
M. Finkelstein  ‐  STOCHASTIC APPROACH TO SAFETY AT SEA ASSESSMENT 

 
R&RATA # 4  

(Vol.1) 2008, December 
 

 

- 110 - 

STOCHASTIC APPROACH TO SAFETY AT SEA ASSESSMENT 
 

Finkelstein M.S. 
● 

Department of Mathematical Statistics,University of the Free State 
PO Box 339, 9300, Bloemfontein, Republic of South Africa, 

 e-mail: msf@wwg3.uovs.ac.za  
and 

CRSI “Elektropribor”, St. Petersburg, Russia 
 

 
Abstract. A general approach for analysing spatial survival in the plane is suggested. Two types of harmful random 
events are considered: points with fixed coordinates and moving points. A small normally or tangentially oriented 
interval is moving along a fixed route in the plane, crossing points of initial Poisson random processes. Each crossing 
leads to termination of the process with a given probability. The probability of passing the route without termination is 
derived. A safety at sea application is discussed.  
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1. INTRODUCTION: ONE-DIMENSIONAL CASE 
     
   A model of survival in the plane is presented in, based on the following simple reasoning used in the one-
dimensional case. Consider a system subject to stochastic point influences (shocks). Each shock can lead 
with a given probability to a fatal failure of a system, resulting in termination of the process, and this will be 
called an “accident”.  The probability of performance without accidents in the time interval ],0( t  is of 
interest. It is natural to describe the situation in terms of stochastic point processes. 
     Denote by )(th  the rate of occurrence or just the rate function of the corresponding point process of 
shocks }0);({ >ttN . It is well known ( [2, p.31]) that for orderly processes, assuming the limits exist, 
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     Assume now that a shock occurring in ],( dttt +  independently of the previous shocks leads to an 
accident with probability )(tθ , and does not cause any changes in the system with probability )(1 tθ− . 
Denote by aT  a random time to an accident and by }Pr{)( tTtF aa ≤=  the corresponding distribution 
function (DF). If )(tFa  is absolutely continuous, then  
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where )(taλ  is  a hazard rate, corresponding to )(tFa  and )(tP  is the survival function: probability of 
performance without accidents in ],0( t . Assuming that }0);({ >ttN  is the nonhmogeneous Poisson 
processes: 

)()()( thtta θλ = .                                                                          (3) 
For the time-dependent case this result was proved in Block et al. [1]. Considering the Poisson point 
processes in the plane, we shall construct the corresponding hazard rate “along the fixed curve”. An obvious 
application of this model is assessing the probability of a safe performance of a ship moving along a fixed 
route [4].  
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2. OBSTACLES WITH FIXED COORDINATES 
 
     Denote by )}({ BN  the nomhomogeneous Poisson point process in the plane (the random number of 
points in 2ℜ⊂B , where B  belongs to the Borel σ -algebra in 2ℜ ). We shall consider points as 
prospective point influences on our system (shallows for the ship, for instance). Similar to the one-
dimensional definition (1) the rate )(ξfh  can be formally defined as 
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where )(ξδ=B  is the neighborhood of ξ  with area ( ))(ξδS  and diameter tending to zero.  

     Assume for simplicity that )(ξfh  is a continuous function of ξ  in an arbitrary closed circle in 2ℜ . Let 

21 ,ξξR  be a fixed continuous curve connecting 1ξ  and 2ξ  - two distinct points in the plane. We shall call 

21 ,ξξR  a route. A point (a ship in our application) is moving in one direction along the route. Every time it 
“crosses the point” of process )}({ BN  an accident can happen with a given probability. We are interested in 
assessing probability of moving along 

21 ,ξξR  without accidents. Let r  be the distance from 1ξ  to the current 

point of the route (coordinate) and )(rh f  denote the rate in ],( drrr + (a one-dimensional 
parameterization).  

