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Abstract 
 
The concept of “probabilistic logic” known in artificial intelligence needs a more thorough 

substantiation. A new approach to constructing probabilistic logic based on the N-tuple algebra 
developed by the author is proposed. A brief introduction is given to the N-tuple algebra and its 
properties that provide efficient paralleling of algorithms for solving problems of logical analysis of 
systems in computer implementation are generalized. Methods for solving direct and inverse 
problems of probabilistic simulation of logical systems are considered. 

 
 

INTRODUCTION  
 
The N-tuple algebra based on the known properties of Cartesian products [1] was developed 

for solving certain problems in artificial intelligence, in particular, for simulating logical systems 
and in order to reduce the complexity of algorithms of logical inference [2, 3]. The foundations of 
the N-tuple algebra and potentialities of its application in probabilistic simulation were presented in 
[4–6]. Further investigations of this system have shown that the class of problems solved on its 
ground can be extended substantially. In addition, the structures of the N-tuple algebra can be 
programmed relatively easily and have a natural parallelism; therefore, their application in 
software–hardware support of logical and logical–probabilistic analysis of systems allows one to 
reduce the cost of development of programs and the required computational resources.  

In this paper, we give a brief introduction to N-tuple algebra taking into account the 
correction of certain terminology introduced earlier and its capabilities in solving the inverse 
problem of logical–probabilistic analysis are also considered, i.e., the restoration of probability 
distributions of simple events based on data on the probabilities of complex events. Such problems 
were posed within the framework of probabilistic logic [7–9].  

 
 

1. BASIC CONCEPTS AND STRUCTURES OF THE N-TUPLE ALGEBRA 
 
The N-tuple algebra contains a number of definitions and more than 30 theorems, which are 

used in order to obtain the following results:  
(1) It is substantiated that it is isomorphic to the system such as the theories of multiplace 

relations, of propositional calculus, and of predicate calculus.  
(2) This system is embedded in the probability space.  
(3) The algorithmic foundation for solving various problem of logical analysis of systems 

(logical inference, search for correct hypotheses and “hidden axioms”, probabilistic analysis, etc.) is 
developed.  

In order to avoid the consideration of original works [2–6], we present here in short the 
basic concepts and relationships of N-tuple algebra necessary for understanding probabilistic 
relations. Moreover, in the author’s opinion, this section is useful because of the appropriate 
correction in the previous notation.  
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The N-tuple algebra is based on the concept of a flexible universe of discourse. Let a totality 
of different sets called sorts be given. We assign a certain set of attributes to every sort (in the 
previous publications, the term “coordinate”, which does not seem to be completely adequate, was 
used). The domain of each attribute is the set that is equal to the corresponding sort. In 
mathematical logic, the domains of definition of variables correspond to attribute domains. A 
flexible universe consists of a totality of partial universes, Cartesian products of domains for a 
given sequence of attributes. The sequence of attributes that determines a given partial universe is 
called a relation diagram.  

The N-tuple algebra contains five structures (N-tuple algebra objects) such as an elementary 
n-tuple, C-n-tuple, C-system, D-n-tuple, and D-system. Objects of the N-tuple algebra formed in the 
same partial universe are called similar.  

Suppose that a partial universe in the form of a Cartesian product of arbitrary sets is given 
S = X1 × X2 × … × Xn. Clearly, S can be represented as a space of features with attributes X. The 
domains of these attributes correspond to feature scales. Then, we can form in the space S the 
following substructures:  

(1) Projections, which are subspaces in which only certain attributes from the set of 
attributes generating S are used.  

(2) The Cartesian products in the given relation diagram; certain subsets of the sets X 
represented in the given relation diagram are components of these Cartesian products.  

Consider examples of these substructures. Let S = X ×Y×Z, where X = {a, b, c, d}, Y = { f, g, 
h}, and Z = {a, b, c}. The Cartesian products X×Y, X×Z, etc. or particular sets, e.g. X, may be 
projections of this space. For simplicity, we assume that in this system a unique attribute 
corresponds to each sort.  

Within the limits of the space S or some its projection, we can give the corresponding 
substructures in the form of Cartesian products. For example, the Cartesian product  

R[XYZ] = {b, d}×{f, h}×{a, b}  
is an example of such a substructure. Here, the expression [XYZ] is a relation diagram. It can 

be easily tested that R⊆S (a property of Cartesian products). Similarly, a certain subset of 
elementary n-tuples of the projection Y×Z can be represented as the Cartesian product Q[YZ] = {f, 
g}×{a, c}. Cartesian products represent the sets of elementary n-tuples. If necessary, these sets can 
be listed, although it is not necessary in performing operations with the structures of N-tuple 
algebra.  

An elementary n-tuple is an element of a Cartesian product or its projection; i.e., a sequence 
of elements, each of which belongs to the domain of the corresponding attribute. For example, the 
Cartesian product Q[YZ] = {f, g}×{a, c} contains the following set of elementary n-tuples: {(f, a), 
(f, c), (g, a), (g, c)}.  

