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Abstract 

  
Generalization of extended family of weakest-link distributions with application to the composite 

specimen strength analysis is presented. Composite (specifically, monolayer) specimen for tensile 
strength is modeled as series system but every “link” of this system is modeled as parallel system. Results 
of successful attempts of using some specific distribution from this family for fitting of experimental 
dataset of strength of some carbon fiber reinforced specimens are presented. 
 
 
 

1. Introduction 
 
We consider a composite specimen for test of tensile strength as a bundle of Cn  longitudinal items 
(fibers or bundles) immersed into composite matrix (CM), which is a composition of the matrix 
itself and all the layers with stackings different from the longitudinal one. We make very simplified 
assumption that only longitudinal items (LI) carry the longitudinal load but matrix only 
redistributes the loads after the failure of some longitudinal items. In fact, therefore, our model is a 
model of unidirectional (more specifically, monolayer) composite.  We divide the composite into 

Ln  parts of the same length 1l (approximately, this length can be interpreted as the interval in which 
the load of failed LI is fully transmitted to the adjacent intact LI; the stronger the CM the 
smaller 1l ). The total length of the composite specimens is equal to l = Ln 1l . We suppose that 
development of the process of fracture of a specimen takes place in one or in several of these parts 
(“links”). For simplicity, we call these links as ”cross sections” (CS). So using this term we 
describe the composite as a series system of CS. For description of the development of fracture 
process of the series system it is appropriate to use the ideas on which the extended weakest link 
distribution family, described in the authors’ papers [1-7], is based. Let the process of monotonous 
tensile loading (i.e. the process of increase of the nominal stress (or mean load of one LI) in the 
specimen cross section) be described by an ascending (up to infinity) sequence ,...},...,,{ 21 txxx , and  
let ( )CiK t ,  0 Ci CK n≤ ≤ , be the number of failures of LI  in i-th CS with Cn initial number of LI at 
the  load tx  . Then the strength of  i-th CS  

* max( : ( ) 0)i t C CiX x n K t= − ≥ ,                                                      (1) 
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but  the ultimate strength of the specimen (which is the sequence of Ln CS) is  
*

1 1
min min max( : ( ) 0)

L L
i t C Cii n i n

X X x n K t
≤ ≤ ≤ ≤

= = − ≥ .                                    (2) 

We consider different versions of cumulative distribution function (cdf) calculation methods and 
their  applications to processing results of test of fiber strands (threads) and strip of them 
(monolayer) [8]. 
 
2. Models of failure of a parallel system with redistribution of load after failure of some LI 

Statistical description of the development of the process of fracture of one CS (as loose bundle of 
LI (fibers or strands)) was initially studied by  Daniels [9]. The respective model can be described 
in a following way. Let 1( ,..., )nX X  be random strengths of intact LI  in some CS and jX the j-th 
order statistics in this CS. If there is a uniform distribution of load between n  LI, and load 
increases uninterruptedly, then the ultimate strength of this CS 

*X =
1
max ( 1) /jj n

X n j n
≤ ≤

− + .                                               (3) 

We consider the case when C Cn n K= − . Daniels studied the case CK =0. In the general case for 
random value of CK , (technological) failure number, there is a priori distribution 

1 2 1( , ,..., )
CC nπ π π π +=  (here ( 1)k CP K kπ = = − ) . Then 

* ( ) ( )CX
F x F xπ

→

= ,                                                      (4) 

where vector column 
11( ) ( ( ),..., ( )) '

CnF x F x F x
+

=
r

, ( )kF x , 1,..., Ck n= , is cdf  of *X  if 
1Cn n k= + − , 1( )

CnF x+  is identical  with unity (there are no intact LI).  
Much broader spectrum of models of the considered process can be developed using the theory of 
Markov chains. We consider the process of accumulation of failures as an inhomogeneous finite 
Markov chain (MC) with finite state space 1 2 1{ , ,..., }

