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ABSTRACT 
 
In this paper, the problem of finding sampling distributions for truncated laws is considered. 

This problem concerns the very important area of information processing in Industrial Engineering. 
It remains today perhaps the most difficult and important of all the problems of mathematical 
statistics that require considerable efforts and great skill for investigation. The technique discussed 
here is based on use of the unbiasedness equivalence principle, the idea of which belongs to the 
authors, and often provides a neat method for finding sampling distributions. It avoids explicit 
integration over the sample space and the attendant Jacobian but at the expense of verifying 
completeness of the recognized family of densities. Fortunately, general results on completeness 
obviate the need for this verification in many problems involving exponential families. The 
proposed technique allows one to obtain results for truncated laws via the results obtained for non-
truncated laws. It is much simpler than the known techniques. The examples are given to illustrate 
that in many situations this technique allows one to find the results for truncated laws and to 
estimate system reliability in a simple way. 
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1. INTRODUCTION 
 
The truncated distributions have found many applications. Several examples have been 

given employing the truncated distributions in fitting rainfall data and animal population studies 
where observations usually begin after migration has commenced or concluded before it has 
stopped [1-2]. Similar situations arise with regard to aiming errors (range, deflection, etc.) in 
gunnery and other bombing accuracy studies. For example, in gun camera missions, the view angle 
of the camera defines a known truncation point for an exponentially distributed random variable, 
observable as some function of the radial error or the distance from the aiming point to the point of 
impact [3]. A situation for the truncated Poisson distribution would occur when one wishes to fit a 
distribution to Poisson-like data consisting of numbers of individuals in certain groups which 
posses a given attribute, but in which a group cannot be sampled unless at least a specified number 
of its members have the attribute. For example, the group may be a household of people, and the 
attribute measles; the specified number would then be one. Other examples arise in life testing and 
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reliability problems, where if failure is caused by a wear-out mechanism or is a consequence of 
accumulated wear, then the length-of-life of a system can be expected to be of finite dimension. The 
object of the present paper is to obtain a sampling distribution for truncated law with a known 
truncation point and a minimum variance unbiased estimator of the reliability function for this 
model using the results obtained for non-truncated law. It is known that a sampling distribution for 
truncated law may be derived using, namely, the method based on characteristic functions [4], the 
method based on generating functions [5], or the combinatorial method [6]. In this paper, a much 
simpler technique than the above ones is proposed. It allows one to obtain the results for truncated 
laws more easily. 

 
U. UNBIASEDNESS EQUIVALENCE PRINCIPLE 

 
Suppose an experiment yields data sample Xn = (X1, … , Xn) relevant to the value of a 

parameter θ (in general, vector). Let LX(xn;θ) denote the probability or probability density of Xn 
when the parameter assumes the value θ. Considered as a function of θ for given Xn=xn, LX(xn;θ) is 
the likelihood function. If the data sample Xn can be summarized by a sufficient statistic S, one can 
write LS(s;θ) ∝ LX(xn;θ). Further, for any non-negative function ω(s), ω(s)LS(s;θ) is also a 
likelihood function equivalent to LX(xn;θ). Suppose we recognize a function ω(s) such that 
ω(s)LS(s;θ), regarded as a function of s for a given θ, is a density function. It can be shown that this 
is the sampling density of S if the family of recognized densities is complete.  

 The unbiasedness equivalence principle consists in the following. If  
 

 LX(xn;θ,ϑ)=[w(θ,ϑ,)]nLX(xn;θ), (1) 
 
represents the likelihood function for the truncated law, where w(θ,ϑ) is some function of a 

parameter (θ,ϑ) associated with truncation, ϑ is a known truncation point (in general, vector), then 
a sampling density for the truncated law is determined by 

