the non-failed units is often unavailable, 

even in the case when there exists full and precise information about all failed units. Consider, for example, 
the data from warranty programs. Suppose that we do our analysis at a certain moment of time using the data 
(lifetimes and values of covariates) on all units that have failed by that moment. As we usually do not have 
information about the units which have not failed, we neither know their censoring times nor the values of 
their corresponding covariates. Moreover, we may also not know even the total number of units n. However, 
if  even partial information about these units is available, it can be used for the improvement of the efficiency 
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of estimation. This information may come, for example, from the follow-ups of certain units during the 
warranty period or monitoring of some units after their warranty has been expired. 

Suzuki [22], [23] was one of the first researchers who considered the case of incomplete information 
coming from field reliability data. In [23] he considered the case when a certain fraction p* of units is 
additionally monitored during their warranty period. Thus, we have lifetimes of all units that have failed 
during the warranty period and all censoring times that do not failed during the warranty period but have 
been monitored. Under the assumption of random censoring times independent from random times to failure 
Suzuki [23] derived the maximum likelihood estimator of the survivor function S(t) that generalizes the 
estimator proposed by Kaplan – Meier [15]. In [22] Suzuki applied his methodology to find estimators of the 
parameters of such lifetime distributions like the exponential distribution or the Weibull distribution. 
Consider, for example, the exponential distribution with the survivor function ( ) ( ) 00 >>−= t,,texptS λλ . 
Let mt,,t K1  be the observed lifetimes of m failed units, and ∗∗

kt,,t K1  be the known censoring times of those k 
monitored units that have not failed during the warranty period. The censoring times of the remaining 

kmnnl −−=  units that have not failed during the warranty period are unknown. The maximum likelihood 
estimator of the hazard rate �is given as [22] 
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In the similar case of the Weibull distribution Suzuki [22] derived modified maximum likelihood 

equations. 
In [22] Suzuki considered also another problem related to the analysis of warranty data. In modern 

warranty systems the warranty “time” is often bi-dimensional. For example, for newly sold cars warranties 
are defined both in terms of calendar time and mileage. Thus, failures that occurred during the calendar-time 
warranty period but after the moment when the maximum mileage had been exceeded are not reported. 
Formulae used for the calculation of respective estimators are more complicated in this case. A more general 
model, when the additional information about covariates is available, was considered by Kalbfleisch and 
Lawless [13]. 

The results of Suzuki [22], [23] originated the paper by Oh and Bai [20] who considered the case 
when monitoring of certain units taken randomly from the whole population of considered objects is 
monitored not only during a warranty period, but also during some after-warranty period. They assumed that: 
(i) each failure that occurs during a warranty period (0,T1] is reported with probability 1; (ii) each failure that 
occurs during an after-warranty period (T1,T2] is reported with probability p, and (iii) each unreported unit 
either fails during the after-warranty period but is not reported with probability 1-p or survives time T2. Let 
( )θ;tf  be the probability density function of the lifetime, and ( )θ;tS  be the corresponding survivor function 

of the considered objects. We assume that the vector of parameters � is unknown, but we know probability 
p. In this case the log-likelihood function is given by [20] 
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where D1 is the set of units which failed during the warranty period (0,T1], D2 is the set of units 
failed and reported during the after-warranty period (T1,T2], and n3 is the number of units (both 
failed and not failed) not reported during (0,T2]. Maximum likelihood estimators of � can be found, 
as usual, by the maximization of (21). Oh and Bai [20] considered also a more difficult problem 
when the probability of revealing failures during the after-warranty period is unknown. To solve 
this problem they applied the EM maximum likelihood algorithm and proposed an iterative 
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procedure for finding the estimators of �. For both cases of known and unknown p Oh and Bai [20] 
calculated the asymptotic covariance matrix of the obtained estimators. Another approach was used 
by Hu et al. [11] who have found non-parametric estimators of the probability distribution of the 
time to failure f(t) when the additional information about the probability distribution of censoring 
times is available. Hu et al. [11] assumed that times to failure and censoring times are described by 
mutually independent discrete random variables and found moment and maximum likelihood 
estimators of f(t).  

