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Evaluation of structural reliability under processes of deterioration presents very important 
problem in design. The structure’s wear shows a reduction of bearing capacity in time that for one’s 
turn leads to increasing the probability of failure. The reasons for long duration and irreversible 
change of structural features can be corrosion in steel structures, decomposition in wood structures, 
ageing in polymer structures, and processes of abrasion or erosion also. The problem of defects 
accumulation should be mentioned too, when reduction of the bearing capacity connects with load’s 
value and its duration. 

The models and peculiarities of corrosion wear and its influence on bearing capacity are 
discussed in this paper. 

 
1. MODELS OF CORROSION WEAR 
 
Corrosion is an important factor in reducing of reliability and durability due to different 

kinds of structures or equipments. From 10% to 12% of fabricated and used steel is lost annually 
due to destructive effects of corrosion. In spite of widely used protection methods, the quantity of 
steel destroyed is growing almost proportionally to the accumulated stores of steel. Losses from 
corrosion average are between 2% to 4% of GDP in almost every country. About 30% of structural 
steel is subjected to atmospheric corrosion, and 75% is subjected to atmospheric and aggressive 
corrosion simultaneously [1]. Under corrosion’s influence the initial cross-section of a structural 
element is decreased, and consequently so its bearing capacity. Fig.1 presents the types of corrosion 
for structural steel. 

 
 

Fig.1 Types of corrosion of a structural steel. 
a) Uniformly distributed wear. b) Irregular distributed wear. 

c) Corrosion with spots. d) Corrosion with ulcers. 
e) Corrosion with points. f) Corrosion with cracks. 
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The speed of a corrosion process depends upon degree of aggressive environment and is 
changing with 0.05mm/year to 1.6mm/year. The damage of structural steel in soil depends on the 
duration of an exposure, as shown in Fig.2. Data are based on 16 types of soil. Similarly, the 
damage of the steel from atmospheric corrosion is shown in Fig.3. Distribution of corrosion speed 
(measured at the inner reservoir surface along its height) for different products is presented in Fig.4. 

 

 
 

Fig.2 Corrosion of structural steel in soil over years. 
Y-axis shows the mean depth of corrosion in mm.; X-axis shows the years of duration. 

 

 
 

Fig. 3 Corrosion of structural steel in open air. 
Y-axis shows the average depth of corrosion (mm). 

X-axis shows the years of duration. 
 

 
 

Fig.  4 Variation of corrosion’s speed 
1. Gasoline. 2. Kerosene. 3. Diesel. 

 
The evaluation of structural durability depends essentially on the choice of the model that is 

capable to reflect the influence of an aggressive environment. When modeling corrosion processes, 
there are important damage characteristics to consider, such as depth of defect (δ) and corrosion 
speed (v=dδ/dt). Classification of mathematical models of corrosion (based on empirical approach) 
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presents in Table 1 [1,2,3]. The kinetics of the corrosion process in different metals for different 
aggressive environments looks very similar, and this fact presents the opportunity to use these 
models in design. 

In general, processes of wear can be presented as time-dependent random functions of time. 
Type of processes depends on maintenance conditions, methods of structure’s fabrications, steel’s 
composition and others. 

 
                                                                                                                        Table 1 
 

# Models of corrosion Functional relationship 
1 tv0=δ  Linear 

2 n
t ktv −=  Power 

3 tba lg+=δ  Logarithmic 
4 )ln(kt=δ  Logarithmic 
5 )exp(0 tvvt α−=  Exponential 

6 )/exp(2 τtmtvt −=  Exponential 

7 )]/exp(1[0 τδδ t−−=  Exponential 

8 

)exp(1 ctb
a

−+
=δ  

Exponential 

9 

cbtat
tvt ++

= 2  
Fractionally linear 

10 

at
t

+
=

1
0δ

δ  
Fractionally linear 

 
Models of long-term processes presents as random time processes, but its uncertainty 

defines, due to random, independent from time parameters. Such kind of random processes were 
called “deterministic random processes “[4]. 

