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ABSTRACT 
 

We have considered the approach to determining a priori distribution of error-free 
running time for high-reliability components by the method of paired comparisons useful for 
the increase of their reliability indicators. We have introduced the distinct variables, whose 
grades of membership are interpreted as subjective probabilities of finding the error-free 
running time and its characteristics at various time intervals. The method of recording the 
expert evaluation accuracy has been suggested. 

 
 
 

1  INTRODUCTION 
 
To control the meeting of the requirements by such high-reliability components as components 

of nuclear reactors [1], aircraft and space-and-missile engineering [2], gas equipment [3], etc., it is 
necessary to evaluate small (below 0.01) failure probabilities for the preset error-free running time. 
When there is practically no statistics on the failures of these components during their operation, the 
error-free running time distribution law is required for evaluating the reliability indicators with 
acceptable accuracy. This permits, in particular, the subsequent use of information pooling 
techniques [4], for instance, Bayesian methods of pooling the a priori information and observational 
data [5].  

Determination of error-free running time distribution belongs to intricately formalized 
problems (there are no sufficiently accurate mathematical models for its solution in most cases [1, 
6]). There is also no sufficiently representative statistics on the failures of high-reliability 
components [2]. Therefore, to obtain the a priori distribution of error-free running time for a 
component, it is expedient to employ expert evaluation [7]. The necessity of using non-formal 
experience and appreciating the physical nature of failures is also caused by the fact that, as is 
shown by simulation modeling of various distribution laws, small samples with the same mean values 
may result in considerable differences in description of distribution tail areas, which substantially 
influences on the accuracy of determining the reliability indicators of high-reliability components.  

The aim of the article consists in employing expert evaluation for finding out the type and 
parameters of distribution of error-free running time for high-reliability components.  
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2 PROBLEM FORMULATION 
 
Let )()( tTPtF <=  be the law of distribution of error-free running time, T be the random 

value of error-free running time for a component. Select on the time axis n periods, within which 
the failures of the component under consideration are expected. During the operation a random 
component from a certain main entity may fail in the z-th (z = 1, 2, …, n) period, namely, its 
possible state. The error-free running time is associated with the discrete state of the component by 
relationship 

zttt ⋅Δ+= 0                                                                (1) 
where 0t is the maximum error-free running time, until which the component failures have not been 
observed yet; tΔ  is the duration of the time period corresponding to the discrete state of the 
component. Then, discrete random value Z described by means of bar chart )(~ zfZ  corresponds to   
continuous variate T  of the component with probability density function )(tfT . In its turn, 
continuous variate T can be made to correspond to discrete random value Z set by any method.  

It is necessary to obtain the expected distribution of the component’s error-free running time. 
 
 

3 SOLUTION METHOD 
 
The problem of obtaining bar chart )(~ zfZ  can be solved by the method of paired 

comparisons ( a n a l y s i s  o f  h i e r a r c h i e s ) [8] developed by T. Saaty [9]. All pairs of 
the  component’s states are presented to the expert and the latter each time determines which of 
them is preferable with respect to a possibility of finding the component’s error-free running time. 
In the course of assessment the experts take into account the following:  available data on all kinds 
of reliability tests of the component and its failures during the operation; own experience in 
evaluating the reliability indicators of similar components by various methods and other factors. 
The evaluation process results in paired comparisons matrix )( ijbB = where 
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where i , j  are the component’s compared states of n  possible ones. 
The constituents of normalized maximum characteristic vector q of paired comparisons 

matrix B are taken to be relative weights characterizing a possibility of the component’s staying in 
each state. 

The method modification, namely, the method of paired comparisons based on a 
qualitative attribute with quantitative preference judgment. In the course of paired 
comparisons and filling-in of matrix B the expert not only selects the preferable state in each pair, 
but also indicates how many times this state is preferable with respect to a possibility of finding the 
error-free running time than in another state of the pair.  The method does not require compulsory 
transitivity of the expert’s preferences, while the processing of the paired comparisons matrices is 
easily realizable on computers.  However, the method has no clear physical interpretation and is 
unable to treat obtained evaluations q as subjective probabilities [10]. This hampers a possibility of 
employing the conceptual and mathematical apparatuses well developed in the theory of probability 
and mathematical statistics for further operations with the obtained results. Therefore, let us 
complement the method with a fuzzy model [8].  

Let us introduce the following indistinct variables: 



O.V.Abramov, Y.V.Katueva and D.A.Nazarov ‐ DISTRIBUTED COMPUTING ENVIRONMENT FOR RELIABILITY‐ORIENTED DESIGN 

 
R&RATA # 1 (12)  

(Vol.2) 2009, March 
 

 

- 49 - 

1) “Possible error-free running time” (basic) – for evaluating the possibility of finding the 
error-free running time, i.e., probability density function )(tfT .  