A C-n-tuple is an n-tuple given in the complete space or in some its projection with 
components generated by subsets of the corresponding domains of attributes. A C-n-tuple is 
interpreted as the Cartesian product of these components; i.e., as a certain subset of elementary 
n-tuples. Square brackets are employed for denoting C-n-tuples. For example, the relations R and Q 
presented above can be represented as C-n-tuples  

R[XYZ] = [{b, d} {f, h} {a, b}]; Q[YZ] = [{f, g} {a, c}].  
A C-n-tuple that has at least one empty component is empty. In the N-tuple algebra, if we 

deal with models of propositional or predicate calculus, this proposition is taken as an axiom, which 
has an interpretation based on the properties of Cartesian products.  

To generalize operations that are applied frequently to structures with various relation 
diagrams, we introduce dummy components. These components have two types. One of these 
components is used in C-n-tuples and is designated “∗”. Another dummy component (∅) involved 
in D-n-tuples is considered in what follows.  



B. Kulik – N‐TUPLE ALGEBRA‐BASED PROBABILISTIC LOGIC 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 56 - 

Dummy components “∗” designate the sets equal to the domains of the corresponding 
attributes; they can be inserted in the corresponding C-n-tuple instead of missing attributes and thus 
introduce new attributes in it. For example, the C-n-tuple Q[YZ] = [{f, g} {a, c}] can be represented 
in the relation diagram [XYZ] in the form of the C-n-tuple [∗ {f, g} {a, c}] using a dummy 
component. Since the dummy component in Q corresponds to the attribute X, we have the equality  

[∗ {f, g} {a, c}] = [{a, b, c, d} {f, g} {a, c}].  
The intersection of similar C-n-tuples is performed componentwise. The result of 

intersection is the C-n-tuple that contains the intersection of the components of the source C-n-
tuples related to the same attribute, e.g.,  

[{b, d} {f, h} {a, b}] ∩ [∗ {f, g} {a, c}] = [{b, d} {f} {a}].  
The result of intersection of C-n-tuples may be an empty set (empty C-n-tuple)  
[{b, d} {f, h} {a, b}] ∩ [∗ {g} {a, c}] = ∅, 
since the intersection of the second components of these C-n-tuples is an empty set.  
Many relations given as subsets of a Cartesian product cannot always be represented by a 

single C-n-tuple. Therefore, it is reasonable to introduce a universal structure that is the union of 
similar C-n-tuples.  

A C-system is a structure that is the union of an arbitrary number of similar C-n-tuples. As 
C-n-tuples, C-systems are confined by square brackets. For example, for the space S given above, 
we can define a certain relation P as a C-system  

R[XYZ] = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

}{}{},{
},{},{},{
},{*},{

bgcb
cahfdb
cbda

. 

The fact that a C-n-tuple (Cm) is included in another C-n-tuple (Cn) is tested componentwise, 
Cm ⊆ Cn if and only if all components Cm are included in the corresponding components of Cn. 
Based on the properties of Cartesian products, we are able to find conditions for which the union of 
two C-n-tuples Cm and Cn can be transformed into a single C-n-tuple. There are two such conditions  

(1) if Cm ⊆ Cn, then Cm ∪ Cn = Cn;  
(2) if Cm and Cn differ only in the ith component, then Cm ∪ Cn can be represented as a 

single C-n-tuple that have all component the same except for the ith component, which becomes 
equal to the union of the corresponding components from Cm and Cn.  

If we know how to obtain the intersection of C-n-tuples, we can formulate the algorithm for 
finding the intersection of a C-n-tuple with a C-system and a C-system with a C-system. For this 
purpose, we should represent C-n-tuples as conventional sets whose elements are similar 
elementary n-tuples. Then, the C-system that contains the C-n-tuples A, B, …, L is the union of 
these sets. On this ground, using the law of algebra of sets, in particular, the distributive law, we 
can easily obtain the corresponding algorithms for calculating the intersection of the corresponding 
structures.  

Algorithm 1. The calculation of the intersection of a C-n-tuple P with a C-system Q:  
(1) calculate the intersection of the C-n-tuple P with each C-n-tuple from Q;  
(2) eliminate empty C-n-tuples from the obtained results;  
(3) form a C-system from the remaining n-tuples;  
(4) terminate the algorithm.  
Algorithm 2. Calculation of the intersection of a C-system P with a C-system Q:  
(1) calculate the intersection of the C-n-tuple from P with each C-n-tuple from Q;  
(2) eliminate empty C-n-tuples from the obtained results;  
(3) form a C-system from the remaining n-tuples;  
(4) terminate the algorithm.  
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As an example, we calculate the intersection of two C-systems given on the space S defined 
above (this means that the symbol “∗” in the second position of C-n-tuples corresponds to the set 
X2 = {f, g, h})  

P[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
},{*},{

}{},{},,{
cacb

bhfdba
,  Q[XYZ] = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

}{}{},{
},{},{},{
},{*},{

bgcb
cahfdb
cbda

. 

