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Abstract. To keep the fatigue ageing failure probability of an aircraft fleet on or below the certain level an inspection 
program is appointed to discover fatigue cracks before they decrease the residual strength of the airframe lower the 
level allowed by regulations. In this article the Minimax approach with the use one- and two-parametric Monte Carlo 
modelling for calculating failure probability in the interval between inspections is offered. 
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INTRODUCTION  
 

Inspection program development should be made on the base of processing of approval lifetime test 
result, when we should make some redesign of the tested system if any requirement is not met. Here we 
consider some example of p-set function application to the problem of development and control of inspection 
program. We make assumption that some Structural Significant Item (SSI), the failure of which is the failure 
of the whole system, is characterized by a random vector (r.v.) ( dT , cT ), where cT  is critical lifetime (up to 
failure), dT  is service time, when some damage (fatigue crack) can be detected. So we have some time 
interval, such that if in this interval some inspection will be fulfilled, then we can eliminate the failure of the 
SSI. We suppose also that a required operational life of the system is limited by so-called Specified Life 
(SL), tSL, when system is discarded from service. P-set function for random vector is a special statistical 
decision function, which is defined in following way. Let Z and X are random vectors of m and n dimensions 
and we suppose that it is known the class {Pθ, θ∈ Ω} to which the probability distribution of the random 
vector W=(Z,X) is assumed to belong. The only thing we assume to be known about the parameter θ is that it 
lies in a certain set Ω, the parameter space. If )()( , xSxS

i
iZZ U=  is such set of disjoint sets of z values as 

function of x that ∑ ≤∈
i

iZ pxSZP ))((sup ,
θ

 then statistical decision function Sz(x) is p-set function for r.v. 

Z on the base of a sample x=(x1,...,xn). 
Later on the value x, observation of the vector X, would be interpreted as estimate θ̂  of parameter θ, Z 

would be interpreted as some random vector-characteristic of some SSI in service: ),( cd TTZ = .  
 
 
FATIGUE CRACK GROWTH MODEL 
 

The fatigue crack growth process flows in accordance with quite complicated rules, which depend on a 
big number of factors. An analytical approach describing that process could be considered as almost 
impossible. Nevertheless, it can be shown, that in general case crack growth process could be well enough 
approximated with the formula: 

Qteta ⋅= α)( , 1. 
where a(t) is a fatigue crack size at time t (the number of flight blocks); α  is so called equivalent initial 
crack size (as if the airframe has been initially produced with the crack of such small size; α  corresponds to 
the best fit of test data); and parameter Q defines the speed of growth of fatigue crack and depends on the 
loading mode (on the stress range in case of cycling loading). 

For further needs, let us take a logarithm of both left and right sides of equation 1: 
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Qtta += αln)(ln . 2. 
Thus, 

Q
tat αln)(ln −

= , 3. 

so the time when crack becomes detectable and the time when crack reaches its critical size can be calculated 
as 

Q
C

Q
a

T d
d =

−
=

αlnln det ,     Q
C

Q
a

T ccrit
c =

−
=

αlnln
, 4. 

where adet is a crack size, at which chances to discover it tends to unit, acrit is a crack size, which corresponds 
to the minimum residual strength of an aircraft component allowed by regulations, Td is a time for crack to 
grow to its detectable size and Tc is a time for crack to grow to its critical size, Cc and Cd are appropriate 
constants. 

Let us define failure as the situation, when we were unable to discover cracks with the size 
critaaa <≤det , or, in other words, if there are no inspections performed in [Td; Tc] time interval. 

It is clear, that varying the number of inspections sinspectionn  in the service interval [ ]SLt,0  we will 
discover a different number of cracks; therefore, the estimate of failure probability will vary as well. 
Unfortunately, we don’t know the real values of parameters, so we are using theirs estimates from a small 
number (one, seldom two) of available observations (fatigue cracks during fatigue test) instead.  
 
 
USING MONTE CARLO MODELLING TO ESTIMATE FAILURE PROBABILITY 
 

We use the Monte Carlo method to generate a set of cracks to be processed in accordance with 
procedure, described in Section 0. The parameters for modelling can be derived from the full-scale fatigue 
tests or from other real crack observations.  