The problem of two time scales mentioned in the paper by Suzuki [22] has attracted many researchers. 
The general discussion of the alternative time scales in modelling lifetimes is considered in the paper by 
Duchesne and Lawless [7]. In the considered in this paper context of the analysis of field reliability data this 
problem was considered by several authors. For example, Lawless et al. [18] considered the following linear 
transformation of the original calendar time t to an operational (usage) time u 

 
   ( ) 0≥= t,ttu ii α  ,       (22) 
 
where iα   is a random usage rate described by the cumulative probability function ( )αG .  Jung and Bai [12] 
have used this approach for the analysis of lifetime data coming from warranty programs when warranty 
periods were defined in two time scales (e.g. calendar time and mileage). The results of their computations 
are rather difficult for real applications, and cannot be applied without a specialized software. Moreover, this 
model requires the knowledge of ( )αG , and this probability distribution is rarely known for practitioners.  

Another approach for solving this problem was proposed by Jung and Bai [12] who described lifetime 
data by a bivariate Weibull distribution. They calculated a very complicated log-likelihood function that can 
be used for the estimation of the parameters of this distribution when the data are reported both in calendar 
time and operational time. They showed an example where this approach may be more appropriate than the 
linear transformation model proposed by Lawless et al. [18]. 

Reliability field data may be collected and stored also in other forms that are far from those known in 
classical textbooks. Coit and Dey [3], and Coit and Jin [4] consider the case, typical for the collection of real 
reliability data, when data from different test programs are available in a form ( )rT,r , where r is the number 
of observed failures, and Tr is the cumulative time on test for the data record with r failures. Coit and Dey [3] 
considered the case when lifetimes are distributed according to the exponential distribution. They proposed 
the test for the verification of this assumption.  

Coit and Jin [4] considered a case when lifetimes are distributed according to the gamma distribution 
 

   ( ) ( ) 0001 >>>−− λΓλ λ ,k,t,kettf tkk                                           (23) 
 

They considered the case typical for the analysis of field data for repairable objects, where a 
single data record consists of the number of observed failures and total time between those failures. 
Let Trj be the jth cumulative operating time for the data record with exactly r failures (Note, that no 
censoring is considered in this case); nr be the number of data records with exactly r failures; m be 
the maximum number of failures for any considered data record; M be the total number of observed 
failures, i.e. ∑ =

=
m

r rrnM
1

; and MTt
m

r

n

j rj
r∑ ∑= =

=
1 1

 be the average time to failure. The maximum 

likelihood estimator of the shape parameter k can be found from the equation [4] 
 

   ( ) KklnMrkrn
m

r
r ′=−∑

=1

ψ ,                                                 (24) 

 
where 
 

   ∑∑
= =

−=′
m

r

n

j
rj

r

tlnMTlnrK
1 1

,                                               (25) 
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and 
 

   ( ) ( )
( ) ( )

L−+−−= 42 120
1

12
1

2
1

rkrkrk
rklnrkψ                                         (26) 

is the digamma function. The estimator of the parameter � is simply given by t/k€€ =λ . 
 

Another type of reliability field data was considered in papers by Usher [24] and Lin et al. [19]. These 
authors considered the case of so-called masked data. This type of data is observed when lifetimes of whole 
systems are observed, but the exact cause of failure (i.e. a component that failed) can be isolated only to 
some subset of components. Unfortunately, the problem of estimation of lifetime characteristics has been 
solved only either in the case of two-component systems [24] or in the case when there exists additional prior 
information about reliability of considered components. 

 
2.4. Estimation of the failure rate from field data 
 

Hu and Lawless [10] considered the case when reliability data sets contain information not only on 
times to first failures, but also on times to consecutive failures if the observed units failed several times 
during a warranty period. In such cases, which are typical for the reliability analysis of repairable objects, the 
most frequently used model that describes the process of failures is a Poisson process characterized by a 
failure rate �. When the failure rate varies in time the process of failures is called the non-homogeneous 
Poisson process, and the reliability characteristic of interest is the time-dependent failure rate ( )tλ . Hu and 
Lawless [10] considered parametric and non-parametric estimation of ( )tλ  in two cases: when only data on 
failed units are reported (i.e. in case of data truncation, when the number of non-failed units is unknown), 
and when the population’s size and the distribution of individual censoring times are known. In the first case 
the estimator of the failure rate  ( )tλ  can be found iteratively. In the second case the complexity of 
computations depends on the amount of knowledge about the population size and the distribution of 
censoring times. 
 