(1) We calculate the intersection of all pairs of C-n-tuples belonging to different 
C-systems  

[{a, b, d} {f, h} {b}] ∩ [{a, d} ∗ {b, c}] = [{a, d} {f, h} {b}]; 
[{a, b, d} {f, h} {b}] ∩ [{b, d} {f, h} {a, c}] = ∅; 
[{a, b, d} {f, h} {b}] ∩ [{b, c} {g} {b}] = ∅; 
[{b, c} ∗  {a, c}] ∩ [{a, d} ∗ {b, c}] = ∅; 
[{b, c} ∗  {a, c}] ∩ [{b, d} {f, h} {a, c}] = [{b} {f, h} {a, c}]; 
[{b, c} ∗  {a, c}] ∩ [{b, c} {g} {b}] = ∅. 

(2) From the remaining nonempty C-n-tuples, we form the C-system  

P∩Q = ⎥
⎦

⎤
⎢
⎣

⎡
},{},{}{

}{},{},{
cahfb

bhfda
. 

Even this relatively simple example shows certain opportunities to reduce the complexity of 
the algorithms using the N-tuple algebra. The same result can be obtained if we convert 
preliminarily the source C-systems to the set of elementary n-tuples. However, this increases the 
complexity of computations since the C-system P, C-system Q, and the C-system P∩Q contain 24, 
20, and 8 elementary n-tuples, respectively.  

The union of C-n-tuples and C-systems is computed much simpler. For this purpose, we 
need to form a new C-system from the united structures that contains all C-n-tuples of these 
structures. Then, we may unite certain C-n-tuples in particular cases. It is necessary to remember 
that the implemented algorithms of union and intersection, as well as testing the inclusion of the 
structures of the N-tuple algebra, make sense only when these structures are similar or are 
transformed into similar structures with the help of addition of dummy attributes.  

If it is required to compute the complement of a C-n-tuple, then, using conventional methods 
from the theory of multiplace functions, we should perform the following operations:  

(1) to split into elementary n-tuples the C-n-tuple R and the partial universe S corresponding 
to it;  

(2) eliminate elementwise all elementary n-tuples belonging to R.  
It is clear that this operation is laborious in general. However, it is simplified essentially if 

we employ the following relations. Let us first define the notion of complement to the component of 
a C-n-tuple. If a multiplace relation is defined in the space such that each its attribute is represented 
by a certain set, then it is obvious that the universe for the component of the C-n-tuple is the domain 
of the attribute that corresponds to it (partial universe), and the set that contains all elements of this 
partial universe that do not belong to this component is the complement of the component. For 
example, assume that, in the space S = X×Y×Z, a C-n-tuple R = [R1 R2 R3] is given. Then, 
correspondingly, we have 1R  = X\R1; 2R  = Y\R2; and 3R  = Z/R3.  

The following theorem can be proved based on the properties of the Cartesian product [1].  
Theorem 1. The complement of the C-n-tuple T = [R1 R2 … Rn] is the C-system  
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C = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗∗

∗∗
∗∗

nR

R
R

...
............

...

...

2

1

 of dimension n×n, in which each diagonal component is the 

complement of the corresponding component of  C-n-tuple T, and the other components are 
dummy.  

Consider an example. Assume that in the space S = X×Y×Z mentioned above a C-n-tuple 
T = [{b, d} {f, h} {a, b}] is given. By Theorem 1, its complement is the C-system  

T = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗∗
∗∗
∗∗

},{\
},{\

},{\

baZ
hfY

dbX
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗∗
∗∗
∗∗

}{
}{

},{

c
g

ca
.  

By Theorem 1, the C-systems that represent the complement of a C-n-tuple can be 
represented as a single n-tuple of sets using for designation inverted square brackets. Then, we 
obtain the equality  

T = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗∗
∗∗
∗∗

}{
}{

},{

c
g

ca
 = ]{a, c}  {g}  {c}[. 

This brief representation of the diagonal C-system generates a new structure of the N-tuple 
algebra, which is called a D-n-tuple. It turns out that this structure not only allows one to represent 
briefly diagonal C-systems, but is also used independently in certain operations and retrieval 
requests. The terms “C-n-tuple” and “D-n-tuple” are not chosen randomly. In the simplest case, 
C-n-tuple and D-n-tuple correspond to conjunction and disjunction of one-place predicates with 
different variables. Using D-n-tuples, we can formulate one more (the fifth) structure of the N-tuple 
algebra, a D-system.  

A D-system is a structure similar to a matrix whose rows contain similar D-n-tuples, which 
is interpreted as the intersection of the sets of elementary n-tuples belonging to these D-n-tuples.  

The representation of a D-system is similar to the representation of a C-system, but, instead 
of square brackets, we use inverted ones. For example, the complement to the C-system  

F[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
},{*},{

}{},{},,{
cacb

bhfdba
,  

given in the space S can be represented as the D-system  

F = ⎢
⎣

⎡
⎥
⎦

⎤
∗ },{\\},{\

}{\},{\},,{\
caZYcbX

bZhfYdbaX
 = ⎢

⎣

⎡
⎥
⎦

⎤
∅ }{},{

},{}{}{
bda
cagc

.  

Thus, the D-system is dual (according to the de Morgan laws) to the C-system and is the 
intersection of two C-n-tuples. The algorithms for converting D-n-tuples and D-systems into 
C-systems equal to them have been developed.  

