
I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 104 -

OBJECT ORIENTED COMMONALITIES IN UNIVERSAL GENERATING
FUNCTION FOR RELIABILITY AND IN C++.

Igor Ushakov1,

Sumantra Chakravarty2

Abstract. The main idea of Universal Generating Function is exposed in reliability
applications. Some commonalities in this approach and the C++ language are discussed.

Keywords: Universal Generating function (UGF), C++, reliability.

Introduction.

 Usually, binary systems are considered in the reliability theory. However, this approach

does not describe systems with several levels of performance sufficiently. Analysis of multi-state
systems forms now a special branch of the reliability theory.

 For analysis of such systems consisting of multi-state subsystems/elements, one can use the
method of Universal Generating Functions (UGF), which is described below.

1. Generating function.

One frequently uses an effective tool in probabilistic combinatorial analysis: the method of

generating functions. For a distribution function of a discrete random variable ξ such that
{ } kpk ==ξPr for any natural k, the generating function has the form

∑=
k

k
k xpx)(ϕ

Advantages of using a generating function are well established in this field, and we list a
few of those:

(1) For many discrete distributions (e.g., binomial, geometrical, Poisson), there
are compact forms of generating functions, which allows one to get analytical solutions
quickly and easily.

(2) Moments of statistical distributions can be written in convenient forms. For
example, the mathematical expectation of random variable ξ can be found as

{ }
1

)(
=∂

∂
=

x

x
x

E ϕξ .

(3) If there are n independent random variables 1ξ , 2ξ , ..., nξ with the respective
generating functions)(1 xϕ ,)(2 xϕ ,...,)(xnϕ , then the following generation function
can be written for the convolution of these distributions:

∏
=

=
n

j
j xx

1

)()(ϕϕ .

where ∑=
k

k
jkj xpx)(ϕ , and pjk is the probability that j-th random variable takes value

k.

1 iushakov@mail.com
2 sumontro@hotmail.com

I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 105 -

2. Computer alorithm for calculation product of GF’s.

 Let us present a generating function as a set of objects. Each object corresponds to a

term in the generating function polynomial. It means that object is a pair of two values: the first
is the coefficient, i.e. probability, p, and the second is the power of the argument, a, i.e. the
corresponding random variable.

Consider a computational algorithm for calculation of the convolution of two
distributions. One makes the following formal operations.

♦ Take two sets of objects: set {),(1111 ap ,),(1212 ap ,...,
),(11 kk ap } for generating function)(1 xϕ , and set

{),(2121 ap ,),(2222 ap ,...,),(22 mm ap } for generating function
)(2 xϕ .

♦ Find all cross “interactions” of objects of the first set with all objects of the second set,
using the following rule:

[Interacting objects:),(11 kk ap and),(22 mm ap] Æ
[Resulting object:);(2121 mkmk aapp +].

♦ For all resulting objects with different

11ka for object-1 and
22ma for object-2, but

such that
11ka +

22ma =a, one forms a new final resulting object:);(
21 21 app mk∑ . The total

set of such final resulting objects gives us the needed solution: from here we can get
probabilities for any a.

3. Universal generating function.

 We have described a formalized procedure on sets of objects interaction coresponding to

product of polynomials. But in practice, we meet a number of situations when this operation is not
enough. Consider the following simple examples.

Example 1. Assume that there is a series connection of two (statistically independent)

capacitors (Fig. 1).

Fig. 1. Series connection of two capacitors.

 Assume that c1 and c2 are random with discrete distributions: p1k=Pr{c1=k} and

p2j=Pr{c2=j}. One is interested in distribution of total capacity. It is impossible to find the solution
with the help of a common generating function. However, there is a possibility to use formal
algorithm, described above with the use of corresponding operations over the elements of the
objects. The following procedure can be suggested:

♦Take two sets of objects, S1 and S2:
S1 ={),(1111 cp ,),(1212 cp ,...,),(11 kk cp }

I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 106 -

 and
 S2 ={),(1121 cp ,),(2222 cp ,...,),(22 mm cp },

 where k is the number of discrete values of
 the first capacitor, and m is the same for the second
 one. Here the first element of the object is the
 probability and the second element is the respective
 capacity.
♦Find all cross “interactions”, Ω, of objects of set S1 with all objects of set S2, using the

following rule:
Ω {),(11 ii cp ,),(22 jj cp } =);(**

ijij cp .

