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ABSTRACT 
 

The problem  of nomination of Retirement or Specified Life (SL) of aircraft on the base of 
full-scale fatigue test result processing  is considered. SL can be defined (1) by requirement of 
fatigue failure probability limitation or (2) by economics reasons.  For optimization problem the 
Bayes-fiducial (BF) approach is offered.   BF decision is always a function of sufficient statistics 
and, by contrast with maximum likelihood method, it is based on the use of specific loss function. 
For the problem of failure probability limitation in case when sufficient statistics coincides with the 
sample itself (for example, for Weibull distribution) usually the Monte Carlo method is used but in 
this paper for the distributions with location and scale parameters  an analytical solution is offered. 

 Some numerical examples for lognormal, Weibull distributions are given. 
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G. INTRODUCTION 
 
In this paper we consider only the case when  the operation reliability of aircraft is ensured 

by discarding the aircraft from service, if its service life exceeded the Retirement or Specified Life 
(SL). For discussion of inspection program (IP) development is planned another author paper but 
some short discussion of this problem already take place in  [1,2,3,4]. 

There are at least two approaches to the SL choice on the base of experimental data: (1) it 
can be defined by requirement of fatigue failure probability limitation and (2) it can be defined by 
economics reasons. If the “weight” of loss induced by fatigue failure is estimated by some value b, 
which can be comparable with the “income” per service hour (it will be assumed, that the value of 
“income” per one service hour is equal to unit), then SL can be defined as operation time, 
corresponding to maximum of income expectation value. We’ll consider both approaches. It should 
be mentioned also that SL can be chosen as (1) some number from [0,∞] and as (2) some number 
from set  of two numbers {0, t*SL}. This corresponds to (1) nomination of Specified Life,  tSL, and 
(2) rejection or acceptance of predetermined (required)  Specified Life, t*SL.  
 
2. DEFINITION OF P-SET AND P-BOUND FOR RANDOM VARIABLES 

 
To make possible the common approach for solution of the both problem  SL nomination 

and IP development   we need to remained the p-set function definition [4]. It is a special statistical 
decision function, which, in fact, is generalization of p-bound for random variable, definition of 
which was introduced by author some early  [5,6,7]. 

 P-set function is defined in following way. 
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 Definition 1. Let Z and X are random vectors of m and n dimensions and we suppose that it 
is known the class  { θP  , Ω∈θ }  to which the probability distribution of the random vector 
W=(Z,X) is assumed to belong. Of the parameter θ , which labels the distribution, it is assumed 

known only that it lies in a certain set Ω , the parameter space. Let    )()(
1

, xSxS
r

i
iZZ U

=
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some set of disjoint sets of z values  as function of x. If  
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then statistical decision function )(xSZ  is p-set function for r.v. Z on the base of a sample 
),...,,( 21 nxxxx = . 

Remark. Later on the value x, observation of the vector X, would be interpreted as result of 
some test (for example, full-scale fatigue test of aircraft ). For the problem SL nomination Z can be 
interpreted as some random variable equal to smallest fatigue life of N aircraft in service 
Z=min( NYYY ,...,,1 ). Then the problem is to find the function )(xτ  for which 

Θ∈θ
sup  Pθ {Z<τ(X)} = p. 

For the problem of inspection planning  Z would be interpreted as some random  vector 
( ), cd TT , where dT , cT are time moments when some fatigue crack become detectable or reaches 
critical size correspondingly. And in this case the problem is to find such sequence 

),...}(),({)( 21 xtxtxt =  that 

pXtTTXtP
r

i
icdi =<<≤∑

=
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,  

where ...)()( 21 << xtxt < rt  are time moments of inspections, 0t =0, rt  is time of aircraft 
odelling . The choice of odellin ),...}(),({)( 21 xtxtxt =  will be discussed in next paper but here 

we consider   onle the problem of SL nomination. 
  