The complete analogy between the structures of the N-tuple algebra and formulas of 
predicate calculus can easily be established. Consider the main ideas. In the predicate calculus, 
conjunction of one-place predicate with different variables corresponds to the C-n-tuples in the 
trivial case (when particular attributes are not related to multiplace relations). For example, the C-n-
tuple P[XYZ] = [P1 P2 P3], where P1 ⊆ X; P2 ⊆ Y; and P3 ⊆ Z , corresponds to the logical formula 
H = P1(x)∧P2(y) ∧P3(z). The negation of the formula H (disjunction of one-place predicates) 
¬H = ¬P1(x)∨ ¬P2(y) ∨¬P3(z) corresponds to the D-n-tuple P  = ] 1P  2P  3P [. An empty object of 
the N-tuple algebra corresponds to an identically false formula.  
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An object of the N-tuple algebra corresponds to a satisfiable formula. An elementary n-tuple 
that is involved in the composition of a nonempty object of the N-tuple algebra corresponds to a 
satisfying substitution of the logical formula.  

If a dummy attribute is introduced in a C-n-tuple or in a C-system, then this procedure 
corresponds to the inference rule known in the predicate calculus which is called the generalization 

rule. For example, if the object of the N-tuple algebra G[XZ] = ⎥
⎦

⎤
⎢
⎣

⎡ ∗
},{},,{

},{
cbdca

ca
 corresponds to a 

formula F(x, z) in the predicate calculus, then, appending to this object a dummy attribute Y, we 

obtain the object of the N-tuple algebra G1[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
∗

∗∗
},{},,{

},{
cbdca

ca
, which corresponds to the 

formula ∀yF(x, z) obtained from F(x, z) by the generalization formula.  
Together with operations of the algebra of sets on objects of the N-tuple algebra, the 

following three additional operations on attributes are introduced:  
(1) the transposition of attributes and the their corresponding columns of the matrix of the 

object of the N-tuple algebra;  
(2) addition of a new dummy attribute; and  
(3) attribute elimination.  
We also use two quantifier operations ∃x(P) and ∀x(P), which not only recognize identical 

falsity or satisfiability of the corresponding structure, but also, in the case of satisfiability, allows 
one to obtain the object of the N-tuple algebra corresponding to this expression. Certain 
combinations of operations with attributes and operations of the algebra of sets give the opportunity 
to perform negation, composition, and join of relations, and logical inference and operations with 
quantifiers. In detail, see this in [4–6].  

 
 

S. RESOURSE SAVING IN COMPUTER IMPLEMENTATION OF 
STRUCTURES OF THE N-TUPLE ALGEBRA 

 
Computational complexity of operations of the algebra of sets and testing inclusion depends 

on the class of structures the employed objects of the N-tuple algebra belong to. For example, an 
inclusion of a C-n-tuple into a C-system is tested in general with the help of an algorithm of 
exponential computational complexity, while the algorithm for testing of an inclusion of a C-n-tuple 
and even C-system into a D-system has a polynomial complexity. To fulfill certain operations and 
tests, it is required to transform an object of the N-tuple algebra into an object of the alternative 
class that is equivalent to it (for example, a C-system into D-system and vice versa), which is 
achieved for the C-system or the D-system by algorithms of exponential complexity. The operation 
of complement of an object of the N-tuple algebra in all cases is fulfilled by an algorithm of 
polynomial computational complexity, but, in this case, the system is transformed into the 
alternative class. The operations of intersection and union of objects of the N-tuple algebra that 
belong to the same class are fulfilled by algorithms of polynomial complexity, but if they belong to 
different classes, then, to fulfill these operations, it is necessary to transform one of them into 
another class.  

In problems that are known in logic as problems of deductive inference, frequently, it is 
required to test that one object of the N-tuple algebra is included into another, as well as to fulfill 
quantifier operations. Table 1 presents various combinations of objects of the N-tuple algebra and 
the sign “+” label the combinations for which the execution algorithms of the corresponding 
operations are polynomial under the condition that all domains of attributes are simple sets (i.e., not 
multiplace relations). Note that, in all cases, to test whether a given elementary n-tuple belongs to 
any structure, we need an algorithm of polynomial complexity.  
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Table 1 
Action C-n-tuple C-system D-n-tuple D-system 

Testing of  inclusion of a C-
n-tuple into 

+  + + 

Testing of  inclusion of a C-
system into 

+  + + 

Testing of  inclusion of a D-
n-tuple into 

+  + + 

Testing of  inclusion of a D-
system into 

    

Quantifier operation ∀x +  + + 
Quantifier operation ∃x + + +  

 
However, within the framework of the N-tuple algebra, methods for reducing complexity of 

computationally exponential algorithms, as well as methods for recognizing particular cases of 
structures were developed that allow one to fulfill the corresponding operations, transformations, 
and testing for polynomial time. Even in the cases when it is not possible to use an algorithm of 
polynomial computational complexity, the required computational resources can be reduced by 
using natural parallelism inherent in objects of the N-tuple algebra.  

In contrast to conventional data structures applied in the computer implementation of logical 
and logical-probabilistic analysis, the structures of the N-tuple algebra are matrixwise, which, using 
the corresponding software–hardware implementation, makes it possible to reduce relatively easily 
the computational resources by paralleling the operations.  

