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Abstract. Problem of representation of human preferences among uncertain outcomes by functionals (risk measures) is 
being considered in the paper. Some known risk measures are presented: expected utility, distorted probability and 
value-at-risk. Properties of the measures are stated and interrelations between them are established. A number of 
methods for obtaining new risk measures from known ones are also proposed: calculating mixtures and extremal values 
over given families of risk measures. 
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INTRODUCTION 
 

Quantifying risk is one of central problems in risk theory [1,2]. Risk measures are commonly used for 
the purpose. As of now there is a vast amount of different risk measures, including simple probability of an 
adverse event, second order measures (variance or standard deviation, beta) [3], quantile measures such as 
value-at-risk and its derivatives: conditional value-at-risk [4], expected shortfall [5] and some modifications. 

A classic expected utility [6] is used more and more intensively in financial markets and other 
decision-making applications. Expected utility measures do form a wide class of risk measures, thus 
providing a flexible tool for decision-making under uncertainty. However any measure in this class is linear 
with respect to mixture of probability distributions, that may be undesirable in some cases. 

Another wide class of risk measures was introdiced in [7]; these are the so called distorted probability 
measures. Fortunately they turned out to be nonlinear with respect to mixtures, so that they can represent 
human preferences in a more reliable fashion. One more attractive feature of risk measures in this class is 
that they are closely connected with other measures by some natural transforms. The latter provokes rigorous 
studying of the measures as possibly most appropriate tool for risk theory applications. 

In the present paper we briefly describe properties of risk measures mentioned above and point out to 
interrelations among them. The following notation will be used throughout the paper. ),,( PAΩ  denotes a 
probability space with σ -algebra A  and probability measure P ; the latter may vary in some cases. Risks 
are represented by random variables, that is, measurable mappings from Ω  to the measurable space ),( BR , 
where R  is the set of real numbers and B  is a σ -algebra of its Borel subsets. Risks will be denoted by 

YX , ,… while their distribution functions by YX FF , , etc. Denote also X  the set of all risks and F  the set 
of all distribution functions. Risk measure is any functional on F . Introduce also partial orderings on F  
known as stochastic dominance of different orders. For a distribution function F∈F  let FF =1  and )(kF  
for ,...3,2=k  are defined iteratively by 

∫
∞−

−=
x

kk dttFxF )()( )1()( , R∈x . 

For F∈GF ,  we say that F  preceeds G  in the sense of stochastic dominance of order k  ( GF k≤ ) 

if )()( )()( xGxF kk ≥ , R∈x . For future reference denote aW  a degenerate (at a point R∈a ) distribution 
function and pB  a Bernoulli (with parameter )1,0(∈p ) distribution function. Let also },{ RW ∈= aWa  

be the class of all degenerate distribution functions, and )}1,0(,{ ∈= pBpBe  be the class of all Bernoulli 
distribution functions. 
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RISK MEASURES AND PREFERENCE 
 

Let p  be a preference relation on F , that is, a complete and transitive binary relation. We say that 
risk measure RF →:μ  represents the preference relation if for F∈GF ,  

)()( GFGF μμ ≤⇔p                                                              (1) 
A perfect risk measure should represent preferences of specific individual or decision-maker. Since it 

is very unlikely that preference relation is known completely, representation theorems are usually based on 
reasonable assumptions that restrict the collection of available preferences to a rather narrow class, and 
provide an analytical form for risk measures representing preferences from that class. 
 
 
EXPECTED UTILITY MEASURE 
 

Perhaps the first representation theorem of the sort is due to von Neumann and Morgenstern [6]. It 
states that under some assumptions (that actually mean linearity of preference with respect to mixture of 
distributions) there exists the unique (up to positive affine transforms) risk measure representing the relation. 
The resulting risk measure turns out to be the so called expected utility, that was well known for about 3 
hundred years already. It has the form 

∫
∞

∞−

= )()()( xdFxUFρ , F∈F , (2) 

where U  stands for utility function. Different preferences correspond to different utility functions. A 
disadvantage of risk measure (2) is that it is always linear with respect to mixture of distributions, that is, for 
any F∈GF ,  and any ]1,0[∈α  the following is always true: 

)()1()())1(( GFGF ρααρααρ −+=−+ . 
Experiments (eg. [8]) show that in many cases human preferences do not possess linearity, so risk 

measure (2) might be a very rough approximation to what is actually needed. 
Let us state some properties of expected utility here. The following theorem may be found e.g. in [9]. 
 
Theorem 1. Expected utility ρ  is monotone with respect to stochastic dominance of the 1st order if 

and only if the utility function U  is nondecreasing. Expected utility ρ  is monotone with respect to 
stochastic dominance of the 2nd order if and only if the utility function U  is nondecreasing and concave. 