For the most important case, when m=1 and Z is a random scalar, there are several useful 

definitions of special types of p-set functions )(xSZ  which for this special case we denote by )(xτ . 
Definition 2. P-set function )(xτ is called a p-bound for r.v. Z  if  

Θ∈θ
sup  Pθ {Z<τ(X)} = p .                                                       (2) 

Definition 3. P-bound )(xτ is called a parameter-free (p.f.) p-bound  for r.v. Z  if  
Pθ {Z<τ(X)} = p  for all  parameters θ ∈ Ω.                                   (3)     

Definition 4. P-bound for r.v. Z is called a right-hand binary (r.h.b. p-bound), if  for each 
possible observation x of  r.v. X, function τ(x) assigns only one of two decisions: 

τ(x) = - ∞   if  x ∈ S; τ(x) = τ*,  if  x ∈ S*,                                   (4) 
where τ* is some number, S* and S are two complementary regions of the sample space . 

 
So we see that the definition of p-bound can be considered as some generalization of  

definition of prediction limit. But it is some statistical decision function which cover both 
prediction limit and, in some may, testing statistical hypotheses.   

 We can say also that p.f. p-bound τ(x)  is a p-quantile estimate of cdf )(xFZ and, as function 
of p, it is  an estimate of inverse cumulative distribution function  )(1 pFZ

− , but very specific 
estimate: expectation value  pXFE Z =)))((( τ .  
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If Z=Y(k)  is kth order statistic of independent observations taken on Y, say Y1, Y2, ... , Ym , 
and strictly increasing c.d.f. of r.v. Y , F

Y
(x, θ), has the same unknown parameter θ as the cdf of  

iX ,  i=1,2,...,n, k = [βm], where 0<β<1, [x]-is a maximum integer less or equal to x, m → ∞ then 
approximately  

P{Y(k)< τ(X) } =  P{ 1−
YF (β) < τ(X) } = P{ YF  (τ(X))> β } = p 

and (- ∞, τ(x))  is β  - content tolerance region at confidence level p. 
The binary p-set function has, evidently, some close connection with testing statistical 

hypotheses: S* and S are two complementary regions of the sample space just as S0 and S1 in the 
problem of hypotheses testing [6]. But there is some difference. Instead of problem to maximize the 
power of a test at a fixed level of significance (probability of first type of error) this time we need to 
get the maximum of probability of decision that reliability requirements are met at the fixed 
limitation of product of the probability of failure and probability of wrong decision (we think that 
reliability requirements are met but they are not met): 

                                                 pSXPZP ≤∈≤ )()(sup **τ
θ

 . 

 
 

3. P-BOUND FOR DISTRIBUTION WITH LOCATION AND SCALE PARAMETERS 
 
 It is easy to get )(xτ for distribution with location and scale parameters. As the main 

application of the problem under question we’ll consider a problem of SL nomination for some 
fatigue-prone airframe structure. We suppose to have observations of fatigue lives of some identical 
units of this structure as a result of full-scale fatigue tests. Usually for fatigue life data processing 
both a lognormal and Weibull distributions are used. If we’ll use logarithm scale (if we’ll use 

)ln(TX = instead of T) then both these distributions become distributions with location and scale 

parameters. So we can say, that r.v. X has following structure: X= 0θ + 1θ
0
X ,  where 0θ , 1θ  are 

unknown parameters, r.v. 
0
X  has either standard normal c.d.f. )()(0 xxF

X
Φ=  or standardized 

smallest extreme value (sev) c.d.f. ))exp(exp(1)(0 xxF
X

−−=  for lognormal or Weibull distributions 

of T correspondingly.  For this case for the specified life nomination problem  following theorem 
can be used ( we give it without proof). 

 
Theorem 1. Let  

),(),(       n,1,...,i),(),(  
1

0

1

0

θ
θθ

θ
θθ −

==
−

=
xFxFxFxF oo

i Z
Z

X
X                    (5) 

where   )(0 ⋅
X

F , )(0 ⋅
Z

F  are known c.d.f. of 
0
X , 

0
Z ,     θ0,θ1 – are unknown location and scale 

parameters. And let the random variables, estimations of θ0,θ1,  as function of 
),...,,( 21 nXXXX = can be described by the similar structural formulas: 

,ˆ   ,ˆ 1110100

oo
θθθθθθθ =+=                                                    (6) 

where 10 ,
oo
θθ   - are random variables, corresponding to the estimates  of θ0,θ1   using a sample of  the 

same size n but  when θ0=0, θ1=1. We refer to this type of estimates as “correct” estimates.  
Then p.f. and r.h.b. p-bounds  are described accordingly by formulae 
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 ,2,1  ,ˆˆˆ  where 10 =+= itii θθτ                                                                                                                        