The computer implementation of objects of the N-tuple algebra employs parallelism at the 
levels of (1) of components; (2) rows; and (3) matrices. At the level of components, we can 
represent domains and their subsets in the form of a totality of logical vectors. To implement 
operations of the algebra of sets and of tests of inclusion, we can apply logical operations with 
integer vectors. At the level of rows, we are able to fulfill simultaneously operations or tests of 
inclusion with all pairs of components of C-n-tuples and D-n-tuples. At the level of matrices, we can 
fulfill simultaneously operations of the algebra of sets and the test of inclusion for a set of pairs 
elements of which are rows (C-n-tuples and D-n-tuples from different objects of N-tuple algebra. 
For example, in the computation of the intersection of two C-systems (see algorithm 2), all 
operations of intersection of C-n-tuples employed in this algorithm can be executed in parallel.  

 
 

T. LOGIC AND PROBABILITY  
 
The term “probabilistic logic” has been widely applicable in AI since the publication of 

work [7] by Nilsson. His idea was extended and developed by other researchers [8, 9]. In these and 
other publications on probabilistic logic, the following problem was posed: given estimates of the 
probabilities of a certain set of event represented by formulas of propositional calculus, it is 
necessary to find a probabilistic estimate of the event represented by a logical formula different 
from the initial ones. Another aspect of the combination of probability and logic, e.g., the aspect 
that was implemented in logical-probabilistic methods (LPM) [10], where the probability of 
formulas is calculated based on the probabilistic values of logical variables have not been 
considered in those works. Moreover, the analysis of papers [7–9] has shown that the combination 
of classical concepts of “probability” and “logic” results in certain nonclassical logics. However, in 
this paper, we consider the concept of probabilistic logic within the framework of the N-tuple 
algebra.  



B. Kulik – N‐TUPLE ALGEBRA‐BASED PROBABILISTIC LOGIC 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 61 - 

The combination of concepts of “logic” and “probability” is rather difficult. At the first 
glance, it is completely simple if we take as a ground the system of axioms proposed by A.N. 
Kolmogorov [11], in which the algebra of events embedded into a probabilistic measure 
corresponds to the algebra of sets. For example, for events represented by sets A and B, the 
probabilistic measure of their union can be calculated as  

p(A∪B) = p(A) + p(B) – p(A∩B). 
Thus, together with the probabilities p(A) and p(B), to compute the probabilities of the event 

A∪B, it is necessary to know the probability p(A∩B), which, within the limits of certain constraints, 
in particular p(A∩B)≤min(p(A), p(B)), does not depend on p(A) and p(B). If in addition, we have 
A∩B = ∅, then the events A and B are dependent. However, if we assume that A and B are different 
logical variables rather than sets, then the probability of disjunction of these events can be 
calculated by the formula  

p(A∨B) = p(A) + p(B) – p(A)pB). 
To calculate this formula, it is sufficient to set only the probability of the events A and B.  
The question is why, for logical relations, another methodology takes place for computing 

probability, although it seems reasonable that the algebra of sets and the Boolean algebra are 
isomorphic. The answer to this question is a key point in the combination of the concepts of “logic” 
and “probability”. It is the matter of fact that, in classical logic, elementary events corresponding to 
different logical variables are inconsistent; therefore, any logical formula of n free variables is 
isomorphic to a certain n-place relation, and the events that correspond to the discriminate variables 
belong to different attributes. In other words, logical variables may be dependent but not initially 
and only by the fact that they are involved into a certain logical formula, which determines the 
dependence between them.  

Absurdity (from the point of view of mathematical logic) of another approach can be seen 
from the following example, which is presented sometimes in papers on probabilistic logic: for 
logical variables (but not for formulas!) X and Y, the probabilities p(X), p(Y), and p(X∧Y) are given, 
and the last probability is not necessarily equal to the product of the preceding ones.  

This clearly implies that in the embedding of logical systems into the probabilistic space, it 
is necessary to take into account that we deal with the system that is isomorphic to the algebra of 
sets according to the Kolmogorov system of axioms, but, in structure, the sets themselves are sets of 
n-tuples involved in multiplace relations.  

It is this circumstance, which is taken into account in the N-tuple algebra explicitly or 
implicitly, is not taken into account in different versions of “probabilistic logic.” The assumptions 
that events that correspond to different logical variables can be dependent in themselves, i.e., 
without taking into account the logical formula that relates them, means that the laws of 
mathematical logic are violated. It is not the same when we deal with the formulas, in which the 
dependence between different variables is established or with different logical formulas, which can 
be dependent only under the assumption that they contain at least one free variable that is common 
for them.  

 
 
4. N-TUPLE ALGEBRA-BASED PROBABILISTIC ANALYSIS OF SYSTEMS  
 
Consider methods of probabilistic simulation that use the N-tuple algebra in greater detail. 