We can never know how the certain fatigue crack curve will look like. Thus, performing 
approximation of that fatigue crack curve with a certain model, the fatigue crack growth model parameters 
(FCGMP) – we have two FCGM parameters QX ln=  and CCY ln=  – will vary as well, so they are 
random values, and these random values have theirs own parameters of distribution. To perform Monte Carlo 
modelling of the fatigue crack growth process we have to know FCGMPs’ distribution types and parameters, 
i.e. c.d.f. of each FCGMP. From the analysis of the fatigue test data it can be assumed, that the logarithm of 
time required the crack to grow to its critical size is distributed normally: 

),(~ln 2
cLTcLTc NT σμ . 5. 

From formulas 2 and 4 follows: 
QCT cc lnlnln −= . 6. 

From additive property of normal distribution comes that cTln  could be normally distributed either if 
both cCln  and Qln  are normally distributed: 

),(~ln 2
XXNQX σμ= ,       ),(~ln 2

YYc NCY σμ= , 7. 
or if one of them is normally distributed while another one is a constant. Thus, the value of logarithm of our 
FCGM parameters is distributed normally or, on other words, FCGM parameters have a log-normal 
distribution. 

To get estimates of FCGMP distribution parameters ( μ̂  and σ̂ ) we consider statistics of several crack 
observations. For each of those cracks we calculate estimates of distribution parameters lnQ and lnCc, and 
then gather all data together into the table with two columns: lnQ and lnCc. From that table we then derive 
estimates of mean value and standard deviation for each column, as well as estimate of correlation between 
lnQ and lnCc. 

The Monte Carlo modelling in fact means the process of getting a big number of pairs [Td; Tc] with 
upper mentioned specific distribution parameters. Having the array of [Td; Tc] pairs we apply an inspection 
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program looking for failures – situations, when both Td and Tc are located between two consequent 
inspections. For each interval between inspections [ti-1;ti] failure probability will be 

)( 1 icdif tTTtPP
i

<≤<= − , 8. 
and for the entire inspection program 

∑=
i

ff i
PP . 9. 

 
 
MINIMAX DECISION MAKING APPROACH 
 

As it was stated above, the goal is to develop an inspection program, defined by the vector of 
inspection time moments  

),,( 21 TIPntttt L
r
= , 10. 

i.e. to find a vector function )ˆ(θt
r

 (θ̂  is the estimate of FCGMP distribution parameters, TIPn  is the total 
number of inspections per inspection program, so SLn tt

TIP
= ) that limits aircraft failure probability at the 

required level 
requiredfP  with the minimum inspections TIPn  undertaken in service interval [ ]SLt,0  

( SLn tt
TIP

= ). In mathematical terms that can be presented as:  

( )( )
requiredff PtP ≤

r
,sup θ

θ
, 11. 

where 

( ) ( )∑
=

− <≤≤=
TIPn

i
icdif TTTTPtP

1
1,

r
θ . 12. 

In expression 12 
TIPnTTT ,,, 21 K  are time moments of inspections: random value 

( ) )ˆ(,,, 21 θtTTTT
TIPn

r
L == , 13. 

where 00 =T , SLn tT
TIP

= , and K,2,1,0=TIPn . The expression ∞=TIPn  symbolically means that 
the aircraft must be returned for redesign to the design office. 

The inspection program definition vector ( )θ̂t
r

 is a function, where both number of inspections during 
service interval TIPn  and disposition of inspection time moments 

TIPnTTT ,,, 21 K  during [ ]SLt,0  are to be 

chosen as a function of θ̂  and some limitations. It is clear, that there might be many ways how to position 
inspection time moments on [ ]SLt,0  for a particular TIPn . Let us apply the following inspection time 

moment disposition rule DR : the time of the first inspection 1T  ( 1T  is a random value because it is a 

function of θ̂ ) will be defined by procedure similar to the safe life approach (probability of failure without 
inspections is less than some small value 1fP ), while all remaining inspections are distributed evenly in the 

interval [ ]SLtT ,1 . Of course, this rule DR  in general case does not minimise the total required number of 

inspections TIPn ; there are other rules that are more optimal, but our choice of rule DR  is caused by its 
simplicity for further applications; inspection programs created by this rule are currently used in practice for 
commercial jet aircrafts. 