 
3. Statistical analysis of reliability field data with incomplete interval-type information 
 

In the previous section we have presented different mathematical models that can be used for the 
analysis of reliability field data. This type of lifetime data is in general more difficult to analyse using 
classical statistical methods. What is typical to field data is the existence of missing, unobserved or 
imprecisely reported data. If we want to analyse such data using a thorough statistical approach we 
immediately are in troubles. First of all, additional statistical information is needed which is necessary for the 
description of missing or imprecisely reported data in terms of the theory of probability. For example, if 
lifetime data are imprecisely reported due to the unknown delay time, see [17] for the description of the 
problem, the probability distribution of the delay time has to be identified using independent investigation. 
The same problem arises when we need to know the usage rate. The probability distribution of iα  in (22) has 
to be estimated even in the case when there exist doubts whether such unique distribution ever exists. 
Another group of problems arises even in those cases when the additional information is available. 
Mathematical models used for the estimation of reliability characteristics become very complicated, and in 
many cases are rather intractable for an average user. Specialized software is needed, and this software is 
rarely commercially available. In all these and similar cases there exists, however, additional imprecise 
information about possible values of the quantities of interest. This information may be expressed in a form 
of intervals of possible values of model parameters or values of imprecisely reported observations. It has to 
be noted that this type of the representation of imprecision is not equivalent to the assumption that quantities 
with unknown or imprecisely reported values are uniformly distributed on those intervals. The interpretation 
of these intervals should be rather made in the spirit of the classical theory of measurement. If such unknown 
or imprecisely reported quantity is represented by the interval of its possible values it may be understood as 
if that value could be represented by any probability distribution defined over such interval. Thus, the 
application of interval data yields both pessimistic and optimistic bounds for the reliability characteristics of 
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interest. In this section we present some examples of the usage of this approach in dealing with reliability 
field data. 

Let us begin with the simplest model of life data. Suppose that M units are tested during a fixed time 
period T0. Let mt,,t K1  be the observed times of m reported failures. The failures of the remaining M-m units 
have not been reported by the time T0, and we assume that for these units T0 is their censoring time. As usual, 
we assume that ( )θ;tf  is the density function of the time to failure, and � is a vector of its unknown 
parameters. The maximum likelihood estimators of � can be found by the maximization of the log-
likelihood function 

 

    ( ) ( ) ( ) ( )∑
=

−+=
m

i
i ;TSmM;tflogL

1
0 θθθ ,                                          (27) 

 
where ( ) ( )00 TTP;TS >=θ  is the survivor function. The problem stated above is a classical statistical 

problem extensively investigated for numerous probability distributions of lifetimes. Consider now its more 
realistic version. First of all let us assume that the reported failure times Ti do not represent real failure times 
due to some random delay. For example, a transmission leakage in a car may be reported after a visit to a 
service centre, and not after observing its first signs on a garage floor [21]. Let Di be a random delay time. 
Hence, the real time to failure is described by an unobserved random variable. Note however, that even if 
observed lifetimes Ti are distributed according to a well known probability distribution, e.g. the Weibull 
distribution, then the distribution of Xi may be completely different, even when the distribution of delays Di 
is known. In real situation the distribution of Di is usually very difficult to estimate, so the derivation of a 
more or less precise probabilistic model for the description of Xi is usually hardly possible. The existence of 
delays in the reporting of failures may cause additional complication. As a matter of fact we may not be sure 
if all failures have been reported by the censoring time T0. We do not consider this possibility in our model, 
as its thorough description seems to be very complicated. Now, let us consider another serious problem with 
the analysis of reliability field data. In the majority of practical cases reliability engineers are rather not 
interested in the description of reliability in terms of calendar time, but in terms of operational or usage time. 
In the previous section we discussed some basic problems that arise when we want to model this situation. 
Even in the simplest case of a linear transformation of a calendar time to a usage time we have to know the 
daily usage rate Ui that is a random variable whose distribution is very difficult to estimate. In practice this 
can be done only for products like cars when the usage time is continuously monitored in an automatic way. 
In all other practical situations the usage rate may be only estimated from imprecise statements of users. Let 
Zi be the lifetime in terms of usage time. Then we have ( ) iiii UDTZ −= . In face of all difficulties mentioned 
above the derivation of the probability distribution of Zi seems to be hardly possible. Finally, let us notice 
that different usage rates influence the values of censoring times of non-failed units. These censoring times 
are now the realizations of a random variable Z0=T0U, where U represents a random usage rate for non-failed 
units. It is quite obvious that this distribution can be estimated either using expert opinions or from a 
specially designed statistical experiment. 