The basic cross-linking concept of the N-tuple algebra is the concept of C-n-tuple. If we know the 
probabilistic measures of components of the C-n-tuple, then the measure of the C-n-tuple can be 
calculated as the product of the measures of its components. For example, when the C-n-tuple 
R = [A B C] is given in measurable attributes and the measures of its components are equal to μ(A), 
μ(B), and μ(C), respectively, then we have 



B. Kulik – N‐TUPLE ALGEBRA‐BASED PROBABILISTIC LOGIC 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 62 - 

 μI = μ(A) • μ(B) • μ(C). 
If we deal with the embedding of logical formulas in the probabilistic space, then all 

attributes of the space in which the totality of objects of the N-tuple algebra is given have measure 
one, and all objects of the N-tuple algebra have measures that do not exceed one. This corresponds 
to the probabilistic measure not only in numerical relations, but also by the fact that the system of 
events simulated by the N-tuple algebra is isomorphic to the algebra of sets.  

To compute the measures of objects from the N-tuple algebra that are different from 
C-n-tuples, it is necessary to orthogonalize them, i.e., to transform into an equivalent C-system in 
which the intersection of any pair of C-n-tuples is an empty set. The methods of orthogonalization 
of arbitrary objects of the N-tuple algebra have been developed; the results in detail can be found in 
[2–6]. Note that the measure of an orthogonal C-system is equal exactly to the sum of the measures 
of C-n-tuples that belong to it. In addition, the following regularity has been established: the 
orthogonalization not only allows one to prepare an object of the N-tuple algebra for calculating its 
probability, but also, in many cases, reduces the computational cost substantially in solving other 
problems (e.g., in solving the satisfiability problem).  

If an object of the N-tuple algebra is a representation of formulas of propositional calculus, 
then it is given in the universe {0, 1}n, where n is the number of logical variables of the formula. 
Each column of a C-n-tuple or a C-system is related to a certain logical variable. The variable xk 
corresponds to the kth column, the state 1 in the object of the N-tuple algebra corresponds to the 
literal xk, and the state 0 corresponds to the literal xk. Any row (C-n-tuple) in a C-system 
corresponds to the conjunction of the formula expressed as the disjunctive normal form (DNF). If 
some clause misses the variables that are involved in the composition of formula, then, instead of 
them, the corresponding dummy variable “∗” is inserted in the C-n-tuple.  

Example 1. Assume that the formula of propositional calculus  
FQ = (x1 ∧¬x3)∨(¬x2 ∧ x3)∨(¬x1 ∧ x2).    (4.1) 

is given. Since there are three logical variables here, this formula can be represented as an 
object of the N-tuple algebra Q in the universe {0, 1}3  

Q =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗
∗

∗

}1{}0{
}1{}0{
}0{}1{

. 

This formula and the object of the N-tuple algebra that corresponds to it are orthogonal; 
therefore Q can be expressed directly in terms of the probabilistic measure. Assume that, in the 
object Q of the N-tuple algebra, the probabilities of events are given as follows: pi is the probability 
of the event 1 in the ith attribute, and 1–pi is the probability of the event 0 in the ith attribute. 
Taking into account that the measure of a C-n-tuple is equal to the product of the measures of its 
components, and the measure of an orthogonal C-system is the sum of the measures of C-n-tuples 
belonging to it, we obtain the formula  

p(Q) =  p1(1–p3)+(1–p2)p3+(1–p1)p2.                         (4.2) 
In the LPM, formula (4.2) is called the probabilistic function (PF) of formula (4.1). This 

function can also be derived from the orthogonal C-system using the change of elements of 
components by the probabilities corresponding to them and by the transformation of the system into 
a polynomial. At the first glance, it seems that the structures of the N-tuple algebra provide only a 
different way for expressing logical formulas. However, when the models get complicated (in 
particular, in the transition to many-state systems), using the N-tuple algebra, it turns out to be 
possible to simplify essentially the algorithms for solving a number of problems considered in 
LPM. In addition, in the embedding into the probabilistic space, the concept of “regression 
equation” is introduced in the N-tuple algebra, which allows one to pose and solve the problem of 
probabilistic logic in accordance with the Nilsson statement. If in the probabilistic functions of type 
(4.2), we suppose that pi are variables rather than fixed numbers, then these formulas are an exact 
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regression equation of the corresponding logical formula. The proof of this proposition can be 
found in [5]. Consider an example of many-state system.  

Example 2. Let R = ⎥
⎦

⎤
⎢
⎣

⎡
},{}{
},{},{

213

3121

bba
bbaa

 be an orthogonal C-system with three states given 

in the space {a1, a2, a3}×{b1, b2, b3} with probabilities p(ai) and p(bi), and p(a3) = 1– p(a1) – p(a2) 
and p(b3) = 1– p(b1) – p(b2). Then, the probability of the event expressed by the object R of the 
N-tuple algebra if the required probabilities are substituted is  

pI = (p(a1) + p(a2))(1– p(b2)) + (1– p(a1) – p(a2))( p(b1)+ p(b2)). 
The presented approach corresponds to the direct problem of logical–probabilistic analysis 

when, for given probabilities of elementary events, the probability of a complex event is calculated. 
In the inverse problem, the statement is different. The problem is, based on the data on the 
probabilities of certain complex events, we should calculate the probabilities of elementary events. 
After this, we can calculate the probabilities of other complex events. Problems solved in 
probabilistic logic are of this type. Consider the example presented in the paper by Nilsson [7].  