CnI i i i += . We say that MC is in state i  if ( 1)i −  
LI have failed, 1,..., 1Ci n= + . State 1Cni +  is an absorbing state corresponding to the fracture of CS 
(fracture of all LI in this CS). The process of MC state change and the corresponding process 

( )CiK t  are described by transition probabilities matrix P.  
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                                         (5.1) 

 
 At the  t-thstep of MC matrix  P is a function of t,  t=1,2,... 
The cdf of strength of CS is defined on the sequence ,...},...,,{ 21 txxx by equation 

*

1

( ) ( ( ))
t

t CX
j

F x P j uπ
=

= ∏  ,                                            (5.2) 

where )( jP is the transition matrix for t=j, column vector )'1,0,...,0(=u .  
We consider three main versions (hypotheses) of the structure of matrix P, denoted as aP , bP and cP . 
In the simplest version we assume that in one step of MC only failure of one LI can take place. And 
for the corresponding matrix  aP  we define 1 ( )ii C tp F x= − , where  
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0 0 1 0 1( ) ( ( ) ( )) / (1 ( ))C t t t tF x F x F x F x− −= − −  is conditional cdf of strength of a LI, the failure of which 
did not take place under load 1tx − , 0 ( )F x  is the initial cdf of strength of a LI ; ( 1) 1i i iip p+ = −  ,  

1,..., Ci n= ,   ( 1)( 1) 1
C Cn np + + = , but all the other ijp  are equal to zero. 

It can be assumed also that the number of failures  in one step of MC has binomial distribution. 
Then for the corresponding matrix  bP  we have ( ) ( ; , )i i rp b r p k+ = = (1 ) !/ !( )!r k rp p k r k r−− − , 

( )C tp F x= , 1ck n i= + − , 0,...,r k= , 1,..., Ci n= ; and again   ( 1)( 1) 1
C Cn np + + = , but all the other ijp  

are equal to zero. 
For both versions of  P  described by aP  and bP  we suppose a uniform load distribution between 
intact LI. The third version corresponds to a transverse crack growth in the monolayer. We suppose 
that the first failure appears in the boundary of CS and all the following failures can appear only in 
the adjacent LI. The difference between the second and the third version is illustrated in Fig.1. Let 
now j  be ordernumber of LI in a CS  (j=1 for the boundary LI). In this case it is easy enough to take 
into account the stress concentration next to the tip of the crack. Let the redistribution of CS load 

( )x t  between intact LI be defined by a “stress concentration” function ( ; , )Ch j i n . Then in the 

corresponding cP  matrix 1

1 1
( ( )) (1 ( ( ))Cj n

ij C ij C iji j
p F x t F x t+

+ +
= −∏ ∏  for 1,..., Cj i n= + ; 

1
( 1) 1

( ( ))C

C

n
i n C iji

p F x t+

+ +
= ∏  for Cj n= ; 1

1
1 Cn

ii iji
p p+

+
= − ∑  , 0ijp =  for j i< , 1,..., Ci n= ;  

where ( ) ( ; , ) ( ) / ( 1 )ij C C Cx t h j i n x t n n i= + − describes stress in j-th order LI after failure of i-th order 
LI. 
 
1 0 1 1    0 1 1 1 
0 1 0 1    0 0 1 1 
1 1 1 0    0 1 1 1 
0 0 0 1    0 0 0 1 
1 1 0 1    0 1 1 1 
1 1 1 1    1 1 1 1 

 
                  a                                                                b  
           
Fig.1. Failed (0) and surviing (1) longitudinal items (LI) in specimens (under longitudinal load) 
with six cross sections and four LI; for uniform stress distribution (a)  and for the case of   
transverse crack growth. 
 
