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ABSTRACT 
 

In this paper, we introduce our newly created DEAR (an abbreviation of Differential 
Equation Associated Regression) theory, which merges differential equation theory, 
regression theory and random fuzzy variable theory into a new rigorous small sample based 
inferential theoretical foundation. We first explain the underlying idea of DEAR modelling, 
its classification, and then the M-estimation of DEAR model. Furthermore, we explore the 
applicability of DEAR theory in the analysis in system dynamics, for example, repairable 
system analysis, quality dynamics analysis, stock market analysis, and ecosystem analysis, 
etc.   

 
 
 
1 INTRODUCTION 
 

In real world, many phenomena can be abstracted into mathematical dynamic systems. 
Differential equation theory provides many effective models for system dynamics. The focus of a 
system dynamics should be the characteristics intrinsic to the system and its evolving or developing 
patterns. To achieve this goal, the investigation on the system ought to base on the data extracted 
from the system itself. In other words, it is critical to utilize the sample data to test and validate 
hypothesized system model. 

However, it is a well known fact that sampling from a system is usually a difficult task and an 
expensive exercise. Therefore, inference on the system dynamics based on small sample becomes 
an urgent and elementary task. Small sample inference has already obtained attention to many 
researchers, for example, in probability theory, the small sample asymptotics (Field and Ronchetti, 
1990, 1991), the Bayesian inference, in fuzzy set theory proposed by Zadeh (1965, 1978), the 
plausible inference, and particularly, in the grey system theory proposed by Deng (1985), small 
sample inference is its flashing feature. 

In this paper, to address the dilemma of using differential equation for describing continuous 
system dynamics, while only a small discrete data sequence sampled from the system is available, 
we propose Differential Equation Associated Regression, abbreviated as DEAR, model. DEAR 
theory couples differential equation and regression together (Guo et al., 2006) with delicate 
approximation schemes. However, these approximations introduce additional errors, which are 
identified as fuzzy error terms in nature. Thus, the coupled regression in DEAR theory is a random 
fuzzy regression. 
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2 NONLINEAR THINKING OF DEAR 
 

Without loss of generality, a simple linear differential equation: 
dx x
dt

α β= +                                                           (1) 

will be used in this paper for illustrative purpose. Let ( )1€ix  denote an approximation to the primitive 
function ( )x t  at it , and let i ix tD D be an approximation to the derivative function dx dt  at it , 
with 1i i it t t -D = - , and ( ) ( )1i i ix x t x t -D = - .  

Definition 2.1: If a dynamic system governed by Equation 1 is sampled at its derivative level, 
denoted by ( ) ( ) ( ) ( ){ }0 0 0 0

1 2, , , nX x x x= L , the coupled equation system 

( ) ( )0 1

                           

€ ,  1,2, ,i i i

dx x
dt

x x i n

a b

a b e

мпп = +ппнпп = + + =ппо L
                                                          (2) 

is called Type I DEAR model.  
Definition 2.2: If a dynamic system governed by Equation 1 is sampled at its primitive level, 

denoted by ( ) ( ) ( ) ( ){ }1
1 2, , , nX x t x t x t= L , the coupled equation system 

( )

                              

,  1, 2, ,i
i i

i

dx x
dt
x

x t i n
t

a b

a b e

мпп = +пппнDпп = + + =ппDпо
L

                                                          (3) 

is called Type II DEAR model. 
Note that the second equation in the paired equation system like Equation 2 and 3 is called 

coupled regression, while the first one, i.e., the differential equation is called the associated 
differential equation. 

Now, Let us examine Type I DEAR model first. The system dynamics is governed by the 
linear differential equation dx dt xa b= + , or equivalently, nonlinear functional ( ) ( ); ,x t f t a b= . If 
the sample could be very large, it is possible to perform a non-linear statistical modelling in term of 
standard maximum likelihood procedure to estimate system parameter ( ),θ α β= . However, if only 
small sample observations are available, the “best” modelling exercise is to fit a simple regression 
model ( ) 0 1€ €€x t tγ γ= +  , called primitive regression, for approximating the system 
dynamics ( ) ( ); ,x t f t a b= . Figure 1 shows that the blue-dot straight line ( ) 0 1€ €€x t tγ γ= +  will poorly 
approximate nonlinear curve ( ) ( ); ,x t f t a b=  in the ( ),t x  space (or ( ),t x -coordinate system). 
  