Here *
ijp is the resulting probability calculated in accordance with the multiplication

rule (under assumption of independence) as
jijipij ppppp 2121)(

* },{ =Ω= ,
where)(pΩ is the rule of interaction of parameters p, which in this particular case is

multiplication.
 Value of *

ijc is the resulting capacity calculated in accordance with the harmonic
sum rule for capacities:

() 11
2

1
121)(

* },{ −−− +=Ω= jijicij ccccc ,
where)(cΩ is the rule of interaction of parameters c.
♦ Assume that in result we obtain all R=km possible resulting objects of kind
);(** cp . Let us order all these resulting pairs in increase of value of c*:);(*

1
*
1 cp , ...,

);(**
RR cp . For some resulting pairs with numbers, say, i, i+1,… , i+j values of c* can be the

same and equal some C. We converge such objects into a single aggregated object with
parameters:);(* Cp

jisi
s∑

+≤≤

. The total set of such final resulting objects gives us the needed

solution.

 The procedure can be easily expanded on a series connection of several independent
capacitors.

nrjinrji

SER
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)(,

аnd

[]}...,,,{ 111
2

1
121)(

−−−− +++=Ω nrjinrji
SER
c cccccc

Example 2. Pipeline consists of n series sections (pipes). Section j is characterized by

random capacity, for which each value v is realized with some probability p . In this case,

nrjinrji
PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)(,

аnd

{ }nrjinrji
SER
c vvvvvv ...,,,min},...,,{ 2121)(=Ω ,

I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 107 -

Example 3. One measures a sum of values, each summand of which is random. With
probability jsp value j is measured with standard deviation (STD) equal to jsσ . In this case, using
notation similar to above, one has:

nrjinrji

PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)(,

аnd
22

2
2
121)(...}...,,,{ nrjinkjic n

σσσσσσ +++=Ω .

 Examples can be continued and not necessarily with probabilistic parameters.

4. Formal description of the Method of Universal Generating Functions.

 After these simple examples, let us begin with formal description of the Method of

Universal Generating Function (UGF3). For a more vivid presentation, let us use special
terminology to distinguish the UGF from the common generation function. This will relieve us
from using traditional terms in a new sense, which may lead to some confusion. Moreover, we hope
that this new terminology can help us, in a mnemonic sense, to remember and perhaps even to
explain some operations.

 In the ancient Roman army, a cohort (C) was the main combat unit. Each cohort
consisted of maniples (M), which were independent and sometimes specialized combat units with
several soldiers of different profiles. Several cohorts composed a legion (L). The use of this
essentially military terminology appears to be convenient in this essentially peaceful mathematical
application. A legion is close by its sense to a generating function, a cohort is close to a term of the
generating function written in the form of expanded polynomial, and a maniple is close to a
parameter of each term.

 Starting with polynomial multiplication, in our approach, we will consider less
restrictive operations (not only multiplication of terms) and more general parameters. For instance,
multiplication of polynomials assumes getting products of coefficients and summation of powers.
In our case, we will expand on such restrictive limits on operations.

 Let’s denote legion j by Lj. This legion includes vj different cohorts, Cjk: ()

jjvjjj CCCL ...,,, 21= .
 The number of cohorts within different legions might be different. However, in our

approach, maniples, which consist of a cohort, must be similar by its structure.
 Each cohort jkC is composed of some maniples, M , each of which represents different

parameters, special characteristics, and auxiliary attributes. Each cohort consists of the same set of
maniples:

())()2()1(...,,, s

jkjkjkjk MMMC = .

 To make description of the method more transparent, let us start with the examples of two

legions, L1 and L2: each of which consists of the following cohorts, L1=(C12,C12,C13) and
L2=(C21,C22), and each cohort Cjk includes two maniples)1(

jkM and)2(
jkM ,i.e. Cjk=()1(

jkM ,)2(
jkM).

3 UGF might be also read as Ushakov’s Generating Function ☺.

I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 108 -

Denote the operation of legion interaction by LΩ . This operator is used to obtain the resulting
legion LRES. In this simple case, one can write:

{ }21 , LLL LRES Ω= . (1)

 This interaction of legions produces six pairs of interactions between different cohorts,
which generate the following resulting cohorts:

{ }21111 ,CCC CRES Ω=− , { }22112 ,CCC CRES Ω=− ,

{ }21123 ,CCC CRES Ω=− , { }22124 ,CCC CRES Ω=− ,

{ }21135 ,CCC CRES Ω=− , { }22136 ,CCC CRES Ω=− .

Here { }•ΩC denotes the interaction of cohorts.