 
 [ ] ,     ),;()()();(  

ϑϑ ϑ S∈= ssss θθ,θ gwwg n)    (2) 
where 
 

   [ ] );()()(  θθ ss gww nϑ,) = ϕ(s)LS(s;θ,ϑ) ∝ LX(xn;θ,ϑ), (3) 
 

g(s;θ) is a sampling density of a sufficient statistic s(Xn) (for a family of densities {f(x;θ)}) 
determined  on the basis of LX(Xn;θ), )(Sw) is an unbiased estimator of 1/[w(θ,ϑ)]n with respect to 
g(s;θ), s∈S  (a sample space of a non-truncated sufficient statistic S), ϕ(S) is a function of S for a 
given θ, which is equivalent to unbiased estimator )(Sw)  of 1/[w(θ,ϑ)]n, i.e.,  

 
 ϕ(S) ∝ )(Sw)  (4) 

 
or 

ϕ(S) = [ ] ),;(/);(),()(  ϑϑ θθθ SSS SLgww n) ,   (5) 
 

gϑ (s;θ) is the sampling density of a sufficient statistic S (for a family of densities {fϑ (x;θ)})  
when the truncation parameter ϑ is known, Sϑ  is a sample space of a truncated sufficient statistic S.  
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V. EXAMPLES OF APPLICATIONS OF THE UNBIASEDNESS 
EQUIVALENCE   

    PRINCIPLE TO FINDING SAMPLING DISTRIBUTIONS FOR TRUNCATED LAWS 
 

Example 3.1 (Sampling distribution for the left-truncated Poisson law). Let the Poisson 
probability function be denoted by 
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The probability function of the restricted random variable, which is truncated away from 

some ϑ≥0, is then 
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Consider a sample of n independent observations X1, X2, …, Xn, each with probability 

function fϑ(x;θ), where the likelihood function is defined as 
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It is well known that 
 

 ... 1, 0,     ,
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sXS
n

i
i .  (11) 

 
is a complete sufficient statistic for the family {f(x;θ)}. A result of [7] states that sufficiency 

is preserved under truncation away from any Borel set in the range of X. Hence, in the case at hand 
S is sufficient for {fϑ (x;θ)}. It can be verified that S is also complete. 
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 For the sake of simplicity but without loss of generality, consider the case ϑ=0. This is at the 
same time the most important case for applications and the easiest with which to deal. It follows 
from (2) that 
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n
sC  denotes the Stirling number of the second kind [8] defined by 
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This is the same result that of Tate and Goen [9]. Their proof was based on characteristic 

functions. 
 Example 3.2 (Sampling distribution for the right-truncated exponential law). Let the 

probability density function of the right-truncated exponential distribution be denoted by 
 

,0     ),;(),();( ϑθϑθθϑ ≤≤= xxfwxf   (18) 
 
where 

  ,
1

1),( /θϑϑθ −−
=

e
w  (19) 

 
).[0,     ,)/1();( / ∞∈= − xexf x θθθ  (20) 

 



N. Nechval, K. Nechval – TECHNIQUE FOR FINDING SAMPLING DISTRIBUTIONS FOR TRUNCATED LAWS WITH SOME APPLICATIONS TO 
RELIABILITY ESTIMATION 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 72 - 

Consider a sample of n independent observations X1, X2, …, Xn, each with density fϑ (x;θ), 
where the likelihood function is determined as 
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It is well known that 
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is a complete sufficient statistic for the family {f(x;θ)}. It follows from (2) that 
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This is the same result that of Bain and Weeks [4]. Their proof was based on characteristic 

functions. 
 Example 3.3 (Sampling distribution for the doubly truncated exponential law). Consider an 

exponential distribution (20) that is doubly truncated at a lower truncation point (ϑ1) and an upper 
truncation point (ϑ2). The probability density function of the doubly truncated exponential 
distribution is defined as 
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where ϑ=(ϑ1,ϑ2), 
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Consider a sample of n independent observations X1, X2, …, Xn, each with density fϑ (x;θ), 

where the likelihood function is determined as 
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where a+=max(0,a), g(s,θ) is given by (24), 
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4. VALIDITY OF THE UNBIASEDNESS EQUIVALENCE PRINCIPLE 
 