Let ( ))(),( rr nn
−+ γγ  be a small interval of length )()()( rrr nnn

−+ += γγγ  in a normal to 
21 ,ξξR  in the 

point with coordinate r , where upper indexes denote the corresponding direction Let R  be the length of 

21 ,ξξR : ||
21ξξ

RR ≡  and assume that: ],0[),( RrrR n ∈∀>> γ . The interval ( ))(),( rr nn
−+ γγ  is moving along 

21 ,ξξR , crossing points of a random field. (For our application it is reasonable to assume the following model 

for the symmetrical ( ))()( rr nn
−+ = γγ  equivalent interval )(22)(: rr osn δδγ += , where )(2,2 ros δδ  are 

the diameters of a ship and of an obstacle, respectively, and for simplicity it is assumed that all obstacles 
have the same diameter. There can be other models as well).  Using definition (4), the equivalent rate of 
occurrence of points, )(, rh fe  along the route can be defined as  
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where ( ))(,,( rrrBN nγΔ  is the random number of points crossed by the interval )(rnγ , moving from r  to 
rr Δ+ . 

     It can be easily seen, as in Finkelstein [4], that for 0→Δr  and )(rnγ  sufficiently small:  
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which leads to the expected relation for the equivalent rate of the corresponding one-dimensional  point 
process  (which is obviously  also nonhomogeneous Poisson): 

[ ])1(1)()()( orhrrh fnfe += γ .                                                   (6) 
Hence, r -parameterization along the fixed route reduces the problem to the one-dimensional setting of 
Section 1. 
     As in the one-dimensional case, assume that crossing of a point with a coordinate r  leads to an accident 
with probability )(rfθ  (and is survived with probability )(1)( rr ff θθ −= ). Denote by R  a random 

distance from the initial point of the route 1ξ  till a point on the route where an accident had occurred. Similar 
to (2)-(3), probability of passing the route 

21 ,ξξR  without accidents can be derived in the following way:  
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)()()( rhrr feffa θλ ≡                                                                (8) 

     Assume that the hazard rate )(rfaλ  is now a stochastic process defined, for instance, as in Yashin and 

Manton [8] by an unobserved covariate stochastic process 0, ≥= rYY r . Denote the corresponding hazard 
rate process by ),( rYafλ . It is well known (see, e.g. Kebir [7]) that under certain assumptions in this the 
following equation holds:  
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which can be written via the conditional hazard rate process [8] as 
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where )(rafλ  is the corresponding  equivalent or observed hazard rate: 

[ ]rRrYEr fafa >= |),()( λλ .                                                             (11) 

As follows from (10), equation (11) can constitute a reasonable tool for obtaining )(RP , but the 
corresponding explicit derivations can be performed only in some simplest specific cases. On the other hand, 
it can help to analyze some important properties. Assume, for instance, that probability )(rfθ  is indexed by 

a parameter Y : ),( rYfθ . Let Y  be interpreted as a non-negative random variable with support in ),0[ ∞  
and the probability density function )( yπ . In the sea safety application this randomization can be due to the 
unknown characteristics of the navigation (or (and) collision avoidance) onboard system, for instance (we are 
pooling from the population of ships). There can be other interpretations as well. Thus, the specific case, 
when Y  in relations (9) and (10) is a random variable, is considered. The observed failure rate )(rfaλ  then 
is the corresponding mixture failure rate: 
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where )|( ryπ  is the conditional probability density function of Y  given that rR > [5]  
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and ),( ryP  is defined similar to (7), where )(rfaλ  is substituted by  )(),( rhry fefθ . 

     Relations (12) and (13) constitute a tool for analyzing the shape of the observed failure rate )(rafλ . As 

shown in [5,6], the shape of )(rfaλ  can differ dramatically from the shape of the conditional failure rate 

),( ryfaλ  and this fact should be taken into consideration in applications. Assume, for example, a specific 
multiplicative form of parameterization: 

)()()(),( rhrYrhrY feffef θθ = . 