 
3. Models of failure of a series system (chain of links) with damaged items 

In the framework of considered problem, there is a special case of Cn =1 (i.e. there is only one fiber, 
strand or thread). This case was studied in [6].  Below, we remind the main ideas, make the 
necessary corrections (appropriate for notation of this paper), and provide some generalization. We 
consider a specimen as a straight binary series system with Ln  links of two types. There is a random 
number of “damaged” links , LK , 0 L LK n≤ ≤ , with strength cdf  ( )YF x  (we say that they are Y-
type links), and there are ( L Ln K− ) links with strength cdf  ( )ZF x  (we say they are Z-type links). 
“Damaged” links appear if stress in LI exceeds defect initiation stress.  The probability of this event 
at the load (stress) x  is defined by cdf of defect initiation stress ( )KF x .  
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We suppose (see [6]) that the failure process of considered system has two-stages. In the first stage, 
the process develops along the specimen and damage appear in LK , 0 L LK n≤ ≤ , links ( LK  links of 
Y-type appear).  Then the second stage takes place: the process of accumulation of elementary 
damages in crosswise direction up to specimen failure. We consider three levels of accuracy of 
description of the second stage and three corresponding probability models (probability structure). 
Level A: the development of fracture process takes place in every link (containing or not some 
initial defects) and the strength of the weakest link defines the strength of the specimen. Level AB: 
the strength of the link without defects can be (relatively) so high and probability of its fracture 
before fracture of the damaged link so small that independence of failure probability of any Z-type 
CS on Ln  can be assumed (only the probability that 0LK >  depends on the  number of links, Ln ). 
And finally, level B: in addition to the assumption of the level AB it is assumed that the cdf of 
strength of the critical link does not depend on this number also. Correspondingly we have three 
probability structures. 
 
A : 1 1min( ,..., , ,..., )

L L LK n KX Y Y Z Z −= ;  
                     

AB: 1min( ,..., ,Z),    0,

,    0;
LK L

L

Y Y K
X

Z K

>⎧⎪= ⎨
=⎪⎩

      B :  
,  0,
,  0.

L

L

Y K
X

Z K
>⎧

= ⎨ =⎩
.  

                                                          
Two different versions of the first stage can be considered also. First version: (technological) 
defects appear before the loading and their number does not depend on the subsequent loading. 
Second version: defects appear during loading (instantly or gradually) and their number depends on 
the load. 
 
3.1. For “instant fracture” version for structures A, AB, B we have correspondingly 

0
( ) 1 (1 ( )) ( )

L
L

n
n k

Z k
k

F x F x p xδ
=

= − − ∑ ,  ))(1/())(1()( xFxFx ZY −−=δ  ,                                  (6 ) 

( )( ) ( ) ( )( )
0 0

( ) 1 1 1 ( ) 1 (1 ( )) 1
L Ln n

k k
k Y Z Z k Y

k k
F x p F x F x F x p F x

= =

= − − − = − − −∑ ∑ ,         (7 )   

( ) ( ) (1 ) ( )Y Y Y ZF x p F x p F x= + − ,                                                     (8) 
where (in equations  (6, 7)) binomial probability mass function 
(pmf) ( ; , )k L Lp b k p n= = (1 ) !/ !( )!Ln kk

L L L Lp p n k n k−− −  is   probability that there is k  links of Y-type; 

01 1 (1 ) Ln
Y Lp p p= − = − −  is the probability that there is at least one link of Y-type (in this case, 

actually, it is enough to know only Yp ; we should not know two parameters Ln  and 0p  separately). 
 Binomial or Poisson pmf can be used for random number of links of Y-type , LK . In the latter case 
equations  (6, 7)  (approximately, if Ln  is sufficiently large) can be written in the following way 

( ) 1 (1 ( )) exp( (1 ( ))Ln
ZF x F x xλ δ= − − − −  ,                              (9) 

( ) 1 (1 ( )) exp( ( ))Z YF x F x F xλ= − − − ,                                     (10 ) 
where L Ln pλ = or it is just independent  parameter of Poisson pmf. If initiation of the defects 
depends on the applied load, then it can be assumed that ( )L Kp F x= ,  where ( )KF x  is the cdf of  
defect initiation load.  
 
