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Abstract. Risk analysis under partial information about probability distributions of states of nature is studied. An 
efficient method is proposed for a case when initial information is elicited from experts in the form of interval quantiles 
of an unknown probability distribution. This method reduces a difficult to handle non-linear optimisation problem for 
computing the optimal action to a simple linear one. A numerical example illustrates the proposed approach.   
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INTRODUCTION 

 
One of the main objectives of performing risk analyses is to support decision-making processes. Risk 

analysis provides a basis for comparing alternative concepts, actions or system configurations under 
uncertainty. A variety of methods has been developed for estimating losses and risks. When events occur 
frequently and when they are not very severe, it is relatively simple to estimate the risk exposure of an 
organization, as well as a reasonable premium when, for instance, an insurance transaction is made. 
Commonly used methods rely on variations of the principle of maximizing expected utility, tacitly assuming 
that all underlying uncertainty can adequately be described by a precise and completely known probability 
measure. However, when the uncertainty is complex and the quality of the estimates is poor, e.g., when 
evaluating low-probability, catastrophic events, the customary use of such rules together with overprecise 
data could be harmful as well as misleading. Therefore, it is necessary to extend the principle of maximizing 
expected utility to deal with complex uncertainty. This allows powerful evaluation under vague and 
numerically imprecise information. An efficient way for realizing such methods is the framework provided 
by imprecise probability theory [3,5,6]. 

Very often the initial data about unwanted events are elicited from experts, who are typically asked 
about quantiles of a random quantity (states of nature). Based on this information, and on the choice of a 
parameterized family of distribution functions, a fitted distribution function is chosen that represents the 
available information in some best way to some extent. However, as pointed out, for instance, in [2], experts 
better supply intervals of quantiles rather than point-values because their knowledge is not only of limited 
reliability, but also imprecise. Moreover, as discussed above, the choice of one particular distribution 
function fitted to the quantiles would lead to substantial errors in risk analysis. Therefore, new procedures 
for computing optimal actions under conditions of partial information about states of nature in the form of 
imprecise quantiles are proposed in the paper. Efficient methods for computing optimal unrandomized and 
randomized actions based on solving the linear optimisation problems are investigated. A numerical 
example illustrates the methods. 
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A GENERAL APPROACH TO RISK ANALYSIS AND IMPRECISE QUANTILES 
 
Consider the basic model of decision theory: One has to choose an action from a non-empty, finite set 

A={a1,...,an} of possible actions. The consequences of every action depend on the true, but unknown state of 
nature 1{ ,..., }mt t t∈Ω = . The corresponding outcome is evaluated by the utility function 

 
: ( )

( , ) ( , )
u A

a t u a t
×Ω → R
a

 

and by the associated random variable u(a) on ( , ( ))PoΩ Ω  taking the values u(a,t). Alternatively a loss 
function l(a,t) is assigned, which can be embedded into the framework proposed by setting 

( , ) ( , )u a t l a t= − . Often it makes sense to study randomized actions, which can be understood as a 
probability measure 1( ,..., )nλ λ λ=  on ( , ( ))A Po A . Then u(·) and u(·) are extended to randomized actions 

by defining 
1

( , ) : ( , )n
s ss

u t u a tλ λ
=

= ∑ .  

If the states of nature are produced by a perfect random mechanism (e.g. an ideal lottery), and the 
corresponding probability measure p on ( , ( ))PoΩ Ω  is completely known, the Bernoulli principle is nearly 
unanimously favored. One chooses that action *λ  which maximizes the expected utility 

1
E u( ) : ( , ) ( )m

p j jj
u t p tλ λ

=
= ∑  among all λ . Here E p  is the expectation operator with respect to the 

distribution p.  
Suppose that information about states of nature is represented as a set of r judgements E ii p ib f b≤ ≤ , 

i=1,...,r, on the expectations of some random quantities 1,..., rf f . This set restricts all distributions p on 

