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ABSTRACT 
A novel method is proposed for hard optimization type of problem wherein an exact optimal solution is increasingly 
difficult in terms of run time and memory requirements. Especially for the cases when search graph has higher number 
of nodes and more number of paths, which increase as factorial of node number. This is based on Simulated Electrical 
Network Approach (SENA) proposed here, in which the graph is modeled as an electrical network and current 
distribution is found which is used as a directive for search decisions. The proposed algorithm results in an approximate 
method that achieves average accuracy of 99.89% to reach close to the most optimal path that is found by ranking all 
possible paths. Conversely, it can eliminate on average 99.89% paths in polynomial time from consideration if one 
requires finding the most optimal one. 
Key Words: Optimization, NP-Hard, TSP, Shortest path. 
 

1    INTRODUCTION 
 
Because of the intrinsic difficulty in finding polynomial time exact solution algorithms for NP-hard 

optimization problems, the research has moved to the approximate solutions to these problems and 
development of approximate algorithms is direction of research. Some of these aim at fast approximate 
optimization. Traveling salesman’s problem is a classical problem of this class. 
        There is a lot of work going in the area of optimization and planning of shortest path. The shortest-
paths problem involves a weighted, possibly directed graph described by the set of edges and vertices {E, V}. 
Given a source vertex, s, the goal is to find the shortest existing path between s and any of the other vertices 
in the graph. There are two types algorithms proposed depending upon the programming involved i.e. 
sequential and parallel. These types of problems involve weighted graphs and can be applied to Euclidean or 
non-Euclidean cases. Among these TSP (Traveling Salesman’s Problem) stands as one of the most difficult 
and sought after problem and has remained a challenge for many algorithm planners and also serves as a 
problem for testing optimization algorithms efficiency. There are many approximations to solve this 
problem, as any polynomial time algorithm does not find exact solution yet [1]. The approximation algorithm 
using the triangle inequality is well known developed by Christofides [2]. Artificial intelligence based 
techniques are also developed to search for optimal paths e.g. genetic algorithms, simulated annealing, and 
neural nets are examples of these [3]. Some Other attempts to solve TSP include generalization in which, for 
each city, a neighborhood is specified in which the salesperson can meet the client is also approximable for a 
variety of neighborhood types such as unit segments, unit circles, and unit rectangles [4]. Another 
generalization in which the salesperson has to rearrange some objects while following the route is 
approximable within 2.5 [5]. A prize-collecting variation in which a penalty is associated with each vertex 
and the goal is to minimize the cost of the tour and the vertices not in the tour [6]. A variation in which 
vertices can be revisited and the goal is to minimize the sum of the latencies of all vertices, where the latency 
of a vertex c is the length of the tour from the starting point to c, is approximable within 29 and is APX-
complete [7]. A combination of this problem and the matching problem, also called Printed Circuit Board 
Assembly, is approximable within 2.5 [8]. Finally, the variation in which a Hamiltonian path is looked for 
rather than a tour is also approximable within 1.5 in the general case while if both end vertices are specified 
it is approximable within 5/3 [9]. 
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In the proposed Simulated Electrical Network Approach (SENA), to prove that it indeed gives paths in 
optimal range, some of the most complex sets of input graph are taken i.e. fully connected, non-Euclidean; 
require traversing all nodes once and only once. The test instances were randomly generated. This is similar 
to solving a TSP instance in terms of complexity. Cases are tested for varying number of nodes. In these 
types of graphs, the exact search techniques show exponential complexity for the algorithms, and therefore 
cannot be applied for the cases with large node numbers. Whereas this technique reduces time complexity to 
polynomial time and can be used as a good approximate technique for optimization. For large number of 
nodes its average performance returns a path, which is within top 1.1% of optimal paths. Hence   the method 
introduced in the next section proves to be very effective in producing an approximate solution to the 
shortest path type problem in a polynomial time. 
 