 Interaction of cohorts consists of interaction between its costituent maniples. All cohorts
contain maniples of the same types though with individual values of parameters. Let us take, for
instance, resulting cohort CRES-5, which is obtained as interaction of cohorts C13 and C21. In turn,
interaction of these particular cohorts consists in interaction of their corresponding maniples:

{ })1(
21

)1(
13

)1(
5 ,)1(MMM

MRES Ω=−

{ })2(
21

)2(
13

)2(
5 ,)2(MMM

MRES Ω=−

 The rules of interaction between maniples of different types, i.e. { })1(
2

)1(
1 ,)1(

ji MM
MΩ and

{ })2(
2

)2(
1 ,)2(

ji MM
MΩ are (or might be) different.

 Interaction of n legions can be written as:

),...,, 21(nLLLLL Ω= .

 Operator LΩ denotes a kind of “n-dimensional Cartesian product” of legions and special
final “reformatting” of the resulting cohorts (like converging polynomial terms with the equal
power for a common generating function). Since each legion j consists of vj cohort, the total
number of resulting cohorts in the final legion (after all legion interaction) is equal to

∏
≤≤

=
nj

jvv
1

.

 Number v corresponds to the total number of cohorts’ interactions.

5. Implementing UGF philosophy in computer language C++.

 We would like use the UGF (Universal Generating Function) philosophy in an analysis tool

and perform reliability calculations for real-world systems. Because we are talking about an
(reliability) engineering discipline, all philosophies present the need to be converted into numerical

I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 109 -

results and predictions. Thus, the UGF philosophy begs an implementation! The implementation
task is to identify objects (maniple, cohort, legion) and program all interactions between them.
Unfortunately, we run into a combinatoric explosion of possible interactions for a sysem consisting
of a large number of (atomic) units. Even moderm computers are not able to enumerate
astronomically large (21000) number of interaction states in system consisting of 1000 binary atomic
units. Fortunately, for a class of frequently occuring practical systems, the situation is not as
hopeless as it may first appear. For a system to be useful in engineering, it may only fail very
infrequently. In a highly reliable system, the failure probability of all atomic units much smaller
that the system failure probability. This fact makes most of the interactions exceedingly rare and
they can be systematically ignored in an approximation scheme that retains only the dominant
contributions.

 Let us proceed to find an approximate implementation of the UGF philosophy for highly
relaible systems in a system simulator. It should be reasonably easy to identify an atomic unit in
reliability theory as a maniple. Independence of the maniples corresponds to statistical
independence of the atomic units. A cohort is defined to be a collection of maniples. The same
definition holds in the context of reliability theory, where the collection is defined by a failure
criterion. In a series system, each atomic unit is assumed to provide distinct and critical
functionality. This maps on to the notion of specialized combat units. In a parallel system, all
atomic units are statistically identical. This improves survival probability during operation, either in
the military or in system reliability! Thus, we may identify a subsystem in reliability engineering as
a cohort in UGF formalism.

 Interactions between the objects are identified in the simulator by their natural
reliability names. k-out-of-n combinations are of primary interest. But this class includes the two
most frequently appearing reliability structures: series (n-out-of-n) and parallel (1-out-of-n). In fact,
probability of failure of a parallel system is negligible (higher order in numerical smallness) with an
additional assumption of high availability of the atomic units. Obviously a series system can be
made up of distinct units providing separate functionality to the system.

 As an illustration let us consider a system S of two subsystems A and B in series. Let A
be atomic and B be composed of two atomic units X and Y in parallel. One possible C++ coding for
this (simple) system is

B=Parallel(X,Y); S = Series(A,B);

 Properties (MTBF, MTTR etc.) of all atomic units are specified at the start of analysis.

Operations like Series and Parallel are C++ member functions for the instances of class “unit”. We
will not specify unit composition rules in this work. Most of these rules can be found in standard
textbooks on reliability engineering. Interested readers may find the remaining ones (involving
switching time and PEI) in Chakravarty and Ushakov (2000, 2002).

 It remains to identify the “legion”. The preceding paragraphs almost suggest that a

legion be identified with the entire system in reliability theory, where the system is further assumed
to be represented by its generating function. We would like to note that that this analogy cannot be
taken literally sometimes. It is common for a real world reliability system to have deeper
hierarchies (e.g., system, equipment shelves, equipment racks, electornic cards) like modern day
militaries. In such an elaborate system, we still identify the atomic units as maniples. At the other
end, we identify the entire system as a “legion”! All intermediate stages in the hierarchy are
considered generalized “cohorts”.