In the case that all loads iF  presents independent random values, probability of no failure 
during working life can be expressed as: 

 
P(n)=P [ ],...,, 2211 nn FRFRFR >>> ,                                        (1) 

 
where nRRR ,...,, 21 - values of bearing capacity in considered time intervals. If designate 

),(0 nRRn ϕ= then n=t –term of maintenance in years; 0R -initial (random) value of bearing 
capacity; )(nϕ - monotonically decreasing nonnegative function (i=1,2,3,n.), satisfying to the 
conditions: ;1)0( =ϕ .0/;0)( <=∞ dtdϕϕ  It should be mentioned also the additive property of φ (t) 
function, independence of wear’s process in the subsequent time interval it from previous process’s 
value in time 1−it , i.e. )()()( 2121 tttt += ϕϕϕ . 

nFFF ,...,, 21  -  Loads, corresponding to considered time intervals. 
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2. UNIFORMLY DISTRIBUTED CORROSION WEAR 
 
This problem is illustrating in considering a steel pipeline’s section (cylindrical tube), 

subjected to inner pressure, changes of the temperature and corrosion. The inner pressure F and 
steel yield stress Ry are random values with given distributions. The corrosion process considers 
deterministic. The limit state condition is taken in the form: RySi ≤ . Here iS - intensiveness of 
stresses in considered cylindrical shell. In accordance with Guber-Mises condition [5], general case 
looks as: 

2
31

2
32

2
21 )()()(

2
1 SSSSSSSi −+−+−=                              (2) 

In discussed situation 2S =0, and the radial and the tangential stresses reads: 

.
4

,
2 31 θα Δ−== E

h
FD

S
h

FD
S ii  

Here F is the inner pressure, and its maximum value is random for some time intervals; Di-
inner diameter of the pipe; α-parameter of linear extension; E-modulus of elasticity; θΔ -
temperature drop (difference between temperature of the pipeline during use and assembly). 

The reliability condition expresses as follows: 
2222

2

22

16
3

y
i RE

h
DF

≤Δ+ θα                                          (3) 

As temperature’s drop presents an uncertain value with unknown distribution, then 
temperature’s stresses are given as some part of the yield stress. 

χθα sinyRE =Δ                                                    (4) 
χ  is a value of angle in the given interval [0,π/2].  The condition (3) presents now in 

the form: 

χcos
3
4

y
i

R
D
hF ≤                                                (5) 

Corrosion wear causes a reduction of tube thickness as ),(0 thh ϕ= where 0h  is the 
initial thickness. In accordance with the Table 1 one can takes: 

)/exp()( τϕ tt −=                                                                                        (6) 
From (6) comes: 

/exp(1[0 thh −−−= δ τ)]                                    (7) 
where δ is the depth of corrosion bubble. It is assumed that the corrosion process in 

interval 2t  is independent of the preceding values in interval 1t , so that 
),(),(),0( 11 ttttott ++=+ ϕϕϕ . It is assumed also that time t takes only discrete values: t=n, 

where n is number of years or months. An assumption is made for pressure F supposing that 
statistic data belong to some period of time, a month, for example. From all observations, 
maximum values selects only. If the time interval is large in comparison with correlation 
zone, then Fisher-Tippet distribution (second type) of maximum values can be used [6]. 

P (x) = exp ])/([ ηξ −− x                                       (8) 
If FFsv FF ,/= are correspondingly the coefficient of variation and the mean value, 

then parameters ξ and η are determinated from the solution of two equations, which includes 
gamma functions. 

)(/
)()(1 2

aF
bavF

Γ=

ΓΓ=+

ξ
                                     (9) 
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Gamma functions are: 

.)(

,)(

0

1
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∫
∞

−−

∞
−−

=Γ
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dzzeb

dzzea

bz

az

                                                        (10) 

The case when b=0 and η=2 is excluded. 
For yield stress Weibull distribution is applied. 