 
2   SIMULATED ELECTRICAL NETWORK APPROACH: ANALOGY WITH CURRENT 
FLOW 
 
In this approach, at first the cost of each link of a given search graph is modeled as a branch 
resistance of an electrical network. A voltage source is added between pre-specified START and 
DESTINATION nodes and then current distribution is found in the transformed electrical network. 
In this electrical network model, the new approach relies on the observation that current flow in an 
electrical network follows a fundamental rule: maximum amount of current tries to take minimum 
resistance path, which is the key to eliminate most of the paths which do not come anywhere close 
to the least resistive (cost) ones. Following this common observation one can bring a sort of 
foresight in the network for path search type problems. To get the substance of the approach in its 
simplest form, consider the following simple network’s example: 
 
  
 
 
 
 
 
 
 
 
a) The current division in figure_1 is such that the larger current passes through the lesser resistance path. 
Therefore a decision can be made at node-1 of choosing a link, which has highest current flowing among all 
possibilities from that node to other nodes. This in effect equips a path planner with a foresight. 
 
b) The Figure_2 is a modified case of (a). Although the resistances connected to node number ‘1’ remains 
the same but at a later node, the introduced resistances change the situation in a way that the overall cost of 
the earlier lesser-cost path is now high but the connections as seen from the first node remain the same. To a 
simple path planner it becomes necessary to scan the whole set of links coming in path, otherwise it will 
misguide and a local minimum situation is most likely to be achieved. Whereas a current flow based 
approach would be a better decision maker in such cases. It will still give the correct path through R=20,35 
part of the circuit.  A full appraisal of proposed method in large fully connected networks is done in 
following sections. 

 
 
3    ALGORITHM FOR SENA 
 
This approach is applicable to both Euclidean and Non-Euclidean type of graphs, as the costs are not chosen 
on Euclidean basis. The algorithm is tested for fully connected, non-Euclidean; require traversing all nodes 
once and only once before reaching to a pre-specified destination. Here, It is to be noticed that these type of 
problems are as hard as TSP. The approach involves three major steps:   
- Modeling the given graph in Electrical circuit; 

R = 10  

R = 20  

R =100 

R = 35  

R = 10 ohms

R = 20 ohms

Figure_1 & 2 
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- Solving the modeled electrical network for currents in each branch; 
- Simple decision making by looking at current-magnitudes from each node; 
And a straightforward very close solution to the exact shortest path is achieved.  
The detail procedure adopted is as follows: 
- Generate random instances of graphs; 
- Convert cost to resistance i.e. Rij= Cij; where i & j are nodes 
- Identify the source node as start point, make it positive terminal of battery; 
- Identify the destination node make it a negative terminal of battery;  
- Specify a voltage and solve it for current in each branch; 
- From each node go to the next node to which maximum current flows; 
- Destination node is traversed only in the last step. 
A path thus found is indeed very close to exact optimal. See table figure_3.  
 
 
4     RESULTS 
 
In the graph shown in figure_3, we generated as many as 25 different fully connected graph and exact 
solutions for each node number, varying the number of nodes as N = 6,7,8,9,10,11,12,13. The search 
performed for shortest path had to get a path from possible number of paths ranging as few as 24 for N=6 to 
as many as 39,916,800 for N=13.  

 
 

Table1:  % Optimization Achieved for Number of Nodes in Graphs 
Trials Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 Node 12 Node 13 

1 73.91 94.96 60.64 99.27 84.37 98.4 99.96 99.27 
2 73.91 96.64 91.38 98.47 95.19 99.91 99.86 99.99 
3 69.56 65.55 90.33 94.30 99.91 99.99 99.99 99.96 
4 78.26 88.24 94.30 96.49 83.80 99.39 99.98 99.99 
5 91.30 96.64 96.11 99.76 83.89 97.77 99.99 99.99 
6 82.61 95.80 97.36 90.67 96.28 96.48 99.83 99.76 
7 100 44.54 97.08 98.33 98.83 97.97 99.41 99.99 
8 82.61 100 98.89 99.80 99.68 99.29 99.93 99.98 
9 60.87 86.55 98.47 77.40 96.38 99.99 99.98 99.97 

