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Abstract. The main idea of Universal Generating Function is exposed in reliability 
applications. Some commonalities in this approach and the C++ language are discussed. 
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Introduction. 
 
 Usually, binary  systems are considered in the reliability theory.  However, this approach 

does not describe systems with several levels of performance sufficiently.  Analysis of multi-state 
systems forms now a special branch of the reliability theory. 

 For analysis of such systems consisting of multi-state subsystems/elements, one can use the 
method of Universal Generating Functions (UGF), which is described below. 

 
1. Generating function.   
 
One frequently uses an effective tool in probabilistic combinatorial analysis: the method of 

generating functions.  For a distribution function of a discrete random variable ξ  such that 
{ } kpk ==ξPr  for any natural k, the generating function has the form 

∑=
k

k
k xpx)(ϕ  

Advantages of using a generating function are well established in this field, and we list a 
few of those: 

(1) For many discrete distributions (e.g., binomial, geometrical, Poisson), there 
are compact forms of generating functions, which allows one to get analytical solutions 
quickly and easily.  

(2) Moments of statistical distributions can be written in convenient forms. For 
example, the mathematical expectation of random variable ξ  can be found as 
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(3) If there are n independent random variables 1ξ , 2ξ , ..., nξ  with the respective 
generating functions )(1 xϕ , )(2 xϕ ,..., )(xnϕ  , then the following generation function 
can be written for the convolution of these distributions: 

∏
=

=
n

j
j xx

1

)()( ϕϕ . 

where ∑=
k

k
jkj xpx)(ϕ , and pjk is the probability that j-th random variable takes value 

k. 
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2. Computer alorithm for calculation product of GF’s. 
 
 Let us present a generating function as a set of objects. Each object corresponds to a 

term in the generating function polynomial.  It means that object is a pair of two values: the first 
is the coefficient, i.e. probability, p, and the second is the power of the argument, a, i.e. the 
corresponding random variable.  

Consider a computational algorithm for calculation of the convolution of two 
distributions. One makes the following formal operations. 

♦ Take two sets of objects: set { ),( 1111 ap , ),( 1212 ap ,...,  
),( 11 kk ap } for generating function )(1 xϕ , and set  

{ ),( 2121 ap , ),( 2222 ap ,..., ),( 22 mm ap } for generating function  
)(2 xϕ . 

♦ Find all cross “interactions” of objects of the first set with all objects of the second set, 
using the following rule: 

 
[Interacting objects: ),( 11 kk ap  and ),( 22 mm ap ] Æ 
[Resulting object: );( 2121 mkmk aapp + ]. 
 
♦ For all resulting objects with different 

11ka  for object-1 and 
22ma  for object-2, but 

such that 
11ka +

22ma =a, one forms a new final resulting object: );(
21 21 app mk∑ .  The total 

set of such final resulting objects gives us the needed solution: from here we can get 
probabilities for any a. 
 
 
3. Universal generating function. 
 
 We have described a formalized procedure on sets of objects interaction coresponding to 

product of polynomials.  But in practice, we meet a number of situations when this operation is not 
enough. Consider the following simple examples. 

 
Example 1.  Assume that there is a series connection of two (statistically independent) 

capacitors (Fig. 1). 
 

 
Fig. 1. Series connection of two capacitors. 

 
 Assume that c1 and c2 are random with discrete distributions: p1k=Pr{c1=k} and 

p2j=Pr{c2=j}.  One is interested in distribution of total capacity.  It is impossible to find the solution 
with the help of a common generating function.  However, there is a possibility to use formal 
algorithm, described above with the use of corresponding operations over the elements of the 
objects.  The following procedure can be suggested:  

♦Take two sets of objects, S1 and S2:  
S1 ={ ),( 1111 cp , ),( 1212 cp ,..., ),( 11 kk cp }  



I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES  
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++ 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 106 - 

     and 
     S2 ={ ),( 1121 cp , ),( 2222 cp ,..., ),( 22 mm cp }, 

            where k is the number of discrete values of 
     the first capacitor, and m is the same for the second  
     one. Here the first element of the object is the  
     probability and the second element is the respective  
     capacity. 
♦Find all cross “interactions”, Ω, of objects of set S1 with all objects of set S2, using the 

following rule: 
Ω { ),( 11 ii cp , ),( 22 jj cp } = );( **

ijij cp . 