Auxiliary indistinct variables can be also introduced for solving such subproblems as 
calibration - clarification of the parameters obtained with the aid of the first indistinct distribution 
variable, evaluation of the expert’s assessment accuracy, etc.; 

2) “Expected error-free running time”  – for evaluating average error-free running time cpt ; 
3) “Most probable error-free running time” – for evaluating the distribution mode. 
Let the considered indistinct variable be determined on discrete multitude { }zZ =  from n  

possible component states. Indistinct multitude Z~  on multitude Z  appears to be an aggregate of 

pairs { }zzZ /)(~
Zμ=  where )(Z zμ  is the function of the error-free running time’s membership in 

the fuzzy set, whose sense is formalized by the chosen indistinct variable. The function of 
membership is made up of degrees of membership (relative weights zq ) of states Zz ∈  in 
multitude Z~ . We shall treat them as subjective probabilities of finding error-free running time z . 
Meant by the subjective probability is the estimate of probability (relative weight) of finding the 
error-free running time within a certain time period obtained as a result of processing the experts’ 
opinions rather than mathematically on the basis of the statistic data on frequency of failures getting 
into this time period as it happens in case of objective probability.  

Greater values of )(Z zμ  correspond to the states conforming, to greater extent, to the meaning 
of the chosen indistinct variable (i.e., with a greater possibility of finding the component’s error-free 
running time in these state and time period). 

As usually 4≥n , the approximated method [11] is recommended for finding the normalized 
maximum characteristic vector. To do this, introduced is normalized characteristic vector 

)1()( −= rr Bqq of the paired comparisons matrix where r  is the No. of the approximate computation 
algorithm’s step. Then, let us assume that the relative weights are represented by the constituents of 
the normalized vector at the r -th iteration step determined from the formula 
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till reaching preset accuracyε . The required accuracy of calculation of the characteristic vector 
constituents is preset beforehand (henceforth we accept ε = 0.0001 for further computations) and the 

calculation is stopped at step r if n conditions  ε≤−
∧−∧ r

i

r

i qq
1

 i∀ are satisfied. 

 
4 PROCEDURE OF EXPERT EVALUATION AND INTERPRETATION OF ITS 

RESULTS 
 
It is expedient to begin expert evaluation by the selected method from plotting the function of 

the possible error-free running time’s membership in the fuzzy set, whose meaning is formalized by 
the first indistinct variable. To do this, first one should indicate the range of the component’s 
possible error-free running time: monad ntt ,,0 Δ expected in the initial approximation. Paired 
comparisons matrix B is obtained by way of interrogating the experts on the extent, to which, in 
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their opinion, state i corresponds to the meaning of the “Possible error-free running time” indistinct 
variable more than state j. When matrix B is filled in, the expert compares, with the aid of the scale 
developed by T. Saaty [9] (Table 1), all pairs of discrete states with respect to a possibility of the 
component failure in them. So, to allot marks bij, the expert actually compares the expected densities 
of probability of finding the error-free running time (frequency of failures) during various time 
periods. 

  
Table 1 

Modified paired comparisons scale developed by T. Saaty 
 

Preference degree 

ijb  Definition  Explanation 

1 States are equally 
likely 

Possibility of finding the (average or most probable)* component’s 
error-free running time in both time periods of the compared pair is 
similar 

2 Intermediate meaning 

3 Poor   
superiority 

The expert’s experience makes it possible to consider the possibility of 
finding the (average or most probable)* component’s error-free running 
time in the first time period of the pair somewhat higher than in the 
second one 

4 Intermediate meaning 

5 Strong 
superiority 

The expert considers that the possibility of finding the (average or most 
probable)* component’s error-free running time in the first time period 
of the pair is definitely higher than in the second one 

6 Intermediate meaning 

7 Apparent  
superiority 

The expert considers that the possibility of finding the (average or most 
probable)* component’s error-free running time in the first time period 
of the pair is apparently higher than in the second one, while the 
available statistics of failures of the analyzed components under the 
similar conditions, as well as the model calculations conform this fact 

8 Intermediate meaning 

9 Absolute  
superiority 

The expert has no doubts with respect to the fact that the possibility of 
finding the (average or most probable)* component’s error-free running 
time in the first time period of the pair is absolutely higher than in the 
second one 

 
 

* Here and hereinafter in Table 1 the text in brackets pertains to either second or third indistinct variable. 
 