 
 

Figure 1. Two approximations to nonlinear curve ( ) ( ); ,x t f t a b=  in ( ),t x  space. 
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Let us consider the case where sampling observations, ( ) ( ) ( ) ( ){ }0 0 0 0
1 2, , , nX x x x= L , are collected at 

derivative level. By a linear transformation, approximations to primitive function level observations 
are obtained, denoted by ( ) ( ) ( ){ }1 2€ €, , , nx t x t x tL , say, by partial sum. In terms of Type I DEAR model 
thinking, we first fit the coupled regression, i.e., the second equation in DEAR equation system in 
Equation 2 in the ( ), 'x x  space (or ( ), 'x x -coordinate system), where 'x denotes the derivative of x  
with respect to t , i.e., 'x dx dt= . 
 

 
 

Figure 2. Type I approximation in ( ), 'x x  space. 
 

From the fitting of the coupled regression, ( ) ( )0 1€i i ix xa b e= + + , the estimator of parameter 
( ),θ α β= , denoted by ( )€ €€,q a b=  is obtained. Now, in the ( ), 'x x  space, we fit straight line €€ €€'x xa b= +  

to approximate the straight line 'x xa b= + .  It is obvious this model goodness-of-fit could be very 
good even with small sample. 

Once the parameter ( ),θ α β=  is obtained, by solving the approximated linear differential 

equation €€dx dt xa b= + , we will obtain an approximated nonlinear curve ( )( )1
0

€€' ; , ,x t xj a b= , 

(yellow-colored curve in Figure 1), which is expected to approximate the primitive curve in 
relatively high accuracy. 

 

 
 

Figure 3. Type II approximation in ( ), 'x x  space. 
 

Let us consider the case in which the sampling observations are collected at primitive 
function level, denoted as ( ) ( ) ( ) ( ){ }1

1 2, , , nX x t x t x t= L . Then in terms of DEAR Type II model 
thinking, the derivatives could be approximated, for example, by the divided difference, i.e., 

i ix tD D , or other approaches available. Just as shown in Figure 3, fitting €€ €'x x t xa b= D D = +  for 



R. Guo, D. Guo – DEAR THEORY IN SYSTEM DYNAMIC ANALYSIS 

 
R&RATA # 2(13) part 1  

(Vol. 2) 2009, June 
 

 

67 

approximating line 'x xa b= + . Similarly, the estimated parameter  ( )€ €€,θ α β=  will lead the 

nonlinear approximation ( )( )1
0

€€' ; , ,x t xj a b=  to the primitive function ( ) ( ); ,x t f t a b=  in ( ),t x  space 

(shown in Figure 1). 
It is necessary to emphasize here that DEAR model is often starting with hypothesized 

differential equation model for a system dynamics and then obtaining the corresponding coupled 
regression. The converse direction is also possible. In other words, after a regression model is 
established based on the small sample data extracted from an unknown system dynamics, an 
appropriate differential equation is selected according to the Coupling Principle stated in Guo et al. 
(2006) and then the DEAR model is built up. For example, a set of system data ( ){ }, 1,2, ,ix t i n= L  
is collected and a fitted regression model takes the form 

( )( ) ( ) ( )0€ mi
i i i

i

xx t x t x t
t

a bD= = +
D

                                                          (4) 

Then, the associated differential equation is a Bernoulli equation of the form: 

( )2( ) mdx p t x q t x
dt

+ =                                                           (5) 

Then a Type II DEAR model is established 

( ) ( )

                   m

mi
i i i

i

dx x x
dt

x x t x t
t

a b

a b e

мпп = +пппнDпп = + +ппDпо

                                                          (6) 

It should be fully aware that the solution to the estimated Bernoulli equation 
€€ mdx x x

dt
a b= +                                                           (7) 

which results in a solution 

( ) ( )( )( ) ( ) ( )1€ 11
1

€€€; , 1 , 0,1
€

m t tmt e c t mabj a b
a

- --= - + №                                                           (8) 

for facilitating the nonlinear approximation to the true system dynamics ( ); , ,x f t a b g= . 
 