( , ( ))PoΩ Ω  by a set M such that every distribution p from M satisfies all the inequalities. An action *λ  is 
optimal iff for all λ , *E u( ) E (u( ))M Mλ λ≥ . Here EM  is the lower prevision (expectation) taken over all 
probability distributions p from M. Then the optimal action *λ  can be obtained by maximizing E (u( ))M λ  
subject to 1 ... 1nλ λ+ + = . This leads to the non-linear optimisation problem:  

 
 

1 1 0
min ( , ) ( ) max

s

m n
s j s jj sp M

u a t p t
λ

λ
= =∈ ≥

⋅ ⋅ →∑ ∑  (1) 

subject to E ii p ib f b≤ ≤ , i=1,…,r, 1 ... 1nλ λ+ + = . 
 

Similar expressions can be written in a case of the continuous set of states of nature [ , ]A BΩ = . In this 

case, the expected utility is E u( ) : ( , ) ( )
B

p A
u t p t dtλ λ= ∫ . Here p(t) is a density function which is consistent 

with the set of initial judgements about states of nature. In the paper, we will consider the continuous set of 
states of nature.  

In the probabilistic approach, experts are typically asked about quantiles of a random variable X defined 
on a continuous sample space Ω . The smallest number t∈Ω , such that Pr{ } /100X t k≤ = , is called the 
k% quantile and denoted qk%. In this approach, the experts are often asked to supply the 5%, 50% and 95% 
quantiles. In other words, an expert supplies 1 2 3, ,t t t  such that 1Pr{ } 0.05X t≤ = , 2Pr{ } 0.5X t≤ = , 

3Pr{ } 0.95X t≤ = , respectively. Generally, if r experts provide their judgements about qi quantiles, 
i=1,...,r, of an unknown cumulative probability distribution of the continuous random variable X, this 
information can be represented as Pr{ }i iX t q≤ = , i=1,...,r. In terms of the imprecise probability theory, qi 
can be viewed as identical lower and upper previsions (expectations) of the gamble [0, ] ( )

it
I X , i.e., 

[0, ] [0, ]E ( ) E ( )
i it tI X I X= . Here [0, ] ( )

it
I X  is the indicator function taking the value 1 if [0, ]iX t∈  and 0 if 

[0, ]iX t∉ . However, judgements elicited from experts are usually imprecise and unreliable due to the 
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limited precision of human assessments. In other words, experts provide some intervals of quantiles in the 
form [ , ]iiiX t t= . This can be formally written as  

 Pr{ [ , ]} , 1,...,ii iX t t q i r≤ = =  (2) 
Every interval iX  produces a set of probability distributions such that the lower distribution contains the 

point ( )iiq t  and the upper one contains the point ( )iiq t .  
 
Decision making with imprecise quantiles 
 
Let us define what E u( )M λ  means in the case when initial information about p is given in the form of 

quantile intervals. Suppose that we knew precise values of qi quantiles ti, i=1,...,r. Denote 1( ,..., )rT t t=  and 

the set of possible vectors T by {T}. Let E (u( ) | )M Tλ  be the lower expectation of the function ( )u λ  under 
condition of precise values T of quantiles. Since at least one of the points tk belonging to the interval 

[ , ]iiiX t t=  is a true value of the corresponding quantile, then there holds 

 
, 1,...,

E u( ) min E (u( ) | )
i

M Mt X i r
Tλ λ

∀ ∈ =
= . 

By using the natural extension [3,4,5] for computing the lower prevision E (u( ) | )M Tλ , we get the 
following linear programming problem: 

 

 ( )1,
E (u( ) | ) max

i

r
M i iic w

T c w qλ
=

= +∑  (3) 

subject to , , 1,..., ,iw c i r∈ =R  and [0, ]1
( ) ( , ),

i

r
i ti

c w I t u t tλ
=

+ ≤ ∀ ∈Ω∑ . 