Example 3. Given a totality of events specified by formulas A and A ⊃ B of propositional 
calculus, and p(A) = p1 and p(A ⊃ B) = p2. It is necessary to estimate the probability p(B) of the 
event B.  

We solve this problem by the methods of the N-tuple algebra. There are only two logical 
variables A and B that are also elementary events in this case. Assume that the probabilities of these 
events are p(A) and p(B), respectively. The conditions of the problem imply that p(A) = p1. Let us 
express the given formulas in the structures of the N-tuple algebra using the universe {0, 1}2:  

A = [{1} ∗];  B = [∗ {1}];   A ⊃ B = A∨ B = ]{0} {1}[ = ⎥
⎦

⎤
⎢
⎣

⎡ ∗
}1{}1{

}0{
 

(here the D-n-tuple corresponding to formula A ⊃ B is transformed into an orthogonal C-
system).  

On this ground, we write the probabilistic formulas for the events A and A⊃B  
P(A) =  p1;      P(A ⊃ B) = (1 – p(A)) + p(A)p(B) = p2. 
We obtain the system of two equations  

p(A)  = p1; 
   (1 – p(A)) + p(A) p(B) = p2. 
This easily implies that  

 p(B) = 
1

21 1
p
pp −+ .  

In this problem, we obtain an exact solution, while in [7] the solution is obtained as the 
inequality p2 + p1 – 1 ≤ p(B) ≤ p2.  

In general, the algorithm for solving problems of probabilistic logic is as follows. Assume 
that we have initial logical formulas Fi with given probabilities p(Fi) and a formula G whose 
probability p(G) has to be calculated. Then, it is necessary to fulfill the following sequence of 
operations:  

(1) formulas Fi and G are transformed into orthogonal C-systems;  
(2) for each of these systems, the regression equations E(Fi) and E(G) are derived;  
(3) the system of equations { E(Fi)} is formed and solved;  
(4) if the system of equations { E(Fi)} has a unique solution, then the obtained values of 

variables are substituted into the formula E(G) and an exact solution is found.  
In the Nilsson problem, an exact solution was obtained by the methods of the N-tuple 

algebra. However, this situation is not possible in all cases. Consider an example.  
Example 4. Given probabilities of the events described by the logical formulas  
p(A ∨ B) = a;   p(A ∧ B) = b.  
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Find estimates of p(A) and p(B). Let us express the given events in the system as orthogonal 
C-systems  

A ∨ B ⇔ ]{1}  {1}[ = ⎥
⎦

⎤
⎢
⎣

⎡ ∗
}1{}0{

}1{
; 

A ∧ B ⇔ [{1}  {1}]. 
We derive the system of equations  
p(A) + (1 – p(A)) p(B) = a; 
p(A) p(B) = b. 
Solving this system, we obtain  

p(A) = 
2

4)( 2 bbaba −+±+
;  p(B) = 

2
4)( 2 bbaba −++ m

.  

It is clear that the obtained solutions do not give a unique solution in the cases when the 
radicand is not equal to 0 (this is possible for p(A) ≠ p(B)). If we take into account that both initial 
formulas are symmetric, then this uncertainty was caused by the conditions of the problem.  

For the presented examples, we can test the calculation numerically, if the probabilistic 
models corresponding to them are constructed. For example, for example 4, the probabilistic model 
is as follows: assume that two coins are tossed, note that the probability that at least once heads 
have occurred (the formula A .B corresponds to this event), and the probability that heads have 
occurred in two tosses (formula A ∨ B) are known. If we know the probability of the event that 
heads have occurred (for correct coins, it is equal to 0.5), by the laws of probability theory, we can 
calculate the probability of these complex events p(A ∨ B) = 0.75 and p(A ∧ B) = 0.25. The 
substitution of these values into the formulas for p(A) and p(B) presented above gives a correct 
answer. A similar test can be performed for incorrect coins, when the probability that heads occur 
differs from 0.5.  

The probabilistic relations obtained based on the ntuple algebra allow one not only to 
estimate the probability of complex events for given distribution functions of events in each 
attribute, but also to solve the inverse problem of probabilistic analysis, i.e., to estimate the types 
and parameters of marginal distributions (distributions in attributes and certain projections).  

First, we consider the following statement of the problem: a system is represented either in 
structures of the N-tuple algebra or in the form of a system of logical functions, and, for any 
variable, the probability distribution is known. In a multidimensional space, a distribution in either 
attributes or in certain projections of this space is called marginal distribution. It is necessary to 
calculate the probability distribution of the system and to estimate the stability of this distribution. 
The problems of this type arise in evaluating the reliability and safety of systems with complex 
structure and logical–probabilistic risk management in business and industry [12]. Using the 
relations derived above, logical systems in which these problems are solved can be conversed into 
measurable systems in the N-tuple algebra.  