3 RANDOM FUZZY VARIABLE FOUNDATION FOR DEAR 
 

In order to achieve the target of nonlinear modeling with small sample, DEAR utilizes various 
approximations. Type I DEAR model utilizes the approximation of an integral (i.e., primitive 

function) by partial sum, ( ) ( )( )1
2

€ '
i

i i i j
j

x t x t t t −
=

= −∑  and Type II DEAR model relies on the 

approximation of a derivative, ( )' ix t , by divided difference, ( ) ( )( ) ( )1 1i i i ix t x t t t− −− − . 
The approximation brings error, which is fuzzy in nature according to nonclassical 

mathematical analysis. The total error term, i i ieε ζ= + , in coupled regression will come from two 
error sources: random sampling error, denoted by e , and the approximation-caused fuzzy error, 
denoted by ζ . Therefore, the coupled regression is a random fuzzy variable regression. Therefore, 
we need to have some knowledge of random fuzzy variable theory.  

Random fuzzy variable is a special case of hybrid variable defined in a chance space proposed 
by Liu (2004), which is a Cartesian product of a probability space and a credibility space for 
describing hybrid events in which randomness and fuzziness coexist.  
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Definition 3.1: (Liu, 2007) Let ( ),2 ,CrQQ  be a credibility measure space and ( ), ,PrAW  a 

probability space. The product ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  is called a chance space. 

Typically, the product ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  may be written as ( ),2 ,Cr PrAQQґ W ґ ґ . The 

Cartesian product space Θ×Ω  is typically defined by  ( ){ }, : ,θ ω θ ωΘ×Ω = ∈Θ ∈Ω  and the 

Cartesian product σ -algebra { }2 : 2 ,A B A BΘ Θ× × ∈ ∈A = A , which is a special σ -algebra 

constituted by events with product form ,  2 ,A B A BΘ× ∈ ∈A . Note here that 2Θ  is the power set of 
space Θ , which is the largest σ -algebra of set Θ , while A  is just a σ -algebra of set Ω . 
Therefore, 2Θ ×A  is a σ -algebra of set Θ×Ω , but a very special one. As to Cr Pr×  which is a 
product measure of the two essential uncertain measures: credibility measure and probability 
measure. Nevertheless, the product measure may take different forms. One of them, which satisfies 
the requirements of uncertainty measure proposed by Liu (2004), is called the chance measure, 
denoted as { }Ch , which is composed of the two essential measures: credibility measure and 
probability measure.  

Definition 3.2: (Liu, 2007) Let ( ) ( ),2 ,Cr , ,PrAQQ ґ W  be a chance space and an (measurable) 
event of form Z X Y= ×  such that { } { }: : 2Z X Yθ θ ω ω Θ= ∈ ⊂ Θ × ∈ ⊂Ω ∈ ×A , then a chance 
measure is defined as: 

{ }
{ } ( ){ }( ) { } ( ){ }( )
{ } ( ){ }( ) { } ( ){ }( )

sup Cr Pr if sup Cr Pr 0.5
Ch

1 sup Cr Pr if sup Cr Pr 0.5c

Z Z
Z

Z Z
θ θ

θ θ

θ θ θ θ

θ θ θ θ
∈Θ ∈Θ

∈Θ ∈Θ

⎧ ∧ ∧ <
⎪= ⎨
− ∧ ∧ ≥⎪

⎩

                                                          (9) 

If the product measure Cr Pr×  is defined by the chance measure defined in Definition 2.9, i.e., 
{} {}Cr Pr Ch× ⋅ = ⋅ , then the chance measure space ( ) ( ),2 ,Cr , ,PrAQQ ґ W  may be written as 

( ), 2 ,ChQQґ W ґ A . 

Definition 3.3: (Liu, 2007) Let ( ),2 ,ChQQґ W ґ A  be a chance space. A hybrid variable 

( ): ,2 ,Chξ ΘΘ×Ω × → RA  is a measurable function from the chance space into a set of real numbers. 

In other words, for any Borel set of real numbers, ( )B∈ RB , event 

( ) ( ){ }, : , 2Bθ ω ξ θ ω Θ∈Θ×Ω ∈ ∈ ×A . 
The typical examples of hybrid variables are fuzzy random variable and random fuzzy 

variable.  Liu (2004, 2007) defines a random fuzzy variable as a measurable mapping from the 
credibility space ( ),2 ,CrQQ  to a set of random variables.  Again, we should be aware that a random 
fuzzy variable here takes real numbers as its values, which behaves very similar to a random 
variable.  