The theoretical results of this investigation into the validity of the proposed unbiasedness 

equivalence principle (UEP) for finding sampling distributions for truncated laws are largely 
contained in the theorem given below. We introduce the following notation and assumptions. Let Xn 
be a random variable taking on values xn in a space Xϑ, let A  be a σ −field of subsets of Xϑ, and let 
(θ,ϑ) be a parameter associated with truncation, where ϑ is a known truncation point. For all values 
of the parameter θ in some parameter space Θ, let Pϑ be a probability measure on A; i.e., for any set 
A in A, Pϑ (A;θ) is the probability that Xn will belong to A when the parameter has the value θ. Let 
S=s(Xn) be a statistic on the measurable space (Xϑ,A ) taking on values in a measurable space (Sϑ, 
B). For each θ∈Θ, let Gϑ be the probability distribution of S when Xn has the distribution Pϑ; i.e., 
for any B∈B, Gϑ(B;θ) = Pϑ( ),);(1 θB−s  where s-1(B) is the set of points xn in Xϑ  for which s(xn)∈B.  

W. Assume the family P = {Pϑ: θ∈Θ} of probability distributions of Xn is 
dominated by a totally σ −finite measure μ over (Xϑ,A), i.e., there exists, for 
all θ∈Θ, a non-negative A – measurable function pϑ (xn;θ) such that 

 
 ∫

A

nn xdxpAP )();(= );(  μϑϑ θθ  (36) 

 
for all A∈A. (The integrand pϑ(xn;θ) is called the density of Pϑ w.r.t. (with respect to) μ). 
 (ii) Assume that s(Xn) is sufficient for P. From the Halmos-Savage factorization theorem 

[10], s(Xn) is sufficient if and only if for each θ∈Θ there exists a non-negative B-measurable 
function LS(s(xn);θ,ϑ) on Sϑ and a non-negative A – measurable function v on Xϑ such that 

   ).(     )(),);(( = );( μϑϑ
nnn xvxLxp θθ sS  (37) 

 
(The symbol (μ) following a statement means that the statement holds except on a set of μ-

measure zero). In (37), we will assume that LS and v are finite (μ). 
 (iii) Assume we recognize some likelihood function LS(s;θ,ϑ) equivalent to likelihood 

function LX(xn;θ,ϑ). Define a σ −finite measure ρ over (Xϑ,A) by 
 

 ∫ ∈
A

nn AxdxvA A. all      ,)()( = )( μρ  (38) 

 
Then, from (36), (37), and (8), 
 

∫ ∈
A

nn AxdxLAP A. all      ,)(),);(( = );( ρϑϑ θθ sS  (39) 

 
 (iv) Assume we recognize a totally σ -finite measure η over (Sϑ, B) such that the measure ρ 

s-1 over (Sϑ, B) is absolutely continuous w.r.t. η; i.e., η(B)=0 implis that ρ s-1(B)=0, where ρ s-1(B) 
denotes the ρ − measure of the inverse image of B. 

 (v) Assume we recognize a positive B-measurable function ϕ on Sϑ such that 
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for all θ∈Θ. Assume further that for any measurable set B of positive η − measure, there 
exists a θ∈Θ and a measurable subset B1 of B of positive η − measure over which LS(s;θ,ϑ)ϕ(s) is 
positive.  

 From (40), {LS(s;θ,ϑ)ϕ(s):θ∈Θ} is a family of densities w.r.t. η. For B∈B, let 
 

∫=
B

dLBG ).()(),;();( sssS ηϕϑθϑ θ  (41) 

 
Thus, (v) provides us with a family of densities, but at this stage we do not know if this 

recognized family is the family of sampling densities of S. 
 (vi) Assume we recognize that the family {LS(s;θ,ϑ)ϕ(s):θ∈Θ} is complete, i.e., 
 