Here *
ijp  is the resulting probability calculated in accordance with the multiplication 

rule (under assumption of independence) as 
jijipij ppppp 2121)(

* },{ =Ω= , 
where )( pΩ  is the rule of interaction of parameters p, which in this particular case is 

multiplication. 
 Value of *

ijc  is the resulting capacity calculated in accordance with the harmonic 
sum rule for capacities: 

( ) 11
2

1
121)(

* },{ −−− +=Ω= jijicij ccccc , 
where )(cΩ  is the rule of interaction of parameters c. 
♦ Assume that in result we obtain all R=km possible resulting objects of kind 
);( ** cp . Let us order all these resulting pairs in increase of value of c*: );( *

1
*
1 cp , ..., 

);( **
RR cp .  For some resulting pairs with numbers, say, i, i+1,… , i+j values of c* can be the 

same and equal some C. We converge such objects into a single aggregated object with 
parameters: );( * Cp

jisi
s∑

+≤≤

.  The total set of such final resulting objects gives us the needed 

solution. 
 

 The procedure can be easily expanded on a series connection of several independent 
capacitors.  

 
nrjinrji

SER
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( ,  

 
аnd 

[ ] ....}...,,,{ 111
2

1
121)(

−−−− +++=Ω nrjinrji
SER
c cccccc   

 
 
Example 2. Pipeline consists of n series sections (pipes).  Section j is characterized by 

random capacity, for which each value v  is realized with some probability p . In this case,  

nrjinrji
PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( ,  

аnd 
 

{ }nrjinrji
SER
c vvvvvv ...,,,min},...,,{ 2121)( =Ω ,  
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Example 3. One measures a sum of values, each summand of which is random. With 
probability jsp value j is measured with standard deviation (STD) equal to jsσ . In this case, using 
notation similar to above, one has: 

 
nrjinrji

PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( ,  

аnd 
22

2
2
121)( ...}...,,,{ nrjinkjic n

σσσσσσ +++=Ω . 
 
 Examples can be continued and not necessarily with probabilistic parameters.  
 
 
4.  Formal description of the Method of Universal Generating Functions.  
 
 After these simple examples, let us begin with formal description of the Method of 

Universal Generating Function (UGF3). For a more vivid presentation, let us use special 
terminology to distinguish the UGF from the common generation function.  This will relieve us 
from using traditional terms in a new sense, which may lead to some confusion. Moreover, we hope 
that this new terminology can help us, in a mnemonic sense, to remember and perhaps even to 
explain some operations.  

 In the ancient Roman army, a cohort (C) was the main combat unit. Each cohort 
consisted of maniples (M), which were independent and sometimes specialized combat units with 
several soldiers of different profiles. Several cohorts composed a legion (L). The use of this 
essentially military terminology appears to be convenient in this essentially peaceful mathematical 
application. A legion is close by its sense to a generating function, a cohort is close to a term of the 
generating function written in the form of expanded polynomial, and a maniple is close to a 
parameter of each term.   

 Starting with polynomial multiplication, in our approach, we will consider less 
restrictive operations (not only multiplication of terms) and more general parameters.  For instance, 
multiplication of polynomials assumes getting products of coefficients and summation of powers.  
In our case, we will expand on such restrictive limits on operations. 

 
 Let’s denote legion j by Lj.  This legion includes vj different cohorts, Cjk: ( )

jjvjjj CCCL ...,,, 21= . 
 The number of cohorts within different legions might be different. However, in our 

approach, maniples, which consist of a cohort, must be similar by its structure. 
 Each cohort jkC  is composed of some maniples, M , each of which represents different 

parameters, special characteristics, and auxiliary attributes.  Each cohort consists of the same set of 
maniples: 

 
( ))()2()1( ...,,, s

jkjkjkjk MMMC = . 
 