Definition 3.4: Let ( ),2 ,ChQQґ W ґ A  be a chance space and ξ be a hybrid variable. Then the 

chance distribution ( ) [ ]: ,2 ,Ch 0,1Θϒ Θ×Ω × →A  for ξ if and only if: 

( ) ( ) ( ){ } = Ch , : ,x xθ ω ξ θ ωϒ ∈Θ×Ω ≤                                                           (10) 

Theorem 3.5: (Liu, 2007) Let ( ),2 ,ChQQґ W ґ A  be a chance space. A function [ ]: 0,1ϒ →R  
is a chance distribution for a hybrid variable ξ  if and only if: 
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( ) ( )
( ) ( ) ( ) ( )

lim 0.5 lim

lim   =  if lim  0.5 or 0.5 
x x

y x y x

x x

y x y x
→−∞ →+∞

↓ ↓

ϒ ≤ ≤ ϒ

ϒ ϒ ϒ > ϒ ≥
                                                          (11) 

Definition 3.6: (Liu, 2007) Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ( )ϒ ⋅ be the chance 
distribution for a hybrid variableξ , a function [ ): 0,ϕ → +∞R  is called as a chance density if and 
only if: 

( ) ( )

( )

d

d  = 1

x

x y y

y y

ϕ

ϕ

−∞

+∞

−∞

ϒ = ∫

∫
                                                          (12) 

Definition 3.7: Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ( )ϒ ⋅ be the chance distribution 
for a hybrid variableξ . The chance distribution ( )ϒ ⋅ is absolutely continuous if and only if the 
chance density ( )ϕ ⋅ is continuous.  

The discussions of the chance distribution ( )ϒ ⋅ will be limited in the class of absolutely 
continuous chance distributions. 

Theorem 3.8: Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ( )ϒ ⋅ be the chance distribution for 
a hybrid variableξ , which is absolutely continuous. Then: 

( ) ( )
( ) ( )

0,  1

 if ,  ,x y x y x y

ϒ −∞ = ϒ +∞ =

ϒ < ϒ < ∀ ∈R
                                                          (13) 

Furthermore, the inverse function of {}ϒ ⋅ exists and is denoted as ( )1−ϒ ⋅ .  

Definition 3.9: (Liu, 2004) Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ξ be a hybrid 
variable. Then the expected value of ξ  is defined by: 

[ ] { } { }
0

0

E Ch d Ch dr r r rξ ξ ξ
+∞

ϒ
−∞

= ≥ − ≤∫ ∫                                                           (14) 

Let [ ]Ee ξϒ= , then the variance is defined as [ ] ( )2EV eξ ξϒ ϒ
⎡ ⎤= −⎣ ⎦ .  

Finally, let us discuss the average hance measure concept given by Liu (2007).  

Definition 3.10: Let ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  be a chance space and ξ  be a random fuzzy 
variable, then the average chance distribution is  

( ) { } ( ){ }{ }
1

0

ch Cr :Pr , dx x xξ θ ξ ω θ β βΨ = ≤ = ≤ ≥∫                                                           (15) 

and the average chance density is a positive function :ψ +→R R  such that 

( ) ( )d
x

x u uψ
−∞

Ψ = ∫                                                           (16) 
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If the product measure Cr Pr×  is defined by the average chance measure defined in Equation 
10, i.e., {} {}Cr Pr ch× ⋅ = ⋅ , then the average chance measure space ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  may be 

written as ( ),2 ,chAQQґ W ґ . 
The error structure in the dear modelling theory is assumed to be random fuzzy 

eε τ= +                                                           (17) 
in which e is the fuzzy approximation error to the derivative and τ is the random error term. 
For inference purposes, similar to statistical linear model theory, it is typically assumed that the 
random error is normal variable with zero-mean and constant variance, i.e., ( )20,Nτ σ� . 