1t  is p -quantile of r.v. 1

0

0

00
/)( θθ−= ZVZ , 2t is the root of equation : )(tξ =p, 
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),()( sup))(1)(( sup=(t)     

1010

o
c)(c

C

oooo

V
ZtZ

ctt

tFcFcFcF
C

OOO

θθθθτ

ξ
τ

−=+=

=−  

2. If one of the parameters θ1 or θ0  is known, then, as usually, we can transform the initial 
data       (x’i = xi/θ1 or x’i = xi - θ0, i∈1,...,n) in such a way that in previous formulae for τ we can 
put 11̂ =θ  or 0θ̂ =0, and then 

2.1 If it is known that the scale parameter θ1 =1 then VZ, VC should be replaced by  

00    ,
ooo

Z CUZU C θθ −=−= ; 
function ξ(t) should be replaced by the function )()(max)( 01 tFCFt

CU
ZC

=ξ  , 

but for ),...,,min( 21 nXXXX =  by function n

XZC
tFCFt ))(1)((max)(

1
00

1
1 −=ξ . 

 
2.2. If it is known that the location parameter θ0 =0 then VZ, VC should be replaced by 

,/  ,/ 11

ooo

Z CWZW C θθ ==  

function ξ(t) by the function  )()(max)(0 tFcFt
Co W

ZC
=ξ , but if additionally 

),...,,min( 21 nXXXX =  by function n

XZC
tCFcFt o ))/(1)((max)( 0

1
0 −=ξ . 

< <  
 
Let us remind that for the purpose of approximate calculation of c.d.f. for V C ,U C ,W C  the 

Monte Carlo method can be used or normal approximation of distributions of estimations 10  ,
oo
θθ . 

 
 

 
4. APPLICATION OF P-BOUND TO THE PROBLEM OF THE SPECIFIED LIFE 

NOMINATION  
 
 

4.1. OPTIMALITY CRITERION FOR P.F. P-BOUND USED FOR AIRCRAFT SPECIFIED 
LIFE NOMINATION 

 
Now we turn to a discussion of some preference orderings of decision procedures : choice of 

function )(xτ  . In framework of theorem 1 it is really  the choice of estimates  0θ̂ , 1̂θ  and risk 
function. Let ),...,,( 21 nXXXX = , where iX , ni ,...,1= , are fatigue lives of aircraft in (full-scale) 
laboratory test, ),...,,min( 21 mYYYZ = ,where jY , mj ,...,1= , are fatigue lives of aircraft in operation, 
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)()( tFtF
ji YX = , ni ,...,1= , mj ,...,1= ;   p- allowed probability of failure in operation of at least one 

aircraft. 
 In application to the problem of required SL confirmation, when *τ is required SL, we are 

interested in increasing of probability that )(xτ = *τ . It is something similar to increasing of power 
of some test in testing some statistical hypothesis. 

In application to the problem of some SL  nomination we should get the maximum of 
expectation value of )(Xτ  provided that reliability requirements are met, it is if )(Xτ  is a p-bound 
for Z. To study the optimality of )(xτ  we can use the Jensen’s inequality. This inequality say that 
the function of complete sufficient statistic, which is unbiased estimation of its own mathematical 
expectation,  provides the minimal risk if the  correspondent loss-function is convex.  Consider the 
simplest case, when 1θ  is known parameter. Let 10 θθθ tt +=  is some quantile. Random variable   

10
ˆ)(ˆ θθτθ txt +==  is unbiased estimate of its own expectation (which in general case does not 

equal to tθ ). In problem under question the function )(τZF  can be considered as the loss-function. 

Then the expectation ))(()}ˆ({ XZPFE tZX τθ <=  is the risk function. For normal and sev 
distributions of  jY  mj ,...,1= , )(τZF  is convex (and increasing one) if its value is small enough 

and we have minimum of ))(()}ˆ({ XZPFE tZX τθ <= = p   at the fixed expectation value of 

)(ˆ Xt τθ = , if )(xτ  is a function of sufficient statistic. And, on the contrary, if )(xτ  is a function of 
sufficient statistic and pXZP =< ))(( τ  then we have maximum of expectation value of )(Xτ  if p  
is small enough and probability ))(( cXP <τ is high enough for such c, that )(zFZ is convex if 

.cz <  For example, for normal distribution )(zΦ is convex if z<0. The generalization of  the 
Jensen’s inequality for the case of multivariate sufficient statistic can be found in [9]. 