 In Chakravarty and Ushakov (2000) implementation, any subsystem can be composed
from other subsystems at the next lower level of hierarchy (or atomic units which are always at the
lowest level). A newly formed subsystem provides an effective reliability description of all units

I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 110 -

that compose this subsystem. This composition can be continued indefinitely to obtain an
effectiveness measure for the entire system. They have shown that this can be recast as an
approximation from a system generating function when all atomic units satisfy binary failure
criteria (on/off) they are statistically independent, the system itself is highly reliable and reliability
design of the system consists of hierarchical blocks.

6. Reliability analysis of GlobalstarTM Gateways.

 Globalstar is a low-earth-orbit (LEO) based telephony system with global coverage. The

gateways make its ground segment that connect to the orbiting satellites. The gateways are cpmlex
systems with more than a thousand components (e.g., electronic cards). Ushakov (1998),
Chakravarty and Ushakov (2002) used the UGF approach for the reliability (performance) analysis
of GlobalstarTM gateways (fixed ground segment of a low earth orbit satellite communications
system). Given the prominence of object oriented abstractions and operations in Globalstar design,
it should not be surprising that the reliability analysis naturally fits into the UGF philosophy.
Further, these ideas can be naturally implemented in the computer using an object oriented
language.

 Because of the object oriented nature of system reliability design in Globalstar
(interaction between objects like system, racks, shelves, cards are triggered by failure, switching of
failed units and changing user demand), Ushakov (1998) proposed that a system reliability
simulator should be coded in an object oriented computer language like C++. Later, Chakravarty
and Ushakov (2002) implemented a simulator for the GlobalstarTM Gateway in C++.

 In Chakravarty and Ushakov implementation for Globalstar, C++ objects are in one-to-
one correspondence with reliability objects. An object is specified by mean time between failures
(MTBF), mean time to repair/replace (MTTR) and an effectiveness weight (partial effectiveness
index: PEI). By definition, PEI=1 for binary atomic units. All failure distributions are implicitly
assumed to be Exponential. If failed units were to be automatically swapped, a switching time was
also assigned by Chakravarty and Ushakov (2000). Even small switching time is important because
it changes a parallel system “on paper” to a series system with small MTTR. This may have
dramatic effect overall on system reliability.

References:

1. Chakravarty, S., and Ushakov, I. Reliability measure based on average loss of capacity.

International Transactions in Operational Research, Vol. 9, No. 2, 2002.
2. Chakravarty, S., and Ushakov, I. Effectiveness Analysis of GlobalstarTM Gateways.

Proceedings of Second International Conference on Mathematical Methods in Reliability (MMR’2000),
Vol. 1, Bordeaux, France, 2000.

3. Ushakov, I.A. The Method of Generating Sequences. European Journal of Operational
Research, Vol. 125/2, 2000.

4. Ushakov, I.A. An object oriented approach to generalized generating function. Proc. of the
ECCO-XI Conference (European Chapter on Combinatorial Optimization), Copenhagen, May 1998.

5. Ushakov, I.A. Reliability Analysis of Multi-State Systems by Means of a Modified
Generating Function. Journal of Information Processes and Cybernetics (Germany), Vol.24, No.3,
1988.

6. Gnedenko, B.V., and I.A. Ushakov. Probabilistic Reliability Engineering. John Wiley &
Sons, New York.1995.

7. Ushakov, I.A. Solving of Optimal Redundancy Problem by Means of a Generalized
Generating Function. Journal of Information Processes and Cybernetics (Germany), Vol.24, No.4-
5,1988.

I. Ushakov, Sumantra Chakravarty – OBJECT ORIENTED COMMONALITIES
IN UNIVERSAL GENERATING FUNCTION FOR RELIABILITY AND IN C++

R&RATA # 3

(Vol.1) 2008, September

- 111 -

8. Ushakov, I.A. Solution of Multi-Criteria Discrete Optimization Problems Using a Universal
Generating Function. Soviet Journal of Computer and System Sciences (USA), Vol. 25, No. 5, 1987.

9. Ushakov, I.A. Optimal Standby Problem and a Universal Generating Function. Soviet
Journal of Computer and System Sciences (USA), Vol. 25, No. 4, 1987.

10. Ushakov, I.A. A Universal Generating Function. Soviet Journal of Computer and System
Sciences (USA), Vol. 24, No. 5, 1986.