 
As a result of processing matrix В we shall obtain function )(Z zμ  of the error-free running 

time’s membership in fuzzy set Z~ , the meaning of which is formalized by indistinct variable 
“Possible error-free running time”. The membership function is formed by the membership degrees, 
which can be represented by the components of the normalized maximum characteristic vector of 
matrix В. Let us interpret this function of this function as the bar chart of the observed random 
value of the component’s error-free running time, including the error of its expert evaluation. This 
bar chart can help determining the kind and parameters of the observed distribution of error-free 
running time and, in particular, giving an approximated estimate of observed average error-free 
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By changing over to t according to (1), we shall respectively obtain 

∑
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where zt  is the error-free running time meaning corresponding to the middle of the z-th time period. 
E x a m p l e  1 . The expert is asked to evaluate the component’s error-free running time in 

seven time periods, each 2 years long, beginning from the 6th year of its operation. Paired 
comparisons matrix В from the expert’s judgments pertinent to distribution of the possible 
component’s error-free running time is shown in Fig. 1 а. 
 

 
                              
                                    (a)                                                                                               (b) 

 
Fig. 1. Paired comparisons matrix of possible component’s error-free running time (a)  

and respective bar chart of observed error-free running time (b) 
 

Determine the type and parameters of the form of the expected error-free running time. 
Solution. As a result of processing matrix 1B we use the approximative method to obtain the 

components of normalized characteristic vector zq , having the meaning of relative weights 
(probabilities) of finding the component within certain time periods z on time axis t, i.e. bar chart 

)(~ zf of the component’s error-free running time in Fig. 1 (b). 
The average error-free running time is found from formula (2) and amounts to cpt '~ = 7·0.164 + 

9·0.475 + 11·0.140 + 13·0.112 + 15·0.052 + 17·0.032 + 19·0.025 = 10.22 years, while the root-mean-square 
deviation with allowance for (3) amounts to 'ts  = 3.99 years.  
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The type of a priori distribution of error-free running time corresponding to the bar chart 
obtained by the expert method can be determined by various methods: method of moments, with the 
aid of statistical criteria, etc.  However, the use of known goodness-of-fit tests (Pearson’s, 
Kolmogorov’s, Shapiro’s, Wilk’s, Bartlett's test, Mann’s, etc.) requires getting the answer to the 
question: to which number of statistic observations do the results of expert evaluation of the error-
free running time by the group of experts correspond? Therefore, let us use the method of moments. 
When balancing the “statistical” rows by this method, use is often made of the system of Pearson 
curves [12]. The values of the coordinates obtained in the form of distribution bar chart )(tfT  in 
the diagram (Fig. 2) make up 1β = 1.641  and 2β = 4.250. So, the distribution of error-free running 
time by the expert method obtained can be adjusted by distribution from the family of J-shaped beta 
distributions (Fig. 2). 

 
 

Fig. 2. Location of obtained distribution on diagram of distributions of family of Pearson curves 
 

 
Now let us consider the “Expected error-free running time” indistinct variable and indicate to 

the experts the range of its possible values 222 ,, ntt Δ  with the aid of information on cpt '~  and bar 

chart )(~ tfT . During the repeated evaluation the experts compare the pairs of possible time periods 
with respect to the possibility of finding the average error-free running time within them. As a 
result of processing paired comparisons matrix 2B formed in such a manner, we shall obtain bar 
chart )(~

2 zf  with discrete random value Z2 of the average error-free running time (Fig. 3 b). This bar 
chart is helpful in specifying the estimate of the average error-free running time:  

∑
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and obtain the dispersion of its evaluation  

( )∑
=

⋅=
2

1
2

22 ~~n

z
cpzcp (z)ft-ts .                                                         (5) 

E x a m p l e  2 . Basing on the data of Example 1 for assessing the average error-free 
running time, let us choose 52 =n  time periods, beginning from the 9th year of the component’s 
operation, half a year long each. Obtained as a result of expert evaluation is paired comparisons 
matrix 2B  for a possibility of finding the average error-free running time within these time periods 
(Fig. 3 b).  

 
                                     (a)                                                                                                   (b) 

 
Fig. 3. Paired comparisons matrix (а) and bar chart of average error-free running time (b) obtained 

as a result of expert evaluation 
 

It is necessary to determine the component’s average error-free running time and accuracy of 
its evaluation by the expert. 

Solution. Let us obtain the bar chart of the average error-free running time (Fig. 3 b) by the 
approximative method.  Take estimation of expectation ][ 2ZMmcp = of discrete random variable 

2Z  as the average error-free running time. While changing over to variable t , we obtain the 
specified estimate of the average error-free running time 

∑
=

⋅=
2

1
2 )(~~ n

z
zcp zftt = 9.25·0.089 + 9.75·0.175 + 10.25·0.404 + 10.75·0.229 + 11.25·0.103 = 10.29 years. 

The root-mean-square deviation of this estimate with allowance for (5) will amount to 0.15 
year. 