For the case when sufficient statistic coincides with the sample itself (for example,Weibull 
or  smallest odelli value (sev) distribution)  usually for prediction interval  the Monte Carlo (MC) 
method is used [10]. Here we show that for the problem of p.f. p-bound, )(xτ , calculation analytic 
solution  can be found using Bayes-fiducial (BF) approach. 

 
 

4.2. BAYES-FIDUCIAL  APPROACH 
 
This approach was offered in 1973 (see [5,6,7,8]). It was shown that using this approach we 

can get  Pitmen’s estimates of location and scale parameters and most powerful invariant test  for 
testing statistical hypotheses ( )/)(()(: 1000 θθ−= xFxFH  ; )/)(()(: 1011 θθ−= xFxFH ). It can be 
used also for unbiased estimation. BF estimate, )(xτ ,  of some function of parameter )(θτ   is a 
function, which minimizes BF risk 

)())(),((),( ~ θτθτττρ θθθ dFxL XXBF ∫=  , 

where ))(),(( xL Xτθτθ is loss function, )(~ θθF  is fiducial distribution on parameter space [5,6]. 
There two advantages of BF approach: 
1. As in a case of using a maximum likelihood (ML) estimates BF solution is always a 

function of sufficient statistics, but in contrast to ML the BF solution take into account the loss 
function. 

2. We do not need to have a priori distribution of unknown parameters. 
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4.3. USING BF APPROACH FOR P.F. P-BOUND CALCULATION 
 
Let the problem is to estimate p-quantile )(θτ p  for cdf  )/)(( 10 θθ−xFZ  and loss function 

))(),(( xL Xτθτθ = 2
10

2
1010 ))/))(((())/))((()/)((( θθτθθτθθτ −−=−−− xFpxFF XZXZpZ  

when we have sample ),...,,( 21 nxxxx =  from cdf )/)(( 10 θθ−xFX . 
 
 
Let us denote by ),( pxXτ the solution of BF equation , corresponding to the considered loss 

function 
ppxFE XZ =− }~/)~),((({ 10~ θθτθ ,                                           (8) 

where )~,~(~
10 θθθ = , r.v.   0

~θ , 1
~θ  have fiducial distribution. Here ))(( XfEX  is expected value of 

)(Xf  in accordance with cdf of X. 
We can simplify solution of Eq.8.  Instead of vector ),...,( 1 nxxx =  without loss of 

information we can consider vector ),...,,ˆ,ˆ( 2110 −= nwwθθϖ , where 10
ˆ,ˆ θθ  are correct parameter 

estimates (see (6)), 10
ˆ/)ˆ( θθ−= ii xw , ni ,...,1= -2 Then conditional fiducial distribution (at the 

fixed invariant ),...,( 21 −nww ) of random variables 10
~,~ θθ  is defined by equation [5,6] 

 

1
1

1
1

10,...,|~,~
ˆ

),(
110 +

−

= n

n

ww s
hssf

n

θ
θθ 101

1

010
ˆˆ

dsds
s

swfn

i
i∏= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+θθ  , 

where h  is just normalization factor. (Note: nn ww ,1−  , 10
ˆ/)ˆ( θθ−= ii xw , are functions of vector 

ϖ ).   
If in (8) we use new notations: 

1000
ˆ/)ˆ( θθ sU −= ,   111 /ˆ sU θ= , 10

0 ˆ/)ˆ),((),( θθττ −= pxpx  
then instead of (8) we get equation  

 

nn wwUUWW EE ,...,|,..., 1101
pUUpxF =⎟

⎠
⎞

⎜
⎝
⎛ − )/)),((( 10

0
τ .                                  (9) 

 
where random variables 10 ,UU  has  conditional pdf 

∏=
− +=

n

i i
n

wwwUU uwufuhuuf
n 1 10

2
010,...,|, )(),(

110
,                                 (10) 

where  wh   is just normalization factor which depends only on invariant vector ),...,( 21 −= nwww . 