In the numerical example considered in this paper it was assumed that the strength of defected link 
S has Weibull distribution; then )log(SY = has the smallest extreme value (sev) distribution  
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))/)exp((exp(1)( 10 YYY xxF θθ−−−= .                                        (11) 
And it was assumed also that for link without defects 

))/)exp((exp(1)( 10 ZZZ xxF θθ−−−=                                    (12) 
but for the logarithm of defect initiation stress  

))/)exp((exp(1)( 10 KKK xxF θθ−−−= .                                    (13) 
In some numerical examples it was considered that if  CZ =0θ , but 01 →Zθ , then 

⎩
⎨
⎧

≥
<

=
.  ,1
,  ,0

)(
Cx
Cx

xFZ                                                               (14) 

 
3.2. The process of gradual (during loading) accumulation of defects along the chain of Ln links 
again can be considered as a Markov chain (MC). In this case MC is in state i  if there are ( 1)i −  of 
Y-type links, i=1,...,nL+1. State 2Lni +  is an absorbing state corresponding to the fracture of 
specimen. The matrix of transition probabilities has the same form as in (5.1) .  The initial 
distribution of LK  is represented now by some row vector 1 2 , 1, , 2( , ,..., )L L L L n L nπ π π π π+ += . In the 
new approach the number of CS of Y-type and the strength of specimens are random functions of 
time, ( )LK t  and ( )X t . Now the three main structures we denote by MA, MAB and MB. They have 
the same description but instead of  LK  we should write ( )LK t . For example, for the MA we have 

1 2 ( ) 1 2 ( )( ) min( , ,..., , , ,..., )
L L LK t n K tX t Y Y Y Z Z Z −= . In similar way ( )X t is defined for the other 

structures.  
Now the ultimate strength of specimen is defined again by equations (2) but it is more convenient to 
write it in new form: 

*T
xX = ,                                                           (15) 

where  
))(:max(*

txtXtT >= .                                         (16) 
 The cdf of ultimate strength , X, is defined again by an equation similar to equation (5.2): 

1

( ) ( ( ))
t

X t L
j

F x P j uπ
=

= ∏ . 

Specifying the matrix P for probability structures A and AB. The probability that in some 
element a defect appears at the stress tx  under the condition that it has not appeared at the stress  

1−tx  is 

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))K t K t K tb t F x F x F x− −= − − . 
Consider the case of s defects present. The probability that r new defects appear, snkr −=≤≤0 , 
and the total number of defects is equal to m=s+r 

)!(!/!))(1())(()(~ rkrktbtbtp rkr
sm −−= −  

Conditional probability of Y-type link  fracture at the nominal stress tx   

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))Y Y t Y t Y tq t F x F x F x− −= − − . 
Conditional probability of Z-type link  fracture at the nominal stress tx   

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))Z Z t Z t Z tq t F x F x F x− −= − − . 
 

Corresponding probability that none of the links (of both types)  fails  when  there are  defects in m 
links  for probability structure MA is 
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( ) (1 ( )) (1 ( )) Ln mm
m Y Zu t q t q t −= − − , 

and for probability structure MAB 
( ) (1 ( )) (1 ( ))m

m Y Zu t q t q t= − − . 
The probability of coincidence of these events, which we consider as independent,  and the  
probability  of transition from state i=s+1 to state j=i+r 

)()(~)( 1)1)(1( tutptp jjiij −−−= , 
where  )1( +≤≤ nji . 
It is worth to note that if equation (14) is used and C is large enough (this means that only damaged 
CS define the strength)  then it can be assumed that ( )Zq t =0. 
 Conditional fracture probability (for both probability structure MA and MAB) at state i 

)(1)(
1

)2( tptp
n

ij
ijni ∑

+

=
+ −= . 