10 95.65 94.96 74.55 92.94 99.78 99.99 96.89 99.99 
11 100 95.80 98.05 100 99.72 99.97 99.83 99.99 
12 86.96 100 94.02 96.47 93.33 99.99 99.81 99.66 
13 82.61 100 79.00 96.57 99.91 99.99 99.99 99.97 
14 30.43 97.48 93.60 75.00 97.80 99.82 99.94 99.51 
15 100 100 80.67 99.44 93.34 99.66 99.48 99.92 
16 100 93.28 90.33 99.98 99.73 99.85 98.52 99.8 
17 95.65 83.19 95.83 98.83 99.15 98.84 99.41 99.99 
18 78.26 100 90.40 83.51 99.99 98.7 99.89 99.67 
19 69.56 100 98.89 66.24 99.74 99.99 90.45 99.99 
20 100 98.32 95.27 93.65 99.84 99.68 99.86 100 
21 82.61 99.16 99.30 94.90 99.64 97.22 99.84 100 
22 69.57 77.31 95.41 95.61 98.95 99.37 99.83 99.99 
23 95.65 83.19 97.50 100 99.26 99.29 99.39 99.97 
24 30.43 90.76 61.75 91.70 91.97 99.98 99.89 99.99 
25 91.30 66.39 91.80 99.94 99.85 99.81 99.95 99.99 

 
Figure_3 

 
Table2:  Overall Analysis of Results  Figure_4 
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Figure_4 

 
The table in figure_4 and Plot of average of results converging towards the exact optimal solution in 
figure_5 along with standard deviation show the effectiveness of the algorithm. Following points are inferred 
from these, 
1 As number of paths increase, the results are the bold line in graph, which refers to the steep Average 
convergence of results towards optimal solution. As seen, it is coming in close range of within 0.11 % of the 
most optimal path. The range x% refers: “the percentage of number of paths lying in between the achieved 
solution and the exact optimal solution”. This comparison range is achieved, by finding all possibilities of 
paths and costs, then sorting these in increasing order for all instances. 
2 The fourth column in table best result ranking shows that for higher number of nodes in our randomly 
generated instances, the best result was as close as 99.9928% to the most optimal path i.e. 26th out of 362,880 
paths. 99.9979% to the most optimal path i.e. 176th out of 3,628,800 paths. For lesser number of nodes many 
times it found the best path i.e. 100% optimization e.g. 1st out of 720 paths. Also at random sometimes it hits 
best path for large number of nodes i.e. twice in case of 13 nodes. 
3 The monotonous nature of the Average optimization curve and Standard deviation curve in figure_5 shows 
that there is natural tendency of this algorithm to converge towards optimal result as the number of nodes 
increase. 
4 The nature of small and reducing standard deviation reveals that the samples had smaller and smaller 
deviation in their average performance upon increasing the node numbers. 
5 The last column of table_2 shows elimination capacity of algorithm. It is also getting better for higher node 
numbers, e.g. for N=13 on an average it can eliminate ~99.89% paths which are away from optimal. 
6 Following graph in fig_5 clearly depicts that optimization as well as deviation nearly reaches to the best as 
nodes are increased. Thus hypothesis proves to be an excellent approximate algorithm for optimization in 
highly complex, large number of nodes, fully connected graphs of Euclidean or Non- Euclidean type.  
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SR. 
NO. 