However, the fuzzy error e is intrinsically dependent upon point x , the difference on x when 
using divided difference to approximate derivative at point x . Let e be assumed to be a triangular 
fuzzy variable with a membership having parameter ( ), ,x a x x b− + , 0, 0a b> > , 

( )
0        otherw ise

e

u x a x a u x
a

b u xu x u x b
b

μ

− +⎧ − < ≤⎪
⎪

− +⎪= < ≤ +⎨
⎪
⎪
⎪⎩

                                                          (18) 

Accordingly, the credibility distribution function of fuzzy error e at point x is 

( )
( )
0         if 

if 
2

  if 
2
1          if 

e x a
e x a

x a e x
ae

e b x x e x b
b

e x b

≤ −⎧
⎪ − −⎪ − ≤ <
⎪Λ = ⎨

+ −⎪ ≤ < +⎪
⎪ ≥ +⎩

                                                          (19) 

 
Then the average chance distribution of normal random fuzzy error term ε  at point x takes a form 

( ) ( )

( ) ( )

( )

( )

( )
2

2

( )d ( )d
2 2

x a x

x x b

x a x a x
a

x b x bb x x
b

u u u u u u
a b

ε ε
σ σ

ε ε
σ σ

ε ε εε
σ σ

ε εε ε
σ σ σ

σ σφ φ

− − −

− − +

⎛ ⎞− − − −⎛ ⎞ −⎛ ⎞Ψ = Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞ ⎛ ⎞+ − −⎛ ⎞+ Φ −Φ +Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− −∫ ∫

                                                          (20) 

and the average chance density is 
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( )

( ) ( )

( )

( ) ( )

( ) ( )

1( )
2

2

1
2

1
2

1 ( )
2

x a x
a

x a x a x
a

x bx
b

x b x bb x x
b

x a x a
a

ε εψ ε
σ σ

ε ε εφ φ
σ σ σ

εε
σ σ

ε εε εφ φ φ
σ σ σ σ σ

ε ε εφ
σ σ

⎛ ⎞− −⎛ ⎞ −⎛ ⎞= Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− − − −⎛ ⎞ −⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞− +⎛ ⎞−⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞ ⎛ ⎞+ − −⎛ ⎞+ − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− − − − −
− −

( ) ( )1
2

x x

x b x bx x
b

εφ
σ σ

ε εε εφ φ
σ σ σ σ

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞− −⎛ ⎞− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

                                                          (21) 

i.e.,  

( ) ( )

( )

1
2

1
2

x a x
a

x bx
b

ε εψ ε
σ σ

εε
σ σ

⎛ ⎞− −⎛ ⎞ −⎛ ⎞= Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− +⎛ ⎞−⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

                                                          (22) 

 
where ( )φ ⋅ and ( )Φ ⋅ are the probability density function and cumulative distribution function of 
standard normal random variable respectively.   
 
4 M-ESTIMATOR FOR DEAR PARAMETERS 
 

Assuming that the system is sampled at system primitive function level, ( )x t , the n 
observation is denoted by ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1

1 2, , , nX x t x t x t= L , then a Type II model of dear subfamily 
takes a form 

( )( ) ( ) ( )( )

2
0 1 2

1
12

0 1 2
k

k k k k
k

dx x q q t q t
dt

x t
y q q t q t x t

t

b

b

мпп + = + +ппппнп Dп = = + + + -пп Dппо

                                                          (23) 

According to Liu’s Maximum Uncertainty Principle (Liu, 2007), for independent random fuzzy 
variables, the object function can be formed in the following way,  

( )

( )( )( )( )
0 1 2

2
2

0 1 2
2

, , , ; , ,

0.5
n

h k k k k
k

J q q q a b

y q q t q t x

β σ

β
=

= Ψ − + + + − −∑                                                           (24) 

Denote ( )2
0 1 2k k k k iy q q t q t xε β= − + + −  

( )

( )( ) ( )

( )( ) ( ) ( )

0 1 2 3

2

2

, , , ; , ,

2 0.5

2 0.5 0

i
n

k k
k i

n
k

k k
k i

J a bθ θ θ θ σ
θ

ε ε
θ

ε
ε ψ ε

θ

=

=

∂
∂

∂
= Ψ − Ψ

∂

∂
= Ψ − =

∂

∑

∑

                                                          (25) 

Then M-functional equation system is then 
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( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )
( )