A question of great practical importance is: how much additional information do one need to identify 
the utility function U  that generate expected utility representing a specific linear preference relation? In 
other words, what is the characteristic class FG ⊆  of distribution functions such that there exists the unique 
continuation of expected utility from G  to F ? The final answer is contained in the following 

 
Theorem 2. Let p  be a linear preference relation on F . To specify the utility function representing 

p  it is necessary and sufficient to know values of ρ  for all degenerate distributions R∈aWa , , except for 
any two of them that may be chosen arbitrarily. This means that W  is essentially the characteristic class for 
expected utility measure. 

It is sometimes more convenient to use the so called certainty equivalent instead of expected utility, 
The new functional c  on F  is defined as a real number posessing the same utility as a distribution, that is: 

 
)),(()( 1 FUFc ρ−=    F∈F . 

 
The functional is well defined if utility function is strictly monotone, that is often the case for 

preferences monotone with respect to stochastic dominance. 
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DISTORTED PROBABILITY MEASURE 
 

 
Let ]1,0[]1,0[: →g  be a nondecreasing real function with 1)1(,0)0( == gg . A distorted 

probability measure 

∫∫
∞

∞−

−+−−=
0

0

))(1(]1))(1([)( dxxFgdxxFgFπ ,    F∈F             (3) 

was introduced in [7], [10]. A function g  is called a distortion function. In the special case 
]1,0[,)( ∈= xxxg  this measure coincides with expectation: FEF =)(π , and in all other cases it is 

essentially nonlinear in distribution. Note that aWa =)(π , R∈a  for any parameter function g , and state 
the representation family theorem for the risk measure. 
 

Theorem 3. Let p  be a preference relation on F  corresponding to a distorted probability measure. To 
specify the parameter function g  representing p  it is necessary and sufficient to know values of π  for all 
nondegenerate Bernoulli distributions )1,0(, ∈pBp . This means that Be  is essentially the characteristic 
class for distorted probability measure. 

Note that distorted probability measure may be represented in the form 

∫ −−= −
1

0

1 )1()()( vdgvFFπ ,    F∈F                                             (4) 

Simple consequences of (4) are monotonicity of distorted probability measure with respect to first 
order stochastic dominance, and the fact that Value-at-risk measure 
 

)()( 1 λτ λ
−= FF , F∈F                                                        (5) 

is a special case of (3) with 
 

⎩
⎨
⎧

−≥
−<

=
λ
λ

λ 1,1
1,0

)(
v
v

vg  

where )1,0(∈λ  is a parameter. 
 
 
 
FAMILY-GENERATED RISK MEASURES 
 

Since risk measures are used to represent individual preference among probability distributions, they 
should catch attitude of an individual to risk. Constructing new risk measures may provide flexible tool for 
the purpose. In the present section several ways of obtaining new risk measures from given families are 
presented and studied to some extent. 

Let Λ  be a parameter set endowed with a structure of probability space ),,( QCΛ . Next, let 
},{ Λ∈= λμλΛ  be a family of risk measures, id est, functionals RF →:λμ . Consider the following 

functionals generated using this family. 
 
Mixture risk measure RFM →Λ : . 
 

∫ΛΛ = )()()( λμλ dQFFM ,     F∈F . (6) 

 
Maximal risk measure RF →Λ :M . 
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)(sup)( FFM λ
λ

μ
Λ∈

Λ = ,     F∈F . (7) 

 
Minimal risk measure RF →Λ :M . 
 

)(inf)( FFM λλ
μ

Λ∈Λ = ,     F∈F . (8) 

 
Now let us state some results for these derivative measures. 
 
Theorem 4. Let Λ  be a family of risk measures such that each Λ∈λμλ ,  is expected utility measure 

with utility function λU . Then mixture risk measure (6) is also an expected utility measure with utility 

function R∈= ∫Λ xdQxUxU ,)()()( λλ . 

However extremal measures (7) and (8) for a family of expected utilities do not in general constitute 
an expected utility. Informally the class of expected utilities is closed with respect to mixtures and is not 
closed with respect to taking exprema. 

 
Theorem 5. Let Λ  be a family of risk measures such that each Λ∈λμλ ,  is distorted probability 

measure with distortion function λg . Then mixture risk measure (6) is also a distorted probability measure 

with distortion function ]1,0[,)()()( ∈= ∫Λ vdQvgvg λλ . 

So the class of distorted probability measures of risk is also closed with respect to mixtures. The 
following fact is somewhat surprising: any distorted probability measure may be represented by a mixture of 
Value-at-risk measures, a very special case of distorted probability measures. 

 
Theorem 6. Let )1,0(=Λ  be endowed with a probability space structure by σ -algebra of Borel 

subsets and a distribution function G . Let further Λ  be a family of Value-at-risk measures (5). Then the 
mixture risk measure (6) is a distorted probability measure with distortion function 

)1,0(),1(1)( ∈−−= vvGvg . 
Clearly any distortion function g  may be obtained by appropriate choice of mixing distribution 

function )1,0(),1(1)( ∈−−= vvgvG . Note that a similar spectral representation of distorted probability 
measures via expected shortfall family was presented in [5]. 
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