 To make description of the method more transparent, let us start with the examples of two 

legions, L1 and L2: each of which consists of the following cohorts, L1=(C12,C12,C13) and 
L2=(C21,C22), and each cohort Cjk includes two maniples )1(

jkM  and )2(
jkM ,i.e. Cjk=( )1(

jkM , )2(
jkM ). 

                                                           
3 UGF might be also read as Ushakov’s Generating Function ☺. 
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Denote the operation of legion interaction by LΩ .  This operator is used to obtain the resulting 
legion LRES.  In this simple case, one can write: 

{ }21 , LLL LRES Ω= .                   (1) 

 This interaction of legions produces six pairs of interactions between different cohorts, 
which generate the following resulting cohorts: 

{ }21111 ,CCC CRES Ω=− , { }22112 ,CCC CRES Ω=− , 

{ }21123 ,CCC CRES Ω=− , { }22124 ,CCC CRES Ω=− , 

{ }21135 ,CCC CRES Ω=− , { }22136 ,CCC CRES Ω=− .  

Here  { }•ΩC  denotes the interaction of cohorts. 

 Interaction of cohorts consists of interaction between its costituent maniples.  All cohorts 
contain maniples of the same types though with individual values of parameters. Let us take, for 
instance, resulting cohort CRES-5, which is obtained as interaction of cohorts C13 and C21. In turn, 
interaction of these particular cohorts consists in interaction of their corresponding maniples: 

{ })1(
21

)1(
13

)1(
5 ,)1( MMM

MRES Ω=−  

{ })2(
21

)2(
13

)2(
5 ,)2( MMM

MRES Ω=−  

 The rules of interaction between maniples of different types, i.e.  { })1(
2

)1(
1 ,)1(

ji MM
MΩ  and 

{ })2(
2

)2(
1 ,)2(

ji MM
MΩ  are (or might be) different. 

 Interaction of n legions can be written as: 
  

),...,, 21( nLLLLL Ω= . 

 Operator LΩ  denotes a kind of “n-dimensional Cartesian product” of legions and special 
final “reformatting” of the resulting cohorts (like converging polynomial terms with the equal 
power for a common generating function).  Since each legion j consists of vj cohort, the total 
number of resulting cohorts in the final legion (after all legion interaction) is equal to 

∏
≤≤

=
nj

jvv
1

. 

 Number v corresponds to the total number of cohorts’ interactions.   
 
 
 
 
5.  Implementing UGF philosophy in computer language C++.  
 
 We would like use the UGF (Universal Generating Function) philosophy in an analysis tool 

and perform reliability calculations for real-world systems. Because we are talking about an 
(reliability) engineering discipline, all philosophies present the need to be converted into numerical 
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results and predictions. Thus, the UGF philosophy begs an implementation! The implementation 
task is to identify objects (maniple, cohort, legion) and program all interactions between them. 
Unfortunately, we run into a combinatoric explosion of possible interactions for a sysem consisting 
of a large number of (atomic) units. Even moderm computers are not able to enumerate 
astronomically large (21000) number of interaction states in system consisting of 1000 binary atomic 
units. Fortunately, for a class of frequently occuring practical systems, the situation is not as 
hopeless as it may first appear. For a system to be useful in engineering, it may only fail very 
infrequently. In a highly reliable system, the failure probability of all atomic units much smaller 
that the system failure probability. This fact makes most of the interactions exceedingly rare and 
they can be systematically ignored in an approximation scheme that retains only the dominant 
contributions.  

 Let us proceed to find an approximate implementation of the UGF philosophy for highly 
relaible systems in a system simulator. It should be reasonably easy to identify an atomic unit in 
reliability theory as a maniple. Independence of the maniples corresponds to statistical 
independence of the atomic units. A cohort is defined to be a collection of maniples. The same 
definition holds in the context of reliability theory, where the collection is defined by a failure 
criterion. In a series system, each atomic unit is assumed to provide distinct and critical 
functionality. This maps on to the notion of specialized combat units. In a parallel system, all 
atomic units are statistically identical. This improves survival probability during operation, either in 
the military or in system reliability! Thus, we may identify a subsystem in reliability engineering as 
a cohort in UGF formalism. 