P (x) = 1- μω)/(exp[ x− ]                                                    (11) 
Form’s parameter μ is expressed through coefficient of variation Rsv RR /= : 

)/11(
)]/11([)21( 2

μ
μμ

+Γ
+Γ−+Γ

=Rv                                              (12) 

Values Rv and μ define scale parameter ω. 
Taking into account (8) and (11) the reliability function is written in the form: 

P (n) = - 
η

ξ
χ −

∫
∞

− )
3

cos4
(exp[

0

0

iD
xh

] ∑
−

=

− −
1

0
}])/([exp{)(

n

i
xdt μη ωϕ             (13) 

Example. After statistic data processing of pressure in pipelines and yield stress the 
following values of the distribution parameters were defined: ξ = 73.5; η = 65; ω = 42.5; μ = 
23.5.Coefficients of variations are: .0522.0;0201.0 == RF vv  Temperature stresses (9.4) show 
essential influence on pipeline’s reliability. When χ = π / 3, P (n) is close to zero. P (n) values for 
different n are presented in the Table (2). 

                  
Table 2 

 
Values of function P (n) 

Time in years τ χ 
1 5 10 15 20 25 30 

100 0 0.9989 0.9989 0.9989 0.9989 0.9987 0.9962 0.9860 
100 6 0.9989 0.0087 0.9968 0.9880 0.9590 0.8600 0.6000 
100 4 0.9560 0.8500 0.5800 0.1800 - - - 
120 0 0.9989 0.9989 0.9989 0.9989 0.9989 0.9975 0.9872 
120 6 0.9989 0.9941. 0.9941 0.9750 0.9600 0.8990 0.8060 
120 4 0.9560 0.8790 0.6870 0.3790 - - - 
150 0 0.9989 0.9989 0.9989 0.9989 0.9988 0.9985 0.9900 
150 6 0.9989 0.9988 0.9980 0.9900 0.9760 0.9570 0.3200 
150 4 0.9989 0.8820 0.7500 0.5200 0.3800 - - 

 
From (13) the member responsible for corrosion process’s influence is picked out: 

( )
μη

μ

ηϕλ
+−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

1

0
/

n

i
ni                                                   (14) 

where λ characterizes decreasing of reliability in regard of corrosion’s development. 
Parameter τ in (6) and in Table 2 defines intensiveness of uniform corrosion. Physical sense 

of this value consists in decreasing of initial tube’s thickness. This essential decreasing is possible 
under large values of τ = 100…150. 

Results of many experiments and real observations demonstrated [1,.3] the influence of 
stresses in structures to the speed of corrosion. Especially large is this influence in places of 
concentrations of stresses. Dependence between corrosion’s speed and increasing level of stresses 
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can be as linear as nonlinear. If to take dependence between the intensiveness of stresses and the 
depth of the corrosion’s penetration such as ( )ikSt expβαδ = , and substituting it in the formula for 

the circular stresses in cylindrical shell 
h

FD
S i

21 = , then the condition of the failure reads: 

( )[ ] y
io

i R
kSth

FD
>

− exp2 βα
                                               (15) 

After decomposition into the row ( ) ii kSkS +≅ 1exp , expression (15) performs to: 

F< ( )[ ] io DkRyth /2/312 +− βα                                          (16) 
Here the expression in brackets takes into account influence of stress state at speed of 

corrosion. If to take the same distribution for inner pressure (8) and for yield stress (11), and to 
consider process of corrosion as a function of discrete argument then the expression for reliability 
function can be written in the form: 

P (n) = -
( )( )[ ] μηβ

ωξ
α

⎥
⎦

⎤
⎢
⎣

⎡
⎟
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⎞
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⎝
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−

−∞

=
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xd
D

xkihxn

i i

o exp
2/312

exp
0 1

        (17) 

Expression (17) allows to evaluate the reliability of pipelines, subjected to continuous 
corrosion and to take into account influence of stress state to the corrosion’s depth penetration or 
corrosion’s speed. 