If ),(
0

pxτ     is solution of the equation  

nwwUUE ,...,| 110
pUUpxF =⎟

⎠
⎞

⎜
⎝
⎛ − )/)),((( 10

0
τ                                      (11) 

then  

),( pxXτ = 1

0

0
ˆ),(ˆ θτθ px+                                                   (12) 

is solution of  Eq. (9) and Eq.8 because  equation (11) takes place for every vector 
),...,( 21 −= nwww , cdf of which does not depend on ),( 10 θθθ = . So if  (11) is true then (8) is true 

also. 
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It is very important that ),(
0

pxτ in (11) does not depend on value of ),( 10 θθθ =  and for 

solution of this equation we can set 00 =θ , 11 =θ .  If 10
ˆ,ˆ θθ  have the structures defined by (6) then  

probability )),(( pXZP τ<  does not depend on ),( 10 θθθ =  and we can find 1p  for which 
)),(( 1pXZP τ< =p. 

So ),( 1pxXτ  is  p-bound for random variable Z.  
 As is easy to see (see p.84 in  [6]) the pdf (8.b) is conditional pdf of 10

ˆ,ˆ θθ  at the fixed 
),...,( 21 −= nwww  for the case when 00 =θ , 11 =θ .  This means that the values of 1p and p coincide. 

It is very important also that result does not depend on the choice of the type of correct 
statistics 10

ˆ,ˆ θθ  (see (14.a) and (14.b)), because vector ),...,( 1 nxxx =  and vector 

),...,,ˆ,ˆ( 2110 −= nwwθθϖ  have one-one mapping at any choice of correct statistics.   
 
 

H. Example 1. P-bound for lognormal distribution   
  
Let r.v. T has a lognormal distribution  and t= ),,( 321 ttt =(45 952, 54 143, 65 440) is the 

sample from the same distribution. Then r.v. )log(TX =  has a normal distribution ),( 2
10 θθN  and 

x= ),,( 321 xxx = (10.735  10.899  11.089) is the sample from this distribution. The problem is to 
calculate the p.f. p-bound for independent  r.v. Z= ),...,min( 1 mYY , where r.v. iY , mi ,...,1= , has the 
normal distribution ),( 2

10 θθN  also. We consider here only the case, when m=1, because for this 
case there is   general analytical solution (see, for example p. 172 in [6])  

2/1
,110 )/11(ˆˆ)( ntx pn ++= −θθτ ,                                             (13)  

where  
x=0̂θ  , 2/12

1 ))1/()((ˆ ∑ −−= nxxiθ  
are estimates of expected value and standard deviation, qkt , is q-quantile from Student’s distribution 
with k degree of freedom. So we can make comparison of this solution with the solution which we 
get, using new approach. 

 For considered data, using equation (13)  for p=0.01 we calculate Stt =exp( )(xτ ) = 13 162, 
which is the value of p-bound for r.v. T on the base of observations ),,( 321 ttt  . 

 
Now let us consider the new approach. For normal distribution the conditional pdf has 

following form 

∏=
− +=

n

i i
n

wwwUU uwuuhuuf
n 1 10

2
010,...,|, )(),(

110
ϕ , 

where 2/12 )2/()2/exp()( πϕ xx −= . After transformation the equation (11) has the following form 

pnDza z =−Γ− )2/)1((/),,(1
0
τ , 

where 

duznDuuuDza z
n

z ∫
∞

− ⎟
⎠
⎞

⎜
⎝
⎛ −+Φ−=

0

0
2/12/)3(

0
)())1(/2()exp(),,( ττ ,   nzz

n

i /
1
∑= ,  

∑
=

−=
n

i
iz nzzD

1

2 /)( ,   )(⋅Γ  is gamma function, ,  )(⋅Φ  is cdf of standard normal distribution. 

Consider two types of statistics 10
ˆ,ˆ θθ , which for considered data has following values: 
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a) x=0̂θ  =10.908, 2/12
1 ))1/()((ˆ ∑ −−= nxxiθ =0.177  ,                                      (14. a) 

        b) nx ,10̂ =θ =10.735, nnn xx ,1,1̂ −=θ =0.354,                                                            (14. b) 
where nix ,  is ith order statistic of vector ),...,( 1 nxxx = . 