  Interactions between the objects are identified in the simulator by their natural 
reliability names. k-out-of-n combinations are of primary interest. But this class includes the two 
most frequently appearing reliability structures: series (n-out-of-n) and parallel (1-out-of-n). In fact, 
probability of failure of a parallel system is negligible (higher order in numerical smallness) with an 
additional assumption of high availability of the atomic units. Obviously a series system can be 
made up of distinct units providing separate functionality to the system.  

 As an illustration let us consider a system S of two subsystems A and B in series. Let A 
be atomic and B be composed of two atomic units X and Y in parallel. One possible C++ coding for 
this (simple) system is 

 
B=Parallel(X,Y); S = Series(A,B); 
 
 Properties (MTBF, MTTR etc.) of all atomic units are specified at the start of analysis. 

Operations like Series and Parallel are C++ member functions for the instances of class “unit”. We 
will not specify unit composition rules in this work. Most of these rules can be found in standard 
textbooks on reliability engineering. Interested readers may find the remaining ones (involving 
switching time and PEI) in Chakravarty and Ushakov (2000, 2002). 

   
 It remains to identify the “legion”. The preceding paragraphs almost suggest that a 

legion be identified with the entire system in reliability theory, where the system is further assumed 
to be represented by its generating function. We would like to note that that this analogy cannot be 
taken literally sometimes. It is common for a real world reliability system to have deeper 
hierarchies (e.g., system, equipment shelves, equipment racks, electornic cards) like modern day 
militaries. In such an elaborate system, we still identify the atomic units as maniples. At the other 
end, we identify the entire system as a “legion”! All intermediate stages in the hierarchy are 
considered generalized “cohorts”. 

 In Chakravarty and Ushakov (2000) implementation, any subsystem can be composed 
from other subsystems at the next lower level of hierarchy (or atomic units which are always at the 
lowest level). A newly formed subsystem provides an effective reliability description of all units 
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that compose this subsystem. This composition can be continued indefinitely to obtain an 
effectiveness measure for the entire system. They have shown that this can be recast as an 
approximation from a system generating function when all atomic units satisfy binary failure 
criteria (on/off) they are statistically independent, the system itself is highly reliable and reliability 
design of the system consists of hierarchical blocks. 

 
6.  Reliability analysis of GlobalstarTM Gateways.  
 
 Globalstar is a low-earth-orbit (LEO) based telephony system with global coverage. The 

gateways make its ground segment that connect to the orbiting satellites. The gateways are cpmlex 
systems with more than a thousand components (e.g., electronic cards). Ushakov (1998), 
Chakravarty and Ushakov (2002) used the UGF approach for the reliability (performance) analysis 
of GlobalstarTM gateways (fixed ground segment of a low earth orbit satellite communications 
system). Given the prominence of object oriented abstractions and operations in Globalstar design, 
it should not be surprising that the reliability analysis naturally fits into the UGF philosophy. 
Further, these ideas can be naturally implemented in the computer using an object oriented 
language.  

 Because of the object oriented nature of system reliability design in Globalstar 
(interaction between objects like system, racks, shelves, cards are triggered by failure, switching of 
failed units and changing user demand), Ushakov (1998) proposed that a system reliability 
simulator should be coded in an object oriented computer language like C++. Later, Chakravarty 
and Ushakov (2002) implemented a simulator for the GlobalstarTM Gateway in C++.  

 In Chakravarty and Ushakov implementation for Globalstar, C++ objects are in one-to-
one correspondence with reliability objects. An object is specified by mean time between failures 
(MTBF), mean time to repair/replace (MTTR) and an effectiveness weight (partial effectiveness 
index: PEI). By definition, PEI=1 for binary atomic units. All failure distributions are implicitly 
assumed to be Exponential. If failed units were to be automatically swapped, a switching time was 
also assigned by Chakravarty and Ushakov (2000). Even small switching time is important because 
it changes a parallel system “on paper” to a series system with small MTTR. This may have 
dramatic effect overall on system reliability. 
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