∫ ∈≡
ϑ

ηϕϑφ
S

Θθθ  allfor      0)()(),;()( ssss S dL    (42) 

implies  
0  )( ≡sφ   (43) 

 
except on a set D with 0);( =θDGϑ  for all θ∈Θ. 
 Theorem 1 (Sampling distribution for truncated law). Under assumptions (i) through (vi), 

Gϑ has a density with respect to η and LS(s;θ,ϑ)ϕ(s) is a version of it, i.e.,  
 

 LS(s;θ,ϑ)ϕ (s) = [ ] );(),()(  θθ ss gww nϑ)  (44) 
 
is the sampling density, gϑ (s;θ), of the sufficient statistic s(Xn).  
 Proof. We show first that (43) and the second part of (v) imply that φ (s)≡0 (η). For suppose 

there exists a measurable В with η(B)>0 and φ(s)≠0 over B. Then B⊂D, so Gϑ(B;θ)=0 for all θ∈Θ. 
But, from (v), there exists a B1⊂B for which Gϑ (B1;θ)>0 for some θ, contradicting Gϑ (B;θ)=0 for 
all θ∈Θ. Now, by a theorem in [10], there exists a non-negative measurable function ψ on Sϑ such 
that 

 

∫∫ = )()();()());(( ssss ηψρ ϑϑ dQxdxQ nn θθ    (45) 

 
for every measurable function Qϑ, in the sense that if either integral exists, then so does the 

other and the two are equal. In (45), let Qϑ (s,θ) =χBLS(s;θ,ϑ), where χB is the characteristic 
function of B (B∈B). Then there exists a ψ (s) such that 
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for all B∈B. Note that the left side of (45) is Gϑ(B;θ).   
 In (42), let φ (s) = 1−[ψ(s)/ϕ (s)]. From (40) and (46), 
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for all θ∈Θ. Thus, from (43), ψ(s)=ϕ(s) almost everywhere (η), and, from (47),  
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LS(s;θ,ϑ)ϕ(s) = [ ] );(),()(  θθ ss gww nϑ)  (48) 

 
is a version of the density of Gϑ with respect to η.   � 
  

 
X. FINDING RELIABILITY ESTIMATORS FOR TRUNCATED LAWS 

VIA THE UNBIASEDNESS EQUIVALENCE PRINCIPLE 
 
Consider a system that is required to operate for a given ‘mission time’, t. The reliability of 

this system for the right-truncated distribution of time-to-failure with the probability density 
function fϑ (x;θ) may be defined as 
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Due to the Rao-Blackwell and Lehmann-Scheffé theorem [11] a minimum variance 

unbiased (MVU) estimator for R may be obtained as 
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where X may be any one of the observations (X1, …, Xn) from fϑ (x;θ), S is a complete 

sufficient statistic for {fϑ  (x;θ)}, and fϑ (x;s) is the conditional distribution of X given S=s;  fϑ  (x;s) 
is obtained  

as 
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is the joint probability density of X and S, ),,( ϑθxwf

)  is an unbiased estimator of 
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with respect to g(s;θ). 
 It should be noted that (50) can be obtained by different method as 
 

,
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where ),,( ϑθtwR

)  is an unbiased estimator of 
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with respect to g(s;θ). 
 Example 5.1 (MVU estimator of reliability for the right truncated exponential distribution). 

Let Xn=(X1, …, Xn) be a random sample of size n from a population with density (18). Then it 
follows from (50) (or (54)) that the MVU estimator of R(t) is obtained as 
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 (56) 

 
As a particular case, if ϑ → ∞ that is the variable X is assumed unrestricted, the 

corresponding MVU estimator of reliability reduces to 
 

     .])/1[()( 1 −
+−= nSttR

)
    (57) 

 
For instance, suppose that the following failure times, in hours, are available from a given 

system: 4.2, 9.8, 16, 20 and that the truncation point ϑ=25 hours and the mission time t=5 hours. 
Clearly s=50 hours. Substituting these values in (56), the estimate of reliability is obtained as 

.824.0)( =tR
)

 Had we assumed, however, that the observations are coming from the complete 
population, the estimate of reliability would have been, from (57), .729.0)( =tR