 
 
UNRANDOMIZED STRATEGY 
 
The unrandomized strategy supposes that (0,...,0, ,0,...,0)sλ λ= , 1sλ = . Let us consider how to find 

the value s corresponding to the optimal action.  
 
Proposition 1. Suppose that 1 2 ... rq q q≤ ≤ ≤  and (0,...,0, ,0,...,0)sλ λ= , 1sλ = . Denote q0=0, 

qr+1=1, t0=A, tr+1=B. Then the solution to problem (3) exists if (i) 1 2 ... rt t t≤ ≤ ≤ , (ii) 1i it t +<  for 1i iq q +< , 
i=1,...,r, and this solution is  

1
10 [ , ]

E (u( ) | ) ( ) min ( , )
i i

r
M i i si t t t

T q q u a tλ
+

+= ∈
= −∑ . 

 
Let us consider an approximate solution of the decision making problem in the case of interval 

quantiles. Let us divide the sample space Ω  into N intervals by points 0 1 1, ,..., ,N NA Bτ τ τ τ−= = . Then the 

set {T} becomes finite and contains vectors of the form (0) (1) ( )( , ,..., )l l l rτ τ τ  such that ( ) [ , ]iil i t tτ ∈ , i.e., l(i) 
is an index of a point belonging to Xi . 

 
Proposition 2. Suppose [ , ]iiit t t∈ , i=1,...,r. If there exist such i and j that jit t>  and i jq q< , then 

judgements are conflicting, otherwise the optimal action is  
 

(0) (1) ( ) ( ) ( 1)
10{ } ( , ,..., ) [ , ]1,..., 1,...,

arg max min E u arg max min ( ) min ( , )
l l l r l i l i

r
Ms i i siT T ts n s ns s

a q q u a t
τ τ τ τ τ +

+=∈ ∈= =
= ≅ −∑ . 



L. Utkin, T. Augustin  ‐  RISK ANALYSIS ON THE BASIS OF PARTIAL INFORMATION ABOUT QUANTILES 

 
R&RATA # 4 

 (Vol.1) 2008, December 
 

 

- 159 - 

In particular, if all utility functions ( , )su a t , s=1,…,n, are decreasing as t is increasing, then 

( )1opt 101,...,
arg max ( ) ( , )r

ii i sis n
a q q u a t ++==

= −∑ , if ( , )su a t , s=1,…,n,  are increasing, then 

( )opt 101,...,
arg max ( ) ( , )r

ii i sis n
a q q u a t+==

= −∑ . 

 
 
RANDOMIZED STRATEGY 

 
 
The technique proposed in the previous sections leads to a series of non-linear optimisation problems in 

the case of the randomized strategy. Therefore, it is necessary to consider a different method for computing 
λ . Here the modification of an approach proposed by Augustin [1] based on using sets of extreme points is 
applied. The optimisation problem for computing the optimal randomised action is  

 

 ( )1 0
min ( , ) ( ) max

s

B n
s ssAp M

u a t p t dt
λ

λ
=∈ ≥

→∑∫ , (4) 

subject to 1 ... 1nλ λ+ + =  and Pr{ [ , ]} , 1,...,ii iX t t q i r≤ = = . 
 

Let us introduce the variable  

 ( )1
min ( , ) ( )

B n
s ssAp M

G u a t p t dtλ
=∈

= ∑∫  

and consider the sense of (2). If to call the expectation E (u( ) | )M Tλ  and the set of constraints 
Pr{ }i iX t q≤ = , i=1,...,r, for every fixed T by an imprecise model, then (2) corresponds to the union of a set 
of imprecise models taken over all possible vectors T, i.e., the set M of distributions p restricted by 
constraints (1) is the union of sets MT . According to [3], a set of extreme points of the united model is the 
union of extreme points of the imprecise models corresponding to vectors T, i.e., 

{ }( ) ( )T T Textr M extr M∈= ∪ . This implies that a set of problems (4) can be reduced to the problem:  
 

,
max

s G
G

λ +∈ ∈R R
 

subject to  

 ( )1 1{ }
( , ) ( ) , ( ), 1

B n n
s s T ss sT TA

G u a t p t dt p extr Mλ λ
= =∈

≤ ∈ =∑ ∑∫ U . (5) 

 
Now we have to find the extreme points for each { }T T∈ . Let us rewrite the available information 

about quantiles corresponding to T in the following form: 

 1 2

1
1 2 1( ) , ( ) ,..., ( ) 1

r

t t B

rA t t
p t dt q p t dt q q p t dt q= = − = −∫ ∫ ∫ . 