Of course, 0)( =tpij , if ij < , and 1)()2)(2( =++ tp nn . 
Specifying the matrix P for probability structures MB . The corresponding Markov chain has 
only three states. The first state corresponds to the absence of defective links, the second one means 
the presence of at least one defective link, and the third, absorbing one, means failure of the 
specimen. The corresponding probabilities at a t-th step are determined by the formulae 

11( ) [1 ( )] ,Lnp t b t= −   12 11( ) (1 ( ))(1 ( ))(1 )Y Zp t p t q t q= − − − ,  13 11 12( ) 1 ( ) ( )p t p t p t= − − , 
0)(21 =tp ,  22 ( ) (1 ( ))(1 ( ))Y Zp t q t q t= − − , 23 22( ) 1 ( )p t p t= − , 0)()( 3231 == tptp ,  1)(33 =tp . 

 

4. MinMaxDM distribution family 

Clearly,   all the ideas considered in the previous section can be used also for the series system of 
CS if instead of the word “link” now we use the word CS. Instead of cdf )(xFY  and )(xFZ  , which 
were defined by   (11-12) now we should use cdf of CS strength of Y-type or Z-type 
correspondingly. For building these cdf  in the following numerical examples we again suppose that 
logarithm of strength of one LI (in one CS) without defect has the smallest extreme value (sev) 
distribution: 0 0 1 1 1( ) 1 exp( exp(( ) / ))Z ZF x x θ θ= − − − . We use the logarithm scale and in this case the 
cdf of specimen strength also has location and scale parameters 0θ  and 1θ :   

0 0 1( ) (( ) / ))X
X

F x F x θ θ= − . Of course it is not the only possible assumption. Different assumptions 

about the distribution of strength of bundles within the frame of one CS (one “link”) , a priori 
distribution of initial (technological) defects, the influence of length and width of specimens 
compose a family of the distributions of ultimate composite tensile strength. Taking into account 
(2) and (3) we denote this family by abbreviation MinMaxD (in  memory of Daniels) if the strength 

* ( )
X

F x is defined by equation (4) and by abbreviation MinMaxM (because of connection with 
Markov chain theory), if  it is defined by equation (5), and for unified family we suggest an 
abbreviation MinMaxDM. 
 
5. Processing  of test data 
In this paper we consider only the application of B-structure to the test data set processing. In [5] 
there are the test results of both 64 carbon fiber strands with length 20 mm (data_1) and the same 
number of strips of 10 strands of the same length (data_2) considered. We attempt to obtain 
statistical description of data_2 using results of processing of data_1. Let ix   be i-th order statistic, 

1, 2,...,i n= , n  is the sample size; ( )iE X    is the expected value of ith order statistic,  
0

( )iE X  is the 
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same but for 0θ =0 and 1θ =1. Then for estimation of 0θ  and 1θ , if all the other parameters are 

fixed,  we have the following linear regression model: ( )iE X = 0θ + 1θ
0

( )iE X . We perform fitting of 

the data_1 and get linear regression parameter estimates 0θ
)

=6.554 and 1θ
)

=0.1243 assuming that 
sev distribution holds (here x is logarithm of strength).Then we perform fitting (expected value of 

“standard” order statistics 
0

( )iE X versus order statistics) of the data_2 (+) assuming the same type 

of distribution (see Fig. 2a). In   Fig. 2b we see the fitting of the same data_2   using 
0

( )iE X of cdf 
corresponding to MinMaxMa-Bsev model (for Pa type of matrix P, 0 ( )F x  is sev distribution, 
structure B (see equation (8) where Cn =5; Cπ is a binomial a priori distribution of CK  with 

Cp =0.01 , n = Cn =5; 0.9048Yp = ).  “Regression prediction”(*), 0 1
€ €€ ( )

o
iix E Xθ θ= + ,  using 

estimates 0θ
)

 and 1θ
)

 obtained processing  data_1 is shown also. But here we take into account 
variation of Young’s modulus also: Var(E)= 0.03). 
 Let us make additional explanations. For “fitting” of data_2  we have used  parameters, found by 
processing of the same data. For  “Regression prediction” we have used estimates 0θ