No. of 
Nodes 

No. of 
Samples 

Total No. 
Of paths 

Best 
result 

ranking 

Average 
Result 

(Within 
x% of 

Optimal) 

Variance Average 
Eliminated 

Paths 
(%) X  

1 6 25 24 1st 19.19 18.67 80.81 
2 7 25 120 1st 10.05 13.44 89.95 
3 8 25 720 1st 9.33 10.62 90.67 
4 9 25 5040 1st 6.46 8.68 93.54 
5 10 25 40,320 14th 3.59 5.12 96.41 
6 11 25 362,880 26th 0.76 0.956 99.24 
7 12 25 3,628,800 176th 0.73 0.91 99.27 
8 13 25 39,916,800 1st 0.11 0.181 99.89 
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5    ERROR CALCULATION    (ACCEPTANCE REGION OF µ) 
 
To validate results further, the maximum error in X  is calculated, given the probability as 99%. This will 
also give the estimate of actual population mean µ. Twenty-five samples are taken for each node number for 
optimization. For these 25 samples, the mean estimates of X  are X  = 80.81 for (nodes 6), X  = 89.95 for 
(nodes 7), X = 90.33 for (nodes 8), X  = 93.54 for (nodes 9), X  = 96.41 for (nodes 10), X  = 99.24 for 
(nodes 11), X  = 99.27 for (nodes 12), X  = 99.89 for (nodes 13). Therefore In our case: n = 25,P = 0.99,1-
∝ = 0.99,∝ = 0.01 and   Z∝/2    = Z 0.005  = 2 .575.  Then Maximum error of estimate is given by the following 
formula. )/(2/ nZE σα=  
 
 

Nodes Z∝/2 σ Mean 
based on 
trials X  

% 

E= μ−X  

(probabilistic 
estimation in error with 

99% confidence) 

Lowest 
possible 
value of 

µ % 

Highest 
possible 

value of µ 
% 

6 2.575 18.67 80.81 9.61 71.2 90.42 
7 2.575 13.44 89.95 6.92 83.03 96.87 
8 2.575 10.62 90.33 5.47 84.86 95.8 
9 2.575 8.68 93.54 4.47 89.07 98.01 

10 2.575 5.127 96.41 2.64 93.77 99.05 
11 2.575 0.956 99.24 0.49 98.75 99.73 
12 2.575 0.91 99.27 0.47 98.80 99.74 
13 2.575 0.181 99.89 0.09 99.80 99.98 

 
 
From above graph and table figure_6&7, it is concluded that actual mean i.e. average optimization achieved 
in the proposed algorithm will be greater than 99% for nodes above N=10, with 99% confidence. It strongly 
supports the SENA’s validity. 
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6 PROBABILITY OF ACHIEVING OPTIMIZATION 
 
Given are the values of X  for different nodes for a sample of 25 with variance (σ) values, following table 
finds probability of getting optimization between 90% to 100 % for different number of nodes using the 
following   probability function: 2/1*/)(()( nXFZF σμ−= ) 
 

Nodes X  µ 
Interval 

Variance 
σ 

Trials n F (Z) for 
µ = 90 

F (Z) for 
µ = 100 

P= F (Z) 90 
– F (Z) 100 

6 80.81 90 - 100 18.67 25 0.0069 0.001 0.0059 
7 89.95 90 –100 13.44 25 0.496 0.0001 0.496 
8 90.33 90 –100 10.62 25 0.5596 0.0002 0.5596 
9 94.56 90 –100 8.68 25 0.9788 0 0.9788 

10 96.41 90 –100 5.127 25 0.99999 0 0.9999 ≈ 1 
11 99.24 90 - 100 0.956 25 1 0 ≈  1 
12 99.27 90 - 100 0.91 25 1 0 ≈  1 
13 99.89 90 - 100 0.18 25 1 0 ≈  1 

 
Figure_9 

 
The above-tabulated results are plotted and it shows that as number of nodes increases the probability of 
getting optimization between the said regions is approaching 1. 
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Figure_10 

 
 
 
7    INVERSE LOGIC FOR SENA (AN ALTERNATIVE APPROACH) 
 
An alternative to the one stated above is proposed here. Path is searched on the basis of inverse technique 
where inverse values of costs are taken and path is searched for minimum current. Costs are then 
added normally for checking optimization. After applying the normal probabilistic hypothesis, it came to 
know that inverse technique optimization increases significantly for the cases where optimization is less in 
normal SENA technique. Comparison is sufficient for 10 numbers of nodes and prediction can be done for 
further nodes on the basis of probability and statistics. 