All equalities can be considered independently in the sense that they do not have common variables. If we 
approximately represent the integrals as sums, then the i-th hyperplane produced by the i-th equality has the 
following extreme points: 
 1 1 1( ,0,...,0), (0, ,...,0),..., (0,0,..., )i i i i i iq q q q q q− − −− − − . 
Hence the set TM  has the extreme points of the form: 

 1 10
( ) ( ) ( ), [ , ]r

i i i i i ii
p t q q t t tδ τ τ+ +=

= − − ∈∑ , 

where ( )itδ τ−  is the Dirac function which has unit area concentrated in the immediate vicinity of the point 

iτ ; 0t A= , 1rt B+ = , 0 0q = , 1 1rq + = . 
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After substituting these extreme points into constraints (5), we get  

 1

1 0
( , ) ( ) , ( )i

i

tn r
s s Ts i t

G u a t p t dt p extr Mλ +

= =
≤ ∀ ∈∑ ∑ ∫ . 

If we take one set of extreme points by fixed T, then there holds 
 1 11 0

( , )( ), [ , ]n r
s s i i i i i is i

G u a q q t tλ τ τ+ += =
≤ − ∀ ∈∑ ∑ . (6) 

Let us consider an approximate solution of the decision making problem in the case of interval 
quantiles. By dividing the sample space Ω  into N intervals by points 0 1 1, ,..., ,N NA Bτ τ τ τ−= =  (see the 
section “Unrandomized strategy”), we get a finite set of constraints 
 1 ( ) ( 1)1 0

( , )( ), [ , ]n r
s s i i i i l i l is i

G u a q qλ τ τ τ τ+ += =
≤ − ∀ ∈∑ ∑ , ( )l i∀  (7) 

 
Proposition 3. Suppose [ , ]iiit t t∈ , i=1,...,r. If there exist such i and j that jit t>  and i jq q< , then 

judgements are conflicting, otherwise the optimal randomized action is approximately defined by solving the 
following linear programming problem:   

,
max

s G
G

λ +∈ ∈R R
, 

subject to (7) and 
1

1n
ss
λ

=
=∑ .  

 
Since the right side of (7) has to be as small as possible and 1 0i iq q+ − ≥ , then the set of constraints 

is reduced to one constraint in the case of increasing or decreasing utility functions. By considering the set 
{T}, we can say that constraints (7) have to be satisfied for arbitrary values it  and 1it +  such that i it X∈  and 

1 1i it X+ +∈ , i=0,...,r. It is obvious that 
1[ , ]

min ( , )
i i i

s it t
u a

τ
τ

+∈
 by iit t=  for increasing utility functions (by 1iit t +=  

for decreasing utility functions) is less than by any iit t≥  ( iit t≤ ). This implies that we remain one 
constraint  
 11 0

( ) ( , )n r
is i i ss i

G q q u a tλ += =
≤ −∑ ∑  (8)  

in the case of increasing utility functions or one constraint  
 111 0

( ) ( , )n r
is i i ss i

G q q u a tλ ++= =
≤ −∑ ∑  (9) 

in the case of decreasing utility functions.  
 