20

21

2

22

2

2 2

2 0.5 0

2 0.5 0

2 0.5 0

2 0.5 0

0.5 ( )d
2 2

k k

k k

n

k k
k

n

k k k
k

n

k k k
k

n

k k k
k

x a

k kk k k k
k

k x

J
q
J t
q
J t
q
J x

x ax xJ u u u
a a a

ε
σ

ε
σ

ε ψ ε

ε ψ ε

ε ψ ε

ε ψ ε
β

εε ε σε φ
σ σ

=

=

=

=

− −

−

∂
= − Ψ − =

∂

∂
= − Ψ − =

∂

∂
= − Ψ − =

∂

∂
= Ψ − =

∂

⎛ ⎞
⎛ ⎞− −⎛ ⎞⎜ ⎟− −∂ ⎛ ⎞= Ψ − Φ −Φ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

∑

∑

∑

∑

∫

( )( ) ( )
( )

2

2 2
2

0

0.5 ( )d 0
2 2

0
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∑

∑ ∫

                                          (26) 

where 
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                                (27) 

Then, the solution to the M-equation (non-linear) equation system, denoted as 
( )0 1 2

€€€ € € € €, , , , , ,q q q a bβ σ , is called an M-estimator of Subfamily A of dear model. Particularly, 

( )0 1 2
€€ € € €, , ,T q q q βΓ =  is the M-estimator for the coefficients defining the motivated differential equation.   
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∑

∑

∑

                                                          (28) 

Define  
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                                                          (29) 

then  
( ) ( ) ( )0.5k k k kgε ε ψ ε εΨ − = −                                                           (30) 

Further define 
2

0 1 2
€€ € € €k k k ky q q t q t xβ= + + −                                                           (31) 

Denote 
( )

( )

( )

( )
( )

( )

2
2 2 22 2 2

2
3 3 313 3 3

2

0 01
0 01

,  ,  ,  

0 01n n nn n n

y gt t x
y gt t x

y X W g

y gt t x

ψ ε ε
ψ ε ε

ψ ε ε

−

⎡ ⎤ ⎡ ⎤⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

L

M M M O M MM M M M

L

                                                 (32) 

Equation 28 can be written as an adjusted weighted normal equation form 
T T TX W X X W y X g− −Γ = +2 1                                                           (33) 

Finally, the coefficient M-estimator €Γ  satisfies the adjusted weighted normal equation, 
Equation 33, which is expected to play critical roles in the variance-covariance estimation for 
the M-estimator €Γ  by noticing that 

( ) ( )€ T T T TX W X X W y X W X X g
− −− − −Γ = +
1 12 1 2                                                           (34) 

Remark 4.1: The M-estimator for coupled differential equation coefficients actually 
specify the dynamics fully. However, we need to be aware that €Γ  itself is a random fuzzy vector 
because the random fuzzy nature of  the “observations” { }ky . 
 
5 APPLICABILITY OF DEAR MODEL 
 

DEAR model in nature revealing the intrinsic changing dynamics of a continuous system. The 
final mathematical structure is an estimated differential equation for approximating the true 
dynamics. Therefore DEAR model may apply to any system governed by differential equation(s). 
 
5.1 Repair effect estimation 
 

Repairable system analysis and maintenance optimization are a problem to reveal the law of 
the system functioning dynamics and the evaluation of repair effects in terms of system 
performance data in statistical sense. It is noticeable that another class of system maintenance 
optimization papers appeared in journals and conferences, however, most of them are seeking 
“system optimum” under mathematical assumptions without justifications in terms of actual system 
performances. It is obvious the later models are in mathematical sense. 

The repairable system dynamics in DEAR platform assumes that a system is governed by 
differential equation (either single one or a set of equations), say ( );T f t q= . Due to various 
internal and external causes, system demonstrates a repeated pattern of functioning, stop, repairing, 
and resuming function again (Guo, 2007). As an illustration, let us assume the system dynamics is 
governed by 
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dT T T
dt

α β γ= + +2                                                           (35) 

Then from system functioning time records, denotes as ( ) ( ) ( ){ }1 2, , , nT t T t T tL . Then the DEAR 
system is 

( ) ( )

                           

i
i i i

i

dT T
dt
T T t T t
t

α β

α β γ ε

⎧ = +⎪⎪
⎨Δ⎪ = + + +
Δ⎪⎩

2

                                                          (36) 