 
 
3. IRREGULAR DISTRIBUTED CORROSION WEAR 
 
A problem of structural durability and the protection from a local corrosion turns out to be 

very important as well. Local corrosion leads to some local destruction seen on the surface of the 
structure in the form of spots, ulcers, points or cracks (Fig.1). Appearance of this destruction in time 
is random too. 

Corrosion cavities’ ensemble is based on the following assumptions: 
• Events, which have to do with the appearance of various numbers of cavities at disjoint time 

intervals are independent. 
• Probability of corrosion’s cavity appearance in the arbitrary time interval t is proportional to 

the length of this interval with the factor of proportionality equal to μ. 
• Probability of the two or more events appearance through an extremely small time interval 

presents an infinitely small value of more high order. 
The simultaneous realization of all these assumptions should be present and have an 

existence of the primary flow of events – a uniform Poisson process. Such process can be 
described by the system of differential equations: 

0
0 P

dt
dP

μ=  

…………..                                                           (18) 

)( 1 nn
n PP

dt
dP

−= −μ  

Initial conditions for this system of equations are: 
Pn (t) = 1, when n=0 
Pn (t) = 0, when n=1,2,                                             (19) 

There will be only one solution for the system (9.18) and together with the conditions 
(9.19) it can be presented as the Poisson distribution: 
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)](exp[!
)([

)(
0

0

ttn
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n
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−

=
μ

μ
                                                   (20) 

From (20) probability of the fact follows that in the moment 0tt ≥  the system is in the 
state n (n = 1,2,3,). If the number of cavities appearing in some time interval submits to Poisson 
distribution, then the amount time before appearance of the next cavity possesses exponential 
distribution [7]. 

).exp()( ttP μ−=                                                       (21) 
The number of experimental data that connects with investigations of kinetic due to 

cavity growth or an increase of cavities number is very small. Experimental dependences were 
received in [8]: 

)1( t
gr e βμμ −−=                                                       (22) 

Here βμ ,gr are empiric coefficients. Value grμ  varies in wide limits and measures as 
number of defects to unit of structural surface. 

Important parameters for considered type of irregular corrosion are - maximum depth of a 
cavity, its diameter and square of a cavity. 

The random value of a cavities depth δk (k-random point on structural surface) is distributing 
in the final interval [0,h0], where h0 is the thickness of structural element. It is considered that this 
value had uniform distribution, i.e. 

                0                     x < 0 
Pδ(x) =   x / h0          0 ≤ x ≤ h0                                                     (23) 

    1                     x > h0 
Distribution of the maximum depth for n cavities, i.e. δn = max {x1, x2, x3,…,xn} is well 

known from theory of extreme values [9] and can be taken as exponential. 
 

Pδn = exp  [- n (h0-x)]       0 ≤ x ≤ h0 
Pδn= 1                               x > h0                                                  (24) 

The next important parameter is the diameter of considered cavity, due to an assumption that 
this cavity has cylindrical form (Fig.5). Let the depth of the cavity is equal to x. Then the possible 
region for variation of diameter is the chord AB with the length 222 xrx − , and r is the external 
radius. An assumption is taken that the random value of diameter yi has uniform distribution in the 
interval [0, 222 xrx − ]. 

 

 
Fig.5. Element of ring’s cross-section 

 Pd (y) =0                              if y<0 
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Pd (y) = 
222 xrx

y
−

           if 0 < y < 222 xrx −                              (25) 

 Pd (y) =  1                            if y > 222 xrx −  
Distribution of the maximum diameter for n cavities dn = max (y1, y2, y3, …yn) is: 

 Pdn = ,22(exp[ 2xrxn −−       2220 xrxy −≤≤                        

Pdn = 1,                                    222 xrxy −>                                            (26) 
Third parameter of this cavity is its square Ak. The knowledge of the maximum square 

value is important in solution of the considered problem. There are some difficulties, however, 
unclear even in the theory of order statistics. The point is that the maximum δn value doesn’t 
always correspond to the maximum value of dn. If to agree with this position then the solution 
will be received in safety margin. Two kinds of versions can be offered, distribution of 
maximum depth’s value δn and distribution of diameter’s value dk for k-cavity in the first case, 
and otherwise: distribution of maximum diameter’s value dn, and distribution of depth’s value 
δk in the second case. 