)
 and 1θ

)
 

obtained processing  data_1, which are parameters of component of monolayer  ( as if  we did not 
get the parameter estimates of data_2 while fitting these data).  However it is not PREDICTION  
but “PREDICTION”, because in fact we have used  also the estimates of “structure parameters” 

Cp , Cn  and Yp which was found processing data_2. It would be real prediction  if Cn  and Yp  are 
parameters of technology and they are nearly the same for different specimens with the same 
type of technology and are known in advance . 
Unfortunately, it is only hope, but it is not the fact. 
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                                                    a                                                         b 

Fig. 2.  Fitting (expected value of “standard” order statistics 
0

( )iE X versus order statistics)  and 
“prediction” of results  of tensile strength test of carbon fiber strip of 10 strands using sev 
distribution (a) and MinMaxMa-Bsev model (b) (see explanation in text). 

The statistic 2 2 1/2

1 1

€( ( ) / ( ) )
n n

i i i
i i

OSPPt x x x x
= =

= − −∑ ∑ , where 
1

/
n

i
i

x x n
=

= ∑  [4] , as the measure of 

fitting for Fig.1a is equal to 0.267 (for sev  distribution) and as the measure of fitting  and 
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prediction quality for Fig. 1b (for MinMaxMa.sev-B structure model)  is equal to 0.161 and 0.192 
correspondingly. 
Examples of processing data of strength of fibers of different type are given in [6]. 
Here we consider processing of the test results of carbon reinforced composite specimens 
(( 6 4 30 / 45 / 90o o o+ − )s , length : 250 mm, width : 38 mm, thickness : 1.7 mm) which are given in [8]. 
In Fig. 3a we see fitting of these data (+) using sev distribution (statistics OSPPt=0.2504). In Fig. 
3b we see fitting of the same data using MinMaxMa-Bsev model (statistics OSPPt=0.1548). 
“Prediction”  of these data using MinMaxMa-Bsev model (*) and linear regression parameter 
estimates 0θ

)
=6.554 and 1θ

)
=0.1243 of data_1 (statistics OSPPt=0.1879) is shown also . This time 

Cn =50 was used; Cπ is a binomial priori distribution of CK  with Cp =0.325 , n = Cn =50; 1Yp = . 
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Fig. 3.  Fitting (expected value of “standard” order statistics 

0
( )iE X versus order statistics)  and 

“prediction” of the tensile strength of carbon reinforced composite specimens test results (+) using 
sev distribution (a) and MinMaxMa-Bsev model (b) (see explanation in text). 
 
 
Conclusions 
We see that MinMaxMa-Bsev model provides better (than sev distribution)  fitting of results  of 
tensile strength test of carbon fiber strip of 10 strands (but only if we assume that in CS there are 
only 5 strands instead of 10 and taking into account variation of Young’s modulus!). It is not 
surprising, of course, because for MinMaxMa-Bsev we have much more parameters. Nearly the 
same can be said about processing the specimen data. This time  50Cn =  appears much more 
appropriate. The values 5Cn =  and 50Cn =  can be interpreted as the numbers  
of failures of LI which are sufficient to provoke the catastrophic failure of the specimens. Very 
large value of Cp =0.325 for specimen data set can be explained by the small relative value of ratio 
of longitudinal layer number to the total number of layers (6/(6+4+3)= 0.4615). There is a 
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temptation to use the coefficient of filling. However there is a large ambiguity of calculation of this 
value.  
 As a whole, it seems that MinMaxDM distribution family deserves to be studied much more 
thoroughly using much more test data. Interpretation of parameters of a corresponding model 
allows comparison of different composite structures and explanation of some specific features of 
failure process of composite . For example, the value Cp =0.325 indicates that at least 32.5% of the 
critical cross section does not carry the longitudinal load. 
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