The discussion presented above shows quite clearly that even in the simplest case of the analysis of 
real field data the precise mathematical description of the problem becomes very difficult or even 
mathematically intractable. However, we still have to analyse the data in the form they are available to us. 
Therefore, there is a need to propose approximate methods that should be simple enough in order to be 
applied in practice. In this section of the paper we propose to represent our lack of knowledge in terms of 
intervals representing the values of considered characteristics or quantities. 

In order to simplify further notation let us denote by �x a compact interval [xmin,xmax]. The lack of 
knowledge about the precise value of the time to a real failure let us describe by assuming that the real time 
to failure takes place in the interval �ti, where ti,max is equal to the reported failure time ti. Similarly, we 
assume that the usage rate for each observed failed unit is described by the interval �ui, and the usage rate 
for all censored unit belongs to the interval �u. Hence, we can calculate the interval the usage time to a 
failure belongs to. This can be done using the rules of simple interval arithmetics; the lower bound of the 
interval �zi is equal to min,imin,imin,i utz = , and the upper bound is given by max,imax,imax,i utz = . Similarly, the 
lower bound for the usage censoring time is given by minmin, uTZ 00 = , and the upper bound by 

maxmax, uTZ 00 = . We should also make the assumption that the probability distribution of lifetimes belongs to 
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a certain class of probability distributions. This assumption is a crucial one, as strictly speaking this 
distribution is different from that which describes observed times to failures measured in the calendar time. 
However, when the intervals of interest are not very wide this assumption seems to be practically acceptable. 

In the next step of our analysis we calculate a multivariate interval [ ]maxmin ,θθθ =Δ  that describes the 
estimated values of �. Lower and upper bounds of � can be found by solving two optimisation problems. 

 
( )θθ

θ
Lmaxarginf

ZZ,zz
min

ii 00 ΔΔ ∈∈
=                                                (28) 

 
( )θθ

θ
Lmaxargsup

ZZ,zz
max

ii 00 ΔΔ ∈∈
= ,                                                  (29) 

 
where ( )θL  is the log-likelihood function given by 
 

    ( ) ( ) ( ) ( )∑
=

−+=
m

i
i ;ZSmM;zflogL

1
0 θθθ .                                          (30) 

 
The optimisation problem defined by (28) – (29) may be, in a general case, difficult, as the interval 

computations for non-linear functions are usually time consuming. However, in some practical cases the 
optimisation problem may be significantly simplified. In the case of the exponential distribution the lower 
and upper bound for the hazard rate � are given by simple formulae 

( ) max,

m

i
max,i

min

ZmMz

m

0
1

−+
=

∑
=

λ                                     (31) 

 

( ) min,

m

i
min,i

max

ZmMz

m

0
1

−+
=

∑
=

λ .                                     (32) 

 
Unfortunately, in the case of the Weibull distribution the interval for the possible estimated 

values of the shape parameter � cannot be calculated using separately lower and upper bounds for 
observed lifetimes and censoring times. Only the bounds for the scale parameter (or its reciprocal) 
can be calculated in such a way. In general, simple computations are possible only then if a lifetime 
distribution is of a location-scale type. In such a case, the bounds for a location parameter can be 
calculated using lower and upper bounds for lifetimes and censoring times separately. 

Let us consider now another relatively simple example of a practical application of the interval 
approach in the analysis of reliability field data. In section 2.2 of this paper we presented a mathematical 
model of lifetimes when the probability distribution of these random variables depends also on certain 
covariates, which describe usage conditions. These conditions may be described by a vector of covariates z, 
and the dependence of lifetimes on these covariates may be described by different mathematical models. 
Assume now, that this dependence is described by the proportional hazard model defined by equations (7) – 
(9). In this model probability distribution of lifetimes depends on the values of covariates via 

qqzz ββ ++= L11zβ , where ��’s are unknown regression coefficients. Estimation of these coefficients in 
the proportional hazard model was proposed by Cox [5], and is briefly presented in section 2.2. 