Types of PA(x) distributions are written for three cases: 
Case 1: 

.220,
22

)(

],,0[)],(exp[)(

2

2

00

xrxy
xrx

yyP

hxxhnxP

dn

n

−≤≤
−

=

∈−−=δ

                                       (27) 

The square of the cavity Ak is equal to the square of the segment at Fig.5: 

yyrrxyry
r
yrAk ]

4
[

422
arcsin

2
2

2
22 −+−+−−=                         (28) 

The maximum possible value of the cavity square Ak will be when x = h0 and 
.22 2

00 hrhy −=  
In pipes of large diameter x / r, y / 2r values are highly small numbers and possible 

reasonable approximation will be Ak = xy, and it follows: 

PAk (A) = dxxxhn
r

An h
2
3

0
0

0

)](exp[
22

−

∫ −−                                           (29) 

Ak is here uniformly distributed at interval [0,A*] random value. 
Case2: 

Pδn(x) = ],0[, 0
0

hx
h
x

∈  

Pdn(y) = ( )[ ] [ ]22 22,0,22exp xrxyyxrxn −∈−−−                               (30) 
Distribution of Ak is: 

PAk (A) = dx
x
Axrxn

h

h

∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−

0

0

2

0

22exp1
                                     (31) 

Case 3: 
Pδn (x) = ( )[ ] [ ]00 ,0,exp hxxhn ∈−−  

Pdn (y) = ( )[ ] [ ]22 22.0,22exp xrxyyxrxn −∈−−−                             (32) 
It follows: 
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PAk (A) = ( )( )[ ]xhnd
x
Axrx

h

−−⎟
⎠
⎞

⎜
⎝
⎛ −−−∫ 0

0

2 exp22exp
0

                       (33) 

The last case, as it was written before, leads to safety margin. 
 
Example 1. Reliability of pipeline subjected to one-sided irregular corrosion. 
 
Dimensions of the resulting cavity-depth and diameter are increasing in time in such 

degree that the failure of pipe will occur i.e. formation of a reach-through hole will take place. 
Time, tn before this hole will appear calculates from the expression: 

n

tn

hdttv δ−=∫
0

0)(                                                       (34) 

Here δn – maximum depth from an ensemble of n cavities; v(t) = v0exp(-αt) – corrosion’s 
speed (Table 1,5). From (34) we get: 

tn = 
nh

v
δα −0

0ln1
                                                       (35) 

Time distribution P(tn < t) to reach –through hole can be written as: 

Pn(t) = ( )( ) ( )( )⎥⎦
⎤

⎢⎣
⎡ −−−−=

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−−≥ t

v
nt

v
hP n α

α
α

α
δ exp1exp1exp1 00

0     (36) 

After averaging on “n” it follows: 

P (t) = ( ) ( )[ ]{ }t
n
t

n

n

αμ
−−−∑

∞

=

exp1exp1exp
!0

                                (37) 

 
Example 2.  Design of structural members under central tension. 
 
Cylindrical element having a ring cross-section is considered. This element is subjected to 

irregular corrosion under deterministic load F. If A0 is initial value of cross-section (t = 0), Ak is 
square of cavity with given distribution PAk(A,) then the condition of no failure will be: 

 
F / (Ao – Ak) < Ry   or Ak < A0 – F / Ry                                       (38) 

 
Substituting the last expression into distribution function as an argument and carrying out an 

average on n and Ry probability of no failure in t moment is: 
 

( ) yy
y

Ak
n

n

dRRp
R
FAP

n
tttP ∫∑

∞∞

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

0
0

0 !
)()exp()( μμ                            (39) 