To apply a particular rule DR  we have to find the total required number of inspections TIPn , which 
depends on the limiting value of the failure probability requiredf RP

required
−=1 , where required reliability 

requiredR  is mandated, for example, by JAR regulations. 
As it was shown above, the failure probability is a function of the number of inspections n  and 

parameter θ ; let us denote it as ( )nPf ,θ . We also suppose that ( )nPf ,θ  monotonically decreases when the 
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number of inspections n  increases (at least when n  is large enough) and ( ) 0,lim =
∞→

nPfn
θ  for all θ . Let 

TIPn  is a solution of the equation 
( )

requiredff PnP =,θ . 14. 

Then let us denote 

( ) ( )
requiredrequired fffTIP PnPPn ,,1 θθ == −  15. 

as the minimal inspection number at which failure probability ( )
requiredfTIPf PnP ≤,θ . But the true value of 

the θ  in unknown, so ( )
requiredfTIP Pnn ,ˆˆ θ=  and ( )TIPff nPP ˆ,ˆ θ=  are random values. We suppose that we 

begin the commercial production and operation of aircrafts only if some specific requirements to reliability 
are met. For the simplest case there is a limitation for the maximum allowed number of inspections maxn : we 
will return airframe project for redesign as unprofitable in case, when the required number of inspections in 
the inspection program TIPn  exceeds maxn  (we need to inspect aircraft too often to ensure required 
reliability). It can be assumed, that the probability of failure for the returned projects is equal to zero, i.e. 

( )
⎩
⎨
⎧

>
≤

=
max

max

ˆ,0
ˆ,ˆ,ˆ

nn
nnnP

P
TIP

TIPTIPf
fcorrected

θ
. 16. 

In the more complex case there is a set of limitations. For example, in addition to limitation on the 
expected number of inspections TIPcalculated nn ˆ=  we will return airframe project for redesign if estimate of 
expectation value of cT  (

calculatedcT ) is too small in comparison with SLt  (breaking minimum threshold 
mincT ); 

if estimate of time between two consequent inspections calculatedtΔ  is smaller than a threshold mintΔ ; if 
estimate of initial equivalent crack size calculatedα  exceeds crack detectable size deta  and so on. Let us denote 

the vector of calculated values of limiting values ( )θ̂LL dd
rr

=  as 

⎪
⎪
⎩

⎪
⎪
⎨

⎧
Δ

=

calculated

c

calculated

calculated

L
calculated

T
t

n

d

α

r
, 17. 

and the set of its allowed values LD  as 
( ]
[ )
[ )
[ ]⎪

⎪
⎩

⎪
⎪
⎨

⎧

∞
∞Δ

=

det

min

max

,0
,
,

,0

min

a
T
t

n

D
c

L . 18. 

Actually, the number of elements in Ld
r

 and, therefore, the number of dimensions in the set of the 
allowed values LD  may vary depending on modelling situation and specific requirements. For example, for 
inspection programs with the equal time between inspections in the whole service interval [ ]SLt,0  the time 
between two consequent inspections ntt SL /=Δ , so it can be excluded from the set of limitations, but it is 
important in programs when the time between inspections may vary. 

If vector of limiting values Ld
r

 does not match the set of its allowed values LD , then the project is 
considered as unprofitably and is returned back for redesign in the design office. As we stated above, the 
probability of failure for returned projects is equal to zero, thus 

( )
⎩
⎨
⎧

∉
∈

=
LL

LLLf
f Dd

DddPP
corrected

r

rr

,0
,,ˆ θ

. 19. 
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The parameter θ , which defines the c.d.f. of vector ( )cd TT , , is a vector parameter. For considered 
case in this work, if both crack model parameters are random and have normal distribution, it consists of five 
components: 

[ ],,,,,
lnlnlnln 1010 r

QQCcCc
θθθθθ =  20. 

where 0θ  stands for a location and 1θ  stands for a scale parameter of the appropriate crack growth model 
parameter cCln  or Qln ; r is a coefficient of correlation between cCln  and Qln , and 

( ) [ ) ( ) [ ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧ ∞∞∞−∞∞∞−=Θ∈ 1,0;,0;,;,0;,θ . As it was shown before, we don’t know the real 

value of θ , thus we use its estimate θ̂ . A part of elements of θ̂  may be assumed as known. For example, 

Ccln1θ ,  
Qln1θ  and correlation coefficient r can be considered as constants, so processing fatigue crack growth 

data we should estimate only two remaining parameters 
Ccln0θ  and 

Qln0θ . 