 

Probability 



Himanshu Dutt Sharma, Bangale Shreyas Madhukarao  ‐  SIMULATED ELECTRICAL NETWORK APPROACH (SENA) TO HARD OPTIMIZATION 
PROBLEM 

 
R&RATA # 4 

(Vol.1) 2008, December 
 

 

- 48 - 

TRIALS NODES 6 NODES 7 NODES 8 NODES 9 NODES 10 
1 95.65 79.83 95.41 78.29 99.10 
2 95.65 57.98 99.17 99.05 99.22 
3 91.30 89.08 90.68 99.35 99.70 
4 69.57 97.48 98.19 95.42 88.03 
5 91.30 100 99.43 97.20 99.69 
6 86.96 51.26 92.63 95.36 99.94 
7 95.65 98.32 64.39 95.48 95.92 
8 82.61 95.80 88.48 71.18 99.94 
9 73.91 82.35 95.13 73.69 96.58 

10 65.22 83.19 97.07 99.40 56.34 
11 56.52 94.96 95.83 99.01 99.34 
12 26.09 98.32 92.49 88.27 94.11 
13 82.61 97.48 90.82 57.93 92.39 
14 56.57 96.64 92.91 85.29 98.76 
15 95.65 79.83 66.90 99.62 92.39 
16 95.65 80.14 34.63 97.50 99.74 
17 56.52 96.64 98.61 99.82 87.25 
18 86.96 78.15 99.86 94.17 98.59 
19 60.87 97.48 100 87.34 91.20 
20 100 85.71 96.49 94.43 98.31 
21 95.65 70.59 99.58 98.79 64.04 
22 86.96 99.16 99.72 65.59 88.30 
23 95.65 87.39 28.93 99.72 99.81 
24 30.43 21.08 90.13 97.62 96.94 
25 95.65 60.50 89.85 95.10 91.66 

 
Figure_11:  % Optimization Achieved for Number of Nodes in Graph 
                        

 
Figure_12:  Overall Analysis of Results                                        Figure_13 
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Curve clearly depicts that optimization as well as deviation nearly reaches to 10% as we further increase the 
nodes. PINK line denotes efficiency while BLUE line indicates deviation. Thus hypothesis proves better.  
 
 

Nodes Optimization% Deviation σ 

 6 78.77 20.48 
7 80.14 19.38 
8 87.89 18.77 
9 90.58 11.69 

10 91.66 
10.89 
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8. APPLICABILITY OF INVERSE TECHNIQUE FOR OPTIMIZATION 
 
At first, It looks as if inverse technique is not so useful because of its inconsistent results. But it is quite 
useful when acyclic technique is giving bad results in terms of optimization. 25 trials were taken and graphs 
for various nodes were plotted. It is concluded that when acyclic graphs were giving depressions for 
particular regions, at that time inverse was at its peak i.e. better optimizing. For example, we have given the 
visual reference to it in the following figure_14, 15, and 16. Following Charts show comparison of trials 
between normal and inverse technique (an example is taken for 9 nodes) as well as distribution about 
superiority of inverse and acyclic techniques over each other for similar 25 trials. Pointer shows for example; 
how inverse succeeds over normal SENA for a given case. 
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Figure_14, 15, 16 

9   CYCLIC NETWORK 
 
Algorithm for cyclic network is given below. 
1. Take node input from user. 
2. Start and goal destinations are the same. 
3. For programming purpose, develop a pseudo goal node.  
4. Resistance between all nodes and pseudo goal node will be of the order of the resistance value between 
start node and all other corresponding nodes. 
5.Now same logic is implemented as that of acyclic network to find the path. 
6.At last, pseudo goal node is removed from the obtained path and in that place; start node is kept for the 
final path. 
 