Assume that every attribute of a certain set of objects of the N-tuple algebra is represented 
by a finite system of events. The following two variants of specifying a system of events in the 
attribute Xi:  

(1) in the form of an elementary system (i.e., a system of pairwise inconsistent events);  
(2) on a continuous probability distribution p(xi) in the form of a finite set of intervals (ai, bi) 

nonoverlapping in general, where ai and bi are the values of the parameter xi and ai < bi.  
For the first variant, it is sufficient to assign to each event its probability. The second variant 

can be reduced to the first one by the following procedure:  
(1) in the system {(ai, bi) of intervals of the parameter xi, the system of events is split into 

the set of pairwise nonoverlapping intervals–quanta;  
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(2) the initial system of events is transformed into a discrete one assigning to each initial 
event a certain set of quanta such that their union is equal to this event;  

(3) for each quantifier er, compute the value of the probability pr using as the lower and 
upper integration limits for p(xi) the endpoints of this quantum equal to the values of the parameter 
xi.  

If this procedure has been performed for each attribute of the object of the N-tuple algebra, 
then its probability is computed in the following order:  

(1) the object of the N-tuple algebra is orthogonalized;  
(2) the object of the N-tuple algebra is transformed into a polynomial in which we assign to 

each quantum the corresponding value of the probability.  
Example 5. The system is given in the space X×Y, where the attributes are represented in the 

form of intervals, and X= [0, 7] and Y= [0, 5]. The densities of probability distributions f1(x, d1, e1) 
and f2(y, d2, e2) on attributes are also known, where d1, e1, d2, and e2 are the parameters of the 
distributions. In this system a certain event is given in the form of an object of the N-tuple algebra 

R[XY] = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

}{}{
}{},{
}{}{

33

242

11

ba
baa
ba

,where ai and bj are intervals given in Table 2. It is necessary to determine 

the order of calculations for computing the probability of the event R.  
It is sufficient to use only open intervals in order to solve this problem. To simplify the 

system, we construct increasing series of endpoints of intervals in the attributes, for X, 0; 1.7; 2.8; 
3.4; 4.3; 5.5; 6.4; and 7; for Y, 0; 1.4; 2.3; 3.2; and 5. Then, we obtain the following sets of 
elementary intervals for the attributes X (Table 3) and Y (Table 4).  

         Table 2 
a1 a2 a3 a4 b1 b2 b3 

[0, 2.8] [1.7, 3.4] [3.4, 5.5] [4.3, 6.4] [0, 2.3] [1.4, 3.2] [2.3, 5.0] 
         Table 3  

r1 r2 r3 r4 r5 r6 r7 
(0, 1.7) (1.7, 2.8) (2.8, 3.4) (3.4, 4.3) (4.3, 5.5) (5.5, 6.4) (6.4, 7) 

         Table 4  
q1 q2 q3 q4 

(0, 1.4) (1.4, 2.3) (2.3, 3.2) (3.2, 5) 
When we replace the intervals with the corresponding sets of quanta, we obtain  

a1={r1, r2};  a2={ r2, r3}; a3={ r4, r5}; a4={r5, r6};   
b1= {q1, q2}; b2= {q2, q3}; b3= {q3, q4}. 

After the substitution into the initial C-system, we obtain  

R = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

},{},{
},{},,,{
},{},{

4354

326532

2121

qqrr
qqrrrr
qqrr

. 

For each quantum ri or qj, we calculate the corresponding probability. For example,  

 p(r3) = ∫
4,3

8,2
111 ),,( dxedxf . 

Now, we can orthogonalize the corresponding complex events. For the event R, we compute 
R , and after the transformation of R  into an orthogonal C-system, we find pI = 1 – p( R ). Then, we 
obtain (the intermediate calculations are eliminated)  
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R = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

}{},,,,{
}{},{
}{},{
}{},,,,{

476321

371

274

176543

qrrrrr
qrr
qrr
qrrrrr

. 

Next, substituting the probabilities of quanta and using the theorems of the N-tuple algebra, 
we arrive at the expression  

pI = 1 – p( R ) = 1 – ((p(r3)+p(r4)+p(r5)+p(r6)+p(r7))p(q1)+(p(r4)+p(r7))p(q2)+ 
+(p(r1)+p(r7))p(q3) +(p(r1)+p(r2)+p(r3)+p(r6)+p(r7))p(q4)). 
When solving the inverse problem for systems with many states, it is not always possible to 

solve the system of equations exactly since the number of variables in the regression equations is 
comparable with the number of all quanta and may exceed the number of equations. For example, 
in example 5, the number of quanta in the attribute X is seven; therefore, the number of unknown 
parameters of just this attribute is smaller by one, i.e., six. However, the problem can be solved 
approximately, if it is represented as an approximation problem. Assume that the attribute X is split 
into ki quanta (ki > 2). Then, we take as unknowns the types and parameters of continuous 
distributions for each attribute, rather than the magnitudes of quanta. Usually, the number of 
parameters of distributions does not exceed two — they will be unknown quantities. To estimate 
them, we can use optimization methods, in which the control actions are the types and parameters 
of marginal distributions, and the goal function is a generalized parameter, e.g., the mean value of 
the absolute deviations of the calculated values of the probabilities of the investigated complex 
events from the actual ones.  

 
 

CONCLUSIONS  
 
The application of the N-tuple algebra allows one to solve the direct and inverse problems of 

probabilistic analysis of logical systems in a multidimensional space not restricting ourselves to a 
particular class of distributions. As marginal distributions in solving the direct and inverse 
problems, we can use not only a normal distribution, but also any other distribution.  
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