It can be shown that for considered decision making procedure random variable 
correctedfP̂  has 

expectation value, which is a function of θ , and this function has a maximum value for Θ∈θ . To prove 
that let us fix one of two crack model parameters and look how the probability of failure depends on another 
one. Let us consider that the equivalent initial crack size is a constant: const=α , i.e. const== αμθ

α0 , 

01 == ασθ
α

. 
In accordance with upper defined rules the probability of failure tends to zero when the crack growth 

speed representing parameter { }Q
Q

ln
ln0 Ε=θ  tends to zero: this is a case when the item is extremely reliable 

and cracks are growing so slowly, that have no chance to grow up to crita  in interval [ ]SLt,0 , thus there are 
no inspections required. The failure probability without inspections is defined by formula: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=≤=

c

c

wi
T

TSL
SLcf

t
tTPP

ln

lnln
)(

σ
μ

, 21. 

 or, in terms of reliability, 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ−=≤−=>=

c

c

T

TSL
SLcSLcwi

t
tTPtTPR

ln

lnln
1)(1)(

σ
μ

, 22. 

where cTln  is distributed normally as );(~ln 2
lnln cc TTc NT σμ . 

From other side, if the 
Qln0θ  is high, then the probability of failure tends to zero as well: with high 

probability we return for redesign all items due to the break of limiting rules, i.e. LL Dd ∉
r

 (see formulas 17, 

18 and 19). Between these zero values of { }
correctedfPΕ there can be non-zero values somewhere in between, 

when the fatigue cracks maybe can reach theirs critical size during the time between inspections, maybe not, 
but there are no sufficient reasons to return project for redesign so far. Let us call a value of failure 
probability used for calculations (at the choice of the number of inspections required, or choosing vector-
function t

r
) as 

calcfP . The following conclusion can be made from the upper mentioned: the dependence of 

the probability of failure as a function of θ  is a function which has a maximum, the value of that maximal 
value is unknown, but somehow depends on the value of failure probability 

calcfP  used for calculations. 

Let us call the value of expectation of failure probability for all allowable θ  as { }
correctedfP̂Ε . We have 

named it as “corrected” to distinguish it from 
calcfP , because we take into consideration some limitations. The 

goal is to find such a maximum value of failure probability for calculations *
calcfP  that the corrected value of 
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failure probability 
correctedfP  does not exceed the required limiting value of failure probability 

requiredf RP
required

−=1 : 

( )
requiredcalccalc fff PPPP ≤~:* , 23. 

where 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

Ε=
correctedcalc ff PPP ˆmax~

θθ
. 24. 

Graphically this approach for a two-dimensional case (when either const=α  or constQ = ) is 
presented in Figure 3: 

 
Figure 3. Minimax approach example ( const=α  or constQ =ln ) 

 
For the more complex case we get a three-dimensional picture like in  
 
Figure 4: 

 

 
 

 
Figure 4. Minimax approach example (general case) 

 
Depending on parameters the shapes of these two- or three-dimensional failure probability curves may 

vary, but this does not affect our conclusions. 
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NUMERICAL EXAMPLE AND CONCLUSION 
 
The upper mentioned approach lets us to ensure reliability of the airframe on or above the required 

level by developing appropriate inspection program for the case of lack of the initial fatigue test data. There 
are examples of numerical modelling for one- and two-parametric models shown in Figure 5 and  

Figure 6 below (please note: in pictures LQ=LN(Q)=
Qln0θ , LC=LN(Cc)=

Cc0θ ). 
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Figure 5. One-parametric numerical example ( const=α ) 

     
 
 

 
 

 
Figure 6. Two-parametric numerical example (3D and projection) 
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