The values of the coordinates for the system of Pearson curves determined from bar chart 
)(2 tf  make up 1β = 0.010 and 2β = 2.553 (see Fig. 2). Their position in the diagram shows that the   

distribution of the average error-free running time estimate obtained by the expert method is 
predictably close to the normal one.   
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So, as a result of expert evaluation with the aid of the first indistinct variable, when the experts 
compare the selected time periods with respect to the possibility of the component’s failure during 
it, bar chart )(~ tfT of the component’s error-free running time was obtained and, with its aid of the 
information on dispersion of the component’s error-free running time. However, the measurement 
errors are imposed on the results of expert evaluation of the error-free running time. The expert (by 
convention, a highly knowledgeable specialist) acts as a “measuring instrument” for expert 
evaluation. Therefore, bar chart )(~ tfT  describes observed component’s error-free running time 'T  
obtained with the aid of expert evaluation. Let us assume that the dispersion of the error-free running 
time with respect to the average value determined by the expert method includes two additive 
constituents: 

eΔ+Δ=Δ'                                                                    (5) 
where Δ  is the actual dispersion of the error-free running time, which should be taken into account 
in determining the component’s reliability indicators; Δe is the expert evaluation error. 

The problems of accuracy of the expert methods are discussed in [13]. However, to assess 
accuracy, use is made, as a rule, of indirect indicators not relying on the characteristics employed in 
the theory of accuracy. It is obvious that accuracy of expert evaluation  of the component’s 
error-free running time depends on the quality of experts, namely, their competence, objectivity, 
and information awareness. The a priori and a posteriori assessment of the expert [13] can be done 
with the aid of usually interrelated indicators:  

− “ w e i g h t ”  of the expert normalized with respect to other experts under a 
certain rule (the expert’s “weight” depends on his education, academic degree, knowledge of 
physics of the component’s failures, practical experience in determination of the reliability 
indicators) and set by the decision of the “absolutely competent” person – a priori estimate;  

− accuracy of the estimates made by the experts – a posteriori estimate.  
If we consider the expert to be the measuring instrument, to analyze accuracy of expert 

evaluation, generally accepted metrological performances serve turn. Of them the most universal 
one is root-mean-square deviation eσ  of the “measurement” result relative to the true (or average – 
in the absence of systematic errors) meaning. Accuracy of the estimates expressed in terms of value 

eσ can be determined by the following methods: 
− by deviations of the expert estimates from the true meaning. This method is implemented 

by testing the experts on the problems with the a priori known result or with the result 
instrumentally (statistically) determined after expert evaluation. The method advantage consists in 
exclusion of systematic errors, while the disadvantage, in considerable expenses; 

− by means of the dispersion characteristics (“concentration”) of the obtained expert 
estimates relative to the true (average) meaning. This method is also applicable in the situations, 
when the true state of the object being evaluated is unknown, but it does not take into account 
possible systematic errors. 

The disadvantage of both methods consists in the necessity of a certain sample for finding the 
dispersion. 

Let us assume that the characteristic of accuracy of expert evaluation of the error-free running 
time under the second method is represented by the root-mean-square deviation in determining a 
certain fixed state [14]. We shall consider the average error-free running time as such a state in the 
problem being solved. The method advantage consists in the fact that it is obtained in case of 
determining a single considered component. The more contradictory and inconsistent the expert’s 
judgment on the possible component’s state, the higher the value of eσ . As the dispersion meaning 
depends on the expert’s quality, therefore it can serve as the measure of this quality.  

Under the conditions of the considered example eσ = sav= 0.15 year. 
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If the expert evaluation error is known, in some cases it can be taken into account. On the 
condition of satisfying supposition (5)  

eΔ−Δ=Δ ' . 
Allowance for the errors introduced by the expert is possible by way of correcting the 

parameters of the shape of distribution often functionally bound with the value ofσ . Table 2 
contains certain distributions of the error-free running time with indication of correlations required 
to eliminate the measurement errors.  

 
Table 2 

Correlations for elimination of expert evaluation error for certain distribution laws of error-free 
running time  

 
Distribution law Kind of F(t) Correlation for correcting the 
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* The following designations are taken in Table 2: ( )⋅Φ  is the Laplace's function; m = M[T] is the expectation; a, b, and 
c are the scale, form, and shift of the Weibull distribution, respectively; v is the coefficient of variation, 

να 1
0 = ; ta, tb  

are the uniform distribution parameters; ty lg= ; ][lgTMmy = ; 21][lgTDy =σ ; 21]'[lg' TDy =σ ; 21][lg ээ
y D Δ=σ . 

 
5  CONCLUSION 

 
The suggested approach makes it possible to improve the extent of justification of setting the 

a priori distribution of the components’ error-free running time for provision of acceptable accuracy 
of determination of reliability indicators for high-reliability components. 
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