In case of reliability field experiments each investigated unit may be used in different conditions. 
Theoretically, these conditions may be defined quite precisely, and described by real numbers. However, in 
practice it is much more convenient to describe usage conditions by categorical variables. In such a case each 
covariate p,,j,z j K1=  may adopt only a finite number of possible values jl,j n,,l;p,,j,z KK 11 == . If 
the set of these values can be identified for each of k failed units we can find the estimators of � by solving 
equations (19). However, in certain circumstances the users may face difficulties with a precise identification 
of the values of covariates z. Let us suppose, for example, that exploitation conditions vary in time, and it is 
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not obvious whether these conditions should be labelled as moderate or severe. In such situation the 
necessity to choose only one value of the covariate that describes the severity of exploitation conditions may 
distort a final reliability analysis. Introduction of another probabilistic model for the description of this 
situation may be too difficult from a practical point of view. Therefore, it seems to be much more convenient 
to use a set-valued description of the considered covariates. In case of covariates described by real numbers 
we can directly use the notation introduced previously, i.e. [ ] p,,j,z,zz max,jmin,jj K1==Δ . However, we 
also can use this notation in case of ordered categorical data. Let ��be a multivariate interval that describes 
the estimated values of the regression coefficients �in the presence of interval data m,,i,i K1=zΔ , where m 
is the number of observed failures. The lower and upper bounds for �can be found by solving the 
optimisation problems 

  
    ( )ββ

β
Lmaxarginf

ii zz
min

Δ∈
=                                 (33) 

 
   ( )ββ

β
Lmaxargsup

ii zz
max

Δ∈
=  ,                                  (34) 

 
where ( )βL  is the log-likelihood function given by (18).  

 
The solution of (33) – (34) is, in general, difficult. However, in many cases the dependence of 

reliability upon covariates has a monotonic nature. In this case the lower and upper bounds of � defined by 
(33) – (34) may be found using appropriately chosen (depending on the direction of the dependence) 
boundary values of m,,i,i K1=zΔ . 

The limited volume of this paper allows us to present only a general description of relatively simple 
models for the analysis of reliability field data. These models are more complicated than the simplest lifetime 
models, but are applicable in such cases when a proper probabilistic analysis of reliability field data is either 
very difficult or even impossible. In order to overcome these problems we have to deal with some 
information of subjective nature. This is the price we have to pay if we want to solve more realistic 
problems. 
 
 
4. Statistical analysis of reliability field data with imprecise fuzzy information 
 

In the previous section we considered the case when the information which is necessary for a 
proper evaluation of reliability in terms of the theory of probability and mathematical statistics may 
be incomplete and imprecise. Our lack of full information we represented in terms of intervals 
describing the quantities of interest. Representation of uncertainty by intervals has its origins in the 
theory of measurement. If no additional information is present, this methodology allows the 
calculation of the bounds for reliability characteristics of interest. These bounds may be interpreted 
as “the worse” and “the best” possible values which take into account any type of variability of 
imprecisely or partially known values of field lifetime data. However, one can argue that this type 
of representation of uncertainty may not reflect the complexity of available information. For 
example, let us suppose that the daily usage rate of certain equipment is reported by its user as 
“about five hours a day”. From further inquiry one may get information that it means “between four 
and six hours a day”. Note, that this information does not tell anything about the way the usage rate 
varies in time. Therefore, the representation of uncertainty in a form of an interval seems to be quite 
appropriate. On the other hand, it is easy to note that the original information, “about five hours a 
day”, carries additional information. One may believe that the real usage rate is more often closer to 
five hours than to any other number of hours. This still vague information, which does not allow 
building any probability distribution, may be described formally using the theory of fuzzy sets 
introduced by Lotfi A. Zadeh[25]. 
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Fuzzy sets are the generalization of ordinary sets. In order to define a fuzzy set we have to specify a so 
called universe of discourse X, i.e. an ordinary set that contains all elements that are relevant for the 
description of a vaguely defined (or described) object. In the considered in this paper reliability context it 
might be a set (or a subset) of positive real numbers, when we describe the usage rate, a set of integers, when 
we describe a partially known number of units on test, or a set of labels, when we describe the severity of 
working conditions. A membership function [ ]10,X:A →μ  such that ( )xAμ  tells us to which degree an 
element Xx∈  belongs to the fuzzy set A, is the second part of the definition of a fuzzy set. Thus, a fuzzy set 
A in a universe of discourse X is a set of pairs  

 
    ( ){ }x,xA Aμ=                                                                         (35) 

 
This formalism is very useful for the description of vague and imprecise concepts, as the value of the 

membership function ( ) [ ]10,xA ∈μ  describes our degree of belief that the value x describes the considered 
concept. 