Since the trend shown by the results of cyclic graphs match that of acyclic graph optimization pattern, 
therefore results over nine nodes are avoided here. 
 
9.1 RESULTS 
 

Trials Node 6 Node 7 Node 8 Node 9 
1 94.958 90.542 98.591 89.107 
2 78.992 96.801 92.102 98.646 
3 81.513 89.847 82.616 99.807 
4 65.546 71.21 97.5 99.529 
5 86.555 99.722 99.861 99.747 
6 99.16 99.583 93.848 99.571 
7 100 100 97.321 99.722 
8 82.353 97.497 99.623 99.893 
9 99.16 97.775 98.809 84.824 

10 100 91.099 99.782 99.606 
11 90.756 98.609 99.861 99.98 
12 100 100 92.499 99.931 
13 98.319 97.357 95.872 98.79 
14 100 99.166 99.008 98.676 
15 99.16 99.305 100 99.576 
16 98.319 83.032 97.023 100 
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9 nodes
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Trials Node 6 Node 7 Node 8 Node 9 
17 98.319 98.609 99.028 98.971 
18 91.597 96.801 95.138 93.219 
19 83.193 94.159 94.245 97.433 
20 91.597 86.787 96.229 92.52 
21 100 99.583 99.544 92.969 
22 82.353 91.377 98.234 97.133 
23 100 91.377 58.821 99.812 
24 99.16 69.68 90.375 99.955 
25 94.118 99.722 95.197 99.762 

 
Figure_17 % Optimization Achieved for Number of Nodes in Graphs 

 
Nodes Optimization% DEVIATION 

σ 
6 92.605 9.1 
7 93.586 8.37 
8 94.845 8.48 
9 97.567 3.95 
Figure_18:  Overall Analysis of Results 

 
 
9.2 PROBABILITY OF ACHIEVING OPTIMIZATION 
 

 
Nodes 

X  µ 
Interval 

Variance 
σ 

Trials n F (Z) for 
µ = 90 

F (Z) for 
µ = 100 

P= F (Z) 90 
– F (Z) 100 

6 92.605 90 - 100 9.1 25 0.9236 0.00003 0.9236 
7 93.586 90 –100 8.37 25 0.9838 0.00001 0.9838 
8 94.845 90 –100 8.48 25 0.9979 0.0012 0.9967 
9 97.567 90 –100 3.95 25 1 0.001 ≈ 1 

 
Figure_19 Probability Estimation 

 
The above-tabulated results show that as number of nodes increase, the probability of getting optimization 
between the said regions is approaching 1. It is faster than what was observed in the acyclic graphs. 
 
 
10 CONCLUSION 
 
It has been shown in the results that the proposed SENA-method is capable of returning a near optimal 
solution for shortest path finding type of problems. Thus it can handle hard optimization for the problems 
that have complexity of fully connected graphs where the number of possible paths increase in proportion to 
factorial of number of nodes in the graph. Also this technique is applicable to Euclidean or non-Euclidean 
cases equally well as there are no constraints of Euclidean geometry assumed in the formation of graph 
instances.  Also it is established that its elimination capacity for paths which will be close to optimal, from 
all possibilities is reaching to ~99% on average basis for higher number of nodes where other techniques 
starts reducing their efficiency, in contrast, its in fact monotonously showing better results. The statistical 
analysis shows using probabilistic estimate that as number of nodes increases; the near complete 
optimization can be achieved. The cases where SENA fails to achieve required optimization; inverse 
technique can be used as an efficient tool. So conclusively it’s quite effective for determining a close to 
optimal heuristic. Further, it is shown that the technique is equally applicable to cyclic graphs also. Therefore 
the SENA algorithm is capable of returning result which is  nearly the best optimization in graphs of varying 
nature: cyclic, acyclic, Euclidean, non-Euclidean and of the highest order of complexity i.e. fully connected 
wherein the total paths are increasing in proportion to factorial  of node number. 
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