 
Here p(Ry) – is density of yield stress distribution. In numerical example the following data 

are taken. External diameter D = 6.26in; initial thickness h0 = 0.24in; F = 127929ft; 
)]exp(1[ tgr βμμ −−= and β = 0.05; yR = 290Mpa; sRy = 25Mpa.  Parameters of the cavity are 

== kkd δ 0.008in. Results of numerical realization are shown at Fig.6 
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Fig.6 The reliability function 

 

 
Fig.7 Variation of the function of reliability 

due to number of cavities 
 

 
 
4 CALIBRATION OF MODEL PARTIAL FACTOR 
 

Partial factor for model uncertainties can be determined from comparison with identical 
structures operating in normal or in aggressive environment. Let us consider the structure under 
load F and with resistance equal to R. In case when random value of the load maximum for the 
definite period of time (one year, for example) has  distribution )(xPF and year’s load maximums 
are independent random values, the reliability function can be written as follows 

∫
∞

=
0

1 )()()( xdPxPnP R
n

F                                                     (40) 

It is assumed that there is a structure operating in aggressive environment in the terms of 
uniformly corrosion. To guarantee the sufficient reliability level in the design it is necessary to go 
on additional expense of structural material such as increasing cross-section square, for example. 
The condition of no failure is 

RF D
~~ γ≤                                                                  (41) 
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Though the corrosion process is continuous in time it is proposed to consider the function 
)(tϕ which influences to geometric characteristics of cross-section as a function of discrete 

argument ).(nϕ (41) to nth year could be rewritten as 
)(nRF D ϕγ≤                                                         (42) 

Reliability function will be 

[ ] )()()(
0 1

2 xdPixPnP R

n

i
DF∫∏

∞

=

= ϕγ                                        (43) 

The equation for definition of Dγ arrives from the equality (40) to (43). 

[ ] )()()()(
00 1

xdPxPxdPixP R
n

FR

n

i
DF ∫∫∏

∞∞

=

=ϕγ                           (44) 

If we consider tensioned non-corrosive structural element then (41) can be presented as 
0RAF ≤                                                             (45) 

Where 0A  -initial cross-section square. 
Function of reliability will be 

∫
∞

=
0

01 )()()( xdPxAPnP RF                                               (46) 

For corroding structural element cross-section square is - DA γ0 , and Dγ >1. The failure 
condition can be expressed as 

RnAF D )(0ϕγ≤                                                    (47) 
Reliability function (43) will be 

[ ] )()()(
0 1

02 xdPixAPnP R

n

i
DF∫∏

∞

=

= ϕγ                                     (48) 

Equality (44) for the fast n value allows to determinate Dγ . Fisher-Tippet distribution (8) 
was chosen for )(xPF .  Equality (44) will be performed to 
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From here, it follows 

ηηϕ

γ 1

1
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=
n
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                                                  (50) 

Introducing corrosion model in the form of (6) and presenting the sum in (50) in the row we 
will get 
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After transformation we get 
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Table 3 contains modal factor’s values in accordance with (52) 
                                                                                                                                                  Table 3 
 
n 
 

 
η  
 
 

Dγ  
 

100=τ  

Dγ  
 

150=τ  

Dγ  
 

200=τ  

 
 
10 
 
 
 
15 
 
 
 
20 
 
 

 
10 
20 
30 
 
10 
20 
30 
 
10 
20 
30 
 

 
1.0666 
1.1304 
1.2098 
 
1.0657 
1.1374 
1.2263 
 
1.0665 
1.1443 
1.2401 

 
1.0461 
1.0828 
1.1280 
 
1.0439 
1.0851 
1.1354 
 
1.0433 
1.0881 
1.1424 

 
1.0364 
1.0612 
1.0920 
 
1.0337 
1.0618 
1.0958 
 
1.0327 
1.0632 
1.0999 
 

 
Aggressiveness of environment can be classified depending on parameterτ : heavily aggressive 

,100=τ middle aggressive ,150=τ weakly aggressive 
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