)
  

 Example 5.2 (MVU estimator of 
reliability for the right-truncated gamma distribution). Let Xn=(X1, …, Xn) be a random sample of 
size n from a population with density 
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δ
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= θθ    0 < x ≤ ϑ,   σ > 0,   δ > 0,  (58) 

 
where ϑ is point of truncation, θ=(σ,δ), and w(θ,ϑ) is such that 
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This distribution has found applications in a number of diverse fields, for instance, in fitting 

of length-of-life data under fatigue. Note that for δ=1, the right-truncated gamma distribution 
reduces to the right-truncated exponential distribution with parameter σ. Although, this distribution 
is a special case of gamma distribution and gives a good fit to length-of-life data in many situations, 
it is not suitable since its use carries the implication that at any time future life-length is 
independent of past history. 

 To find MVU estimator of R(t) we apply the above technique. If the shape parameter δ in 
(58) is assumed to be known, then it is well known that 
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is a complete sufficient statistic for σ. The probability density function of the sampling 
distribution of S is given by 
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The joint distribution of X and S is given by 
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Thus the conditional distribution of X given S is 
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Hence the MVU estimator of R(t) at time t is given by 
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It may be remarked that the result (66) though at the first look appears quite unwieldy is not 

so in practical applications, particularly when the sample size is small. 
 As a particular case, if ϑ → ∞ that is the random variable X is assumed unrestricted, the 

distribution of the sufficient statistics from equation (61) reduces to 
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and the corresponding MVU estimator of reliability at time t is given by 
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which corresponds to Basu’s [12] equation (9). 
 

 
Y. CONCLUSIONS 

 
The authors hope that this work will stimulate further investigation using the approach on 

specific applications to see whether obtained results with it are feasible for realistic applications.  
  
 It will be noted that the similar approach also can be used to find the sampling distribution 

for truncated law when some or all of its truncation parameters are left unspecified. 
 For instance, consider Example 3.3, where it is assumed that the truncation parameter 

ϑ=(ϑ1,ϑ2) is unknown. It is known that the statistic (X(1), X(n), S), where 
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is a complete sufficient statistic for a set of parameters (ϑ1,ϑ2,θ). In this case, the likelihood 
function of a sample is determined as 
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x(1) < x(n),     x(1), x(n)∈[ϑ1,ϑ2],  (73) 
 
is the joint probability density function of the order statistics x(1) and x(n)), Fϑ(⋅) is the 

probability distribution function. It is well known that 
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is a complete sufficient statistic for the family {f(x;θ)}. It follows from (2) and (72) that 
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Thus, the sampling distribution of the sufficient statistic (X(1), X(n), S) for (ϑ1,ϑ2,θ) is given 

by 
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In other words, we have the following results. 
 In a singly truncated case, when a truncation point on the left, ϑ1, is unknown, a sampling 

distribution of the sufficient statistic (X(1), S) for (ϑ1,θ) is given by 
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is the probability density function of the order statistic X(1), 
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s≡s(X2, …, Xn). 
 In a singly truncated case, when a truncation point on the right, ϑ2, is unknown, a sampling 

distribution of the sufficient statistic (X(n), S) for (ϑ2,θ) is given by 
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is the probability density function of the order statistic X(n), 
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s≡s(X1, …, Xn-1). 
 In a doubly truncated case, when a lower truncation point, ϑ1, and an upper truncation point, 

ϑ2,  are unknown, a sampling distribution of the sufficient statistic (X(1), X(n), S) for (ϑ1,ϑ2,θ) is 
given by 
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is the joint probability density function of the order statistic X(1) and X(n), 
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s≡s(X2, …, Xn-1). 
 If, say, we deal with a left-truncated exponential distribution, 
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and a truncation point on the left, ϑ1, is unknown, then it follows immediately from (81) that 

the sampling distribution of the sufficient statistic (X(1), S), ,
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(95) 
which corresponds to the well-known result [11]. 
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