Each fuzzy set has a unique representation in terms of so called �-cuts, or �-level sets. The ordinary 
(non-fuzzy) set ( ){ }αμα ≥∈= x:XxA A , for each ( ]10,∈α , is called the �-cut of the fuzzy set A, and the set 
of all �-cuts uniquely defines this fuzzy sets. 

When the universe of discourse is represented by the set of real numbers we can generalize the concept 
of a real number and define a fuzzy number. The fuzzy subset A of the real line R, with the membership 
function [ ]10,R:A →μ  is a fuzzy number iff 

a) A is normal, i.e. there exists an element x0 such that ( ) 10 =xμ ; 
b) A is fuzzy convex, i.e. ( )( ) ( ) ( )2121 1 xxxx AAA μμλλμ ∧≥−+ , [ ]1021 ,,x,x ∈∀∈∀ λR ; 
c) Aμ  is upper semi-continous; 
d) supp A is bounded. 

From the definition given above one can easily find that for any fuzzy number A there exist four real 
numbers a1, a2, a13, a4 and two functions: non-decreasing function [ ]10,:A →Rη , and non-increasing 
function [ ]10,:A →Rξ , such that the membership function Aμ  is given by 
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Functions Aη  and Aξ  are called the left side and the right side of a fuzzy number A, respectively. A 
special, and very useful in practice, case of a general fuzzy number is a trapezoidal fuzzy number defined by 
the following membership function 
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Note, that real-valued intervals considered in the previous section of this paper can be looked upon as 

trapezoidal fuzzy numbers for which minxxx == 21 , and maxxxx == 43 . 
Membership functions of fuzzy numbers that are defined as functions of other fuzzy numbers may be 

calculated using the following extension principle introduced by Zadeh, and described in Dubois and Prade 
[6] as follows: 



Hryniewicz Olgierd ‐ STATISTICAL ANALYSIS OF INTERVAL AND IMPRECISE DATA ‐ APPLICATIONS  
IN THE ANALYSIS OF RELIABILITY FIELD DATA 

 
R&RATA # 2 (Vol.1) 2008, June 

 

 

 

Let X be a Cartesian product of universe rXXXX ×××= L21 , and rA,,A K1 be r fuzzy sets 
in rX,,X K1 , respectively. Let f be a mapping from rXXXX ×××= L21 to a universe Y such 
that ( )rx,,xfy K1= . The extension principle allows us to induce from r fuzzy sets Ai a fuzzy set B on Y 
through f such that 
 

   ( )
( )

( ) ( )[ ]rAA
x,,xfy;x,,x

B x,,xminsupy
r

rr

μμμ K
KK

11
11 =

=                                               (38) 

 
    ( ) ( ) ∅== − yfyB

1  if  0μ                                                                    (39) 
 

One can prove, see e.g. books by Dubois and Prade [6] or by Zimmermann [27], that the application of 
the extension principle is equivalent to the application of the interval arithmetics on �-cuts. 

Fuzzy sets, and their special instances – fuzzy numbers, have been applied in solving different 
reliability problems. An extensive overview of these applications can be found in Hryniewicz [8]. If we want 
to apply this approach to the analysis of field lifetime tests we can directly apply the results presented in the 
previous section. In order to do so let us notice that the calculations presented in that section are exactly the 
same as the calculations that should be done for given �-cuts representing fuzzy data. 
 
 
5. Conclusion 
 

Probabilistic models that have been proposed for the description of field lifetime data, and are 
relatively easy to be applied in practice, usually do not describe all the aspects of this type of data. If we want 
to build models, which better describe reality, then immediately these models become very complicated. 
Moreover, additional assumptions have to be made in order to describe complex phenomena characteristic 
for this problem. In this paper we have proposed an alternative but only approximate approach where 
unknown values of model parameters are represented in terms of intervals. By applying the interval 
arithmetics we can calculate the bounds on the values of respective reliability characteristics. If additional 
but still imprecise information is available we propose to generalize the interval-valued calculations to fuzzy-
valued ones. The results of these calculations can be interpreted as possibility distributions in the sense of 
Zadeh [26], defined on sets of possible values of vague quantities. It has to be stressed, however, that if 
appropriate probabilistic information is available it should not be replaced with the fuzzy one. Fuzziness in 
our models does not replace randomness, but supplements it if we have to use imprecisely perceived notions 
or vague statistical data. 
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