In case a) we have 
0
τ =   -7.889, in case b) we have 

0
τ =   - 3.560. 

Corresponding values of p-bound for r.v. T on the base of observations ),,( 321 ttt  are:  
=at  exp( )(xτ ) = 13 523, bt  = exp( )(xτ ) = 13 050. 

It seems that the difference  between at , bt  and Stt =13 162 is produced only by the problem 
to get required calculation accuracy. 
 
 

I. Example 2. P-bound for Weibull distribution   
 
 Let we have the same sample t= ),,( 321 ttt =(45 952, 54 143, 65 440)  or  x= ),,( 321 xxx = 

(10.735  10.899  11.089) but r.v. T has a Weibull distribution and, correspondingly )log(TX = has  
distribution of smallest extreme value with cdf  )/)exp((exp(1)( 10 θθ−−−= xxFX . In this case the 
equation (11) has following form 

pDzbDza zz =− ),(/),,(1
0
τ , 

where 
 

( )duumuzzuuDza n
n

i
i

n

i
i

n
z ))exp()exp(/()exp(),,(

0

0 11

)2(
0

ττ +−= ∫ ∑∑
∞

==

− ,   

( )duuzzuuDzb n
n

i
i

n

i
i

n
z ))exp(/()exp(),(

0 11

)2(∫ ∑∑
∞

==

− −= , 

nzz
n

i /
1
∑= ,  ∑

=

−=
n

i
iz nzzD

1

2 /)( .   

For m=1, p=0.01, using statistics (14. a ) we get 
0
τ = -11.929, using statistics (14. b) we get 

0
τ = -5.424. Corresponding  values of p-bound for r.v. T on the base of observations ),,( 321 ttt  are: 
=at  exp( )(xτ ) = 6 616, bt  = exp( )(xτ ) = 6 752.  

 

For m=500, p=0.2 using statistics (14.a ) we get 
0
τ =   -12.889, using statistics (14.b) we 

have 
0
τ =   - 5.970. Corresponding  values of p-bound for r.v. T on the base of observations ),,( 321 ttt  

are: =at  exp( )(xτ ) = 5 584, bt  = exp( )(xτ ) = 5 568.  
Again, it seems that the difference  between at  and bt  is produced only by the problem to 

get required calculation accuracy. 
Considered data really was considered in several papers and for m=500, p=0.2   Lowless 

(1973) obtaind prediction limit  of 5623, Mee and Kushary (1994) – 5225. The Mann and Saunders  
(1969)  result was only 766. For these calculation the Monte Carlo method was used [10]. 
 
 



Yu. Paramonov – BAYES‐FIDUCIAL APPROUCH FOR AIRCRAFT SPECIFIED LIFE NOMINATION 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 17 - 

5. USING BAYES-FIDUCIAL  METHOD FOR SL NOMINATION WITH ECONOMICS 
OPTIMALITY CRITERION 

 
Let the income of aircraft successful service during time t is equal to t but in case of failure 

the loss is equal to some negative value –b, where b is some large positive value. Then income of 
one aircraft service, r.v. U, is defined by formula  

⎩
⎨
⎧

≤−
>

=
SL

SLSL

tTifbT
tTift

U
   ,

,      ,   , 

where T is random fatigue life, tSL is some SL.  
Expectation value of U 

u(tSL,θ, b ) = ∫
SLt

0

(t-b) d FT(t,θ)+ tSL (1- FT(t,θ))          

where ),( θtFT  is c.d.f. of T . 
In general case maximum of  u(tSL , θ, b ) is reached at t*

SL , which is the root of the equation 
 

bfT (t)/ (1- FT(t,θ)) =1 . 
For normal distribution of X=lnT it can be written in following way 

0θ = t*
SL - 1θ

1−λ ( t*
SL 1θ /b), 

where ))(1/()()( zzz Φ−=ϕλ  is failure rate function for standard normal distribution, 1−λ (.) is  
inverse function. This equation allows very easy to get 0θ  as function of t*

SL  at the fixed 1θ  and 
then to find the inverse function:  

t*
SL  = ),,( 10 bS θθ∗ . 