Proposition 4. The linear optimisation problems with constraints (8) or (9) have the following solution:  
 101,...,

max ( ) ( , )r
i i s iis n

G q q u a τ+==
= −∑ , 

 
101,...,

1, arg max ( ) ( , )

0,

r
i i s iis nsk

k q q u a

otherwise

τ
λ +==

⎧ = −⎪= ⎨
⎪⎩

∑
, 

where ii tτ =  for increasing utility functions, 1ii tτ +=  for decreasing utility functions.  
 
Proposition 4 implies that the randomised optimal action for the considered decision problem is equivalent to 
the unrandomized one (see Proposition 2). 

 
 
NUMERICAL EXAMPLE 
 
Suppose experts provide 5%, 50%, 95% quantiles of the probability distribution of a random variable 

defined on the sample space [0,120]Ω = . This implies r=3 and q1=0.05, q2=0.5, q3=0.95. Expert 
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judgements are given in Table 1. Suppose we have to choose one of two actions {a1, a2} in accordance with 
utility functions  
 1( , ) exp( 0.1 )u a t t= − , 2( , ) 0.5 0.012u a t x= − . 

 
Table 1. Interval quantiles provided by experts 

 
5% 50% 95% 

Lower Upper Lower Upper Lower Upper
2 4 12 15 19 19 

 
Since the utility functions are decreasing, it follows from Proposition 4 or Proposition 2 that  

 1101,...,
arg max ( ) ( , )r

ii i sis ns
k q q u a t ++==
= −∑ . 

If s=1, then we get the lower expected utility 

 
1 2 3 41 0 1 2 1 1 3 2 1 4 3 1( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )

(0.05 0)exp( 0.1 4) (0.5 0.05)exp( 0.1 15)
(0.95 0.5) exp( 0.1 19) (1 0.95)exp( 0.1 20) 0.208.

q q u a t q q u a t q q u a t q q u a t− + − + − + −

= − − × + − − ×
+ − − × + − − × =

 

If s=2, then the lower expected utility is  

 
1 2 3 41 0 2 2 1 2 3 2 2 4 3 2( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )

(0.05 0)(0.5 0.012 4) (0.5 0.05)(0.5 0.012 15)
(0.95 0.5)(0.5 0.012 19) (1 0.95)(0.5 0.012 20) 0.302.

q q u a t q q u a t q q u a t q q u a t− + − + − + −

= − − × + − − ×
+ − − × + − − × =

 

The above numerical results imply that the optimal action is a2.  
 
 
SOME REMARKS ABOUT DISCRETE STATES OF NATURE 

 
If the set of states of nature is discrete, 1{ ,..., }mt tΩ = , then information about interval quantiles can be 

represented as  
 1 1Pr{ [ , ]} , 1 Pr{ [ , ]} 1 , 1,...,i ii ii i i iq X t t q q X t t q i r+ −≤ ≤ ≤ − ≤ ≥ ≤ − = . 

In this case, the linear programming problem for computing E (u( ) | )M Tλ  is of the form: 
 

 ( )1 11, , ,
E (u( ) | ) max ( (1 ) (1 )

i i i i

r
M i i i i i i i iic c d w v

T c c q d q w q v qλ + −=
= + − + − − −∑   

subject to , , , , 1,..., ,i i i ic d w v c i r+∈ ∈ =R R  and   

( )[0, ] [ , ]1
( ) ( ) ( ) ( ) ( , ),

i i

r
i i t i i t mi

c c d I t w v I t u t tλ
=

+ − + − ≤ ∀ ∈Ω∑ . 

 
Generally, it is difficult to find any solution to the above problem in the explicit form. However, this 
problem can be numerically solved for every { }T T∈ , and the optimal action is computed by maximizing 

{ }
min E (u( ) | )MT T

Tλ
∈

 over all possible actions.  

 
 
CONCLUSION 

  
Computationally simple algorithms have been obtained for calculating optimal actions under partial 

information about quantiles. It is worth noticing that we have focused in this paper on the basic decision 
problem. However, the ideas of this paper should be also applicable to more complex decision problems, for 
example, multi-criteria decision making, or the case where additional sample information is available.   
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