It is well known that, if )()( rhr ffθ  is constant in this case, than the observed failure rate is decreasing. But 

it turns out that even, if )()( rhr fefθ is sharply increasing, )(rafλ  can still decrease at least for sufficiently 
large r ! [6]. Thus, the random parameter changes the aging properties of the corresponding distribution 
functions. 
     For the “highly reliable systems” when, for instance, 0)( →rh f  uniformly in ],0[ Rr ∈ , one can easily 
obtain obvious approximations. On the other hand, applying Jensen’s inequality to the right hand side of (9), 
a simple lower bound for )(RP  can be also derived: 
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3. CROSSING THE LINE PROCESS 
 
     Consider a random process of continuous curves in the plane to be called paths. We shall keep in mind an 
application when ships’ routes on a chart represent paths, while the rate of the stochastic processes to be 
defined represents the intensity of navigation in the given sea area. The specific case of stationary random 
lines in the plane is called a stationary line process.  
     It is convenient to characterize a line in the plane by its ),( ψρ  coordinates, where ρ  is the 
perpendicular distance from the line to a fixed origin, and ψ  is the angle between this perpendicular line and 
a fixed reference direction. A random process of undirected lines can be defined as a point process on the 
cylinder S×ℜ+ , where ),0( ∞=ℜ+  and S  denote both the circle group and its representations as ]2,0( π . 
Thus each point on the cylinder is equivalent to the line in 2ℜ  and for the finite case the point process (and 
associated stationary line process) can be described. The following result is stated in Daley and Vere-Jones 
[5, p.389].  Let V  be a fixed line in 2ℜ  with coordinates ),( αρv  and let VN  be the point process on V  
generated by its intersections with the stationary line process. Then VN  is a stationary point process on V  
with rate Vh  given by 

)()cos( ψαψ dPhh
S

V ∫ −= ,                                                  (15) 

where h  is the constant rate of the stationary line process and )( ψdP  is the probability that an arbitrary line 
has orientation ψ  (first order directional rose on S ). If the line process is isotropic, then π/2hhV = . The 
rate h  is induced by the random measure defined by the total length of lines inside any closed bounded 
convex set in 2ℜ . Assume that the line process is (homogeneous) Poisson in the sense that the point process 

VN  generated by its intersections with an arbitrary V  is a Poisson point process.  
     Consider now a stationary temporal Poisson line process in the plane. Similar to VN , the Poisson point 
process }0);({ >ttNV of its intersections with V  in time can be defined. The constant rate of this process, 

)1(Vh , as usual, defines the probability of intersection (by a line from a temporal line process) of an interval 

of a unit length in V and in a unit interval of time given these units are substantially small. 
     Let 

21 ,ξξV  be a finite line route, connecting 1ξ  and 2ξ  in 2ℜ  and r , as in the previous section, is the 

distance from 1ξ  to the current point of 
21 ,ξξV . Then drdthV )1(  is the probability of intersecting Vξ ξ1 2,  by 

the temporal line process in .0),,0();,(),( >∈∀+×+ tRrdtttdrrr  
     A point (a ship) starts moving along 

21 ,ξξV  at 0 ,1 =tξ  with a given speed )(tv . We assume that an 
accident happens with a given probability when “it intersects” the line from the (initial) temporal line 
process. A regularization procedure, involving dimensions (of a ship, in particular) can be performed in the 
following way: an attraction interval 

RrrrVrr tatatatatatata <<+=≥⊂+− −+++− )()()( ,0, ,),( -
, 21

γγγγγγγ ξξ , 
where the subscript “ ta ” stands for tangential, is introduced. The attraction interval (which can be defined 
by the ship’s dimensions) is moving along the route, attached to the point itself with changing in time 
coordinate: 
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where Rt  is the total time on the route. Similar to (5), we can construct the equivalent rate of intersections, 

)(, rh me , assuming for simplicity constant speed 0)( vtv =  and taγ : 

( )[ ] trhtrrrNE VV ΔΔ=ΔΔ+ )1(),,( .                                              (17) 
Thus the equivalent rate is also constant 
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where 
0v

t taγ
=Δ  is the time needed for the moving attraction interval to pass the interval ),( rrr Δ+ as 

0→Δr . As assumed earlier, the intersection can lead to an accident. Let the corresponding probability of 
an accident mθ  be also constant. Then, using results of sections 1 and 2, the probability of moving along the 
route 

21 ,ξξV  without accidents is:  

}exp{)( , RhRP memθ−=  ,                                                           (19)  

     The non-linear generalization is rather straightforward. The line route 
21 ,ξξV  turns into the continuous 

curve 
21 ,ξξR  and lines of the stochastic line process turn also into continuous curves. Eventually 
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and assuming independence of fixed and moving obstacles, relations (7) and (20) can be combined in an 
obvious way. 
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