For b=346 000, 1θ =0.346 and 0θ =9.948   we have: ∗
SLt =7936 (flights) . It is interesting to 

note that this value corresponds to the failure probability equal to 0.0026. This can be interpreted in 
following way. The failure of 2.6 aircraft (in flight) from 1000 aircraft can be considered as 
equivalent to the loss of 346000 hours of service time or loss of 346000/7936 = 43.6 aircraft (on the 
ground) of this types (the value ∗

SLt = 7936 can be considered as the price of one aircraft of this type). 
Or in other words, failure of one aircraft (in flight) is equivalent to loss of 43.6/2.6 (approximately 
16) aircraft of the same type (on the ground). 

But we do not know parameters of c.d.f. of T and should estimate them using fatigue test 
data. Usually maximum likelihood estimate is considered as most appropriate. We show here that 
for considered problem the offered by outhor Bayes-fiducial approach is much more appropriate. 

 In accordance with Bayes approach the parameter 0θ  is r.v.. For the case of airframe it can 
be interpreted in following way. Design stress analysis of an airframe should meet some standard 
requirements (FAR,  ...). These requirements in fact define only some mean value of 0θ  but of 
course, in every case there are some “occasional mistakes” and we have some specific (random) 
value of 0θ  for every aircraft type. And then there is a scatter of r.v. X (specific random fatigue life 
of some specific aircraft) at this random 0θ . The parameter 1θ  is function of technology level, and 
if one is not changed, then the parameter 1θ is not changed also. So we suppose that 1θ  is known 
constant but 0θ  is random variable, 0

~
θ . Let π(θ0) is a priory distribution density for 0

~
θ . Then c.d.f. 

of  r.v. X will be 

∫
∞

∞−

=)(~ xFX FX((x-θ0)/θ1)π(θ0 )dθ0 . 
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It is well known, that if θ1   is constant but r.v. 0
~
θ  has normal distribution with known both 

mean τ0  and standard deviation τ1 then  distribution of  X will be again normal with mean τ0  and 
standard deviation ((τ1 )2+(θ1)2

 )1/2. In this case tSL again will be defined by equation (1), but θ1 
should be replaced by τθ1 =((τ1 )2+(θ1)2

 )1/2.  
In fact we do not know a priori distribution of 0

~
θ . For this case it is offered FB approach. 

Instead of posterior distribution of 0
~
θ  we offer to use already mentioned fiducial distribution [5]. In 

considered case fiducial distribution of 0
~
θ  again is normal with mean x  and standard deviation 

θ1/n1/2. Then for the purpose of calculation tSL we again can use the same equation (1), but 0θ , θ1 

should be replaced by x=0̂θ  and θ1 (1+1/n)1/2 correspondingly. So using sample ),...,( 1 nxxx = , 
result of full-scale fatigue test, in  case of ML approach the nominated SL is equal to ),,( 1 bxS θ∗ , 
but  for BF approach tSL (x)  = ),)/11(,( 2/1

1 bnxS +∗ θ . By the use of Monte Carlo method for 0θ  = 
9.948 , 1θ =0.346,   b=346,000   we have got that the expectation value of r.v. XU  is equal to 2310, 
4122, 5571, 6904 for BF approach but it is equal to 8624− ,  809, 4422, 6935 for ML approach for 
the same sample sizes n = 1, 2, 4, 100 . We see that for small n the  expectation value of r.v. XU  is 
much more for BF than for ML approach.  

 
 
 

SUMMARY 
 
BF approach for the specified life nomination using time test data is considered for both 

cases: probability of failure limitation and for  the maximum of expected value of some specific 
function of preference (minimum of expected value of specific loss function).  

BF approach has following advantages: 
1. As in a case of using a maximum likelihood (ML) estimates BF solution is always a 

function of sufficient statistics, but in contrast to ML the BF solution take into account the loss 
function. 

2. We do not need to have a priori distribution of unknown parameters. 
 It is given approximate analytical solution of the problem to get the maximum of expected 

value of SL.  In case of economics optimality criterion it is shown also that for considered type of 
loss function the BF approach is more preferable than direct use of ML estimates. Numerical 
examples are provided 
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