Let ( ) ( )( )diag i
i i

i

T
W T t T t

t
δ α β γ−
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2

1 2  and 

( ) ( )
( ) ( )

( ) ( )

,  ,   
                 

n n n

T t T t T t
T t T t T t

Y X

T t T t T t

α
β
γ
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⎡ ⎤ ⎢ ⎥⎢ ⎥Δ Δ ⎢ ⎥ ⎢ ⎥⎢ ⎥= Π = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦Δ Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2
1 1 1 1

2
2 2 2 2

2
2

1
1

1

M M M M

                                                          (37) 

Then the M-estimator for Π  is 

( )€ T TX W X X W Y
−− −Π =
11 1                                                           (38) 

Hence the approximate Riccati equation takes the form 
€€ €dT T T

dt
α β γ= + +2                                                           (39) 

Denote the solution to Equation 33 by ( )€ €,T tϕ= Π , which will be used to approximate the true 
system functioning dynamics ( ),T f t= Π . Also denote the “weighted” residual by €w

ie  resulting from 
Equation 36. Define the residual  

( ) ( ) ( )( )€€ €€i i i ie T t T t T tα β γ= − + +                                                           (40) 
The actual function time can be partitioned into three terms: 

( ) ( )€ € €w
i i i iT t T t e r= + +                                                           (41) 

It is obvious that the fitted dynamics ( )€
iT t  and weighted residual €w

ie  are DEAR-explained. 
Notice that the term € € €w

i i ir e e= −  is DEAR-unexplained quantity. Therefore the logical interpretation 
of  €ir  is repair effect (accumulated at time it ). In general, { }€ € €, , , nr r r1 2 L  are random fuzzy quantities so 
that the parameters for the average chance distribution of { }€ € €, , , nr r r1 2 L  can be obtained. 
 
5.2 DEAR predictive quality control charts 
 

Carvalho and Machado (2006) pointed, “In a global market, companies must deal with a high 
rate of changes in business environment. … The parameters, variables and restrictions of the 
production system are inherently vagueness.” In other words, the shortening product life cycle and 
diversification have brought the vagueness and randomness together, which is a form of hybrid 
uncertainty, into manufacturing systems. Therefore, the traditionally continuous production and 
large sample based quality control schemes may not be suitable. Therefore establishing small 
sample oriented approximate quality index differential equation in terms of DEAR theory, which 
enjoys highly predictive power will help quality assurance in today’s industries greatly. 

Guo (2006) and Guo and Dunne (2006) have explored the predictive quality control schemes 
in terms of grey differential equation model. The DEAR-predictive control schemes will avoid the 
weakness in earlier work and offer a more rigorous development.  
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5.3 Climate Change Modelling 
 

Climate changes have posed high risk on earth ecosystems. Environmental research 
communities now successfully convince governmental leaders worldwide and let the climate 
change become a hot topic. Biodiversity evolution is also a system dynamics governed by 
complicated differential equation systems. The critical issue is the parameter estimation for the 
differential equation systems. Biodiversity researchers have managed initial success in terms of 
multivariate version of DEAR model – PDEAR, for example, D. Guo et al. (2007, 2008), and R. 
Guo et al. (2008). Predictably, DEAR modeling in ecosystem will get more and more attention in 
the future. 
 
6 CONCLUDING REMARKS AND OPEN QUESTION 
 

In this paper we introduce a new small sample based continuous differential equation 
modeling theory. We use a simple linear equation in Equation 1 for illustrative purposes, however, 
as we pointed out that DEAR contains a collection of rich families. Table 1 offers a collection of 
partial families in Type II DEAR model.  
 

Table 1. The richness of DEAR families 
 

Family Type II DEAR 
 

Family 1 

( )

0 1

0 1

          

k
k k

k

dx x
dt
x

x t
t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪Δ⎩
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0 1

0 1

            

k

t

tk
k k

k

dx e x
dt
x

e x t
t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

 

 
Family 3 ( )

( ) ( )

0 1

0 1

sin               

sink
k k k

k

dx t x
dt
x

t x t
t

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪ Δ⎩
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0 1

0 1

sin                

sink

t

tk
k k k

k

dx e t x
dt
x

e t x t
t

δ

δ

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪Δ⎩

 

 
Family 5 ( )

( ) ( )

0 1

0 1

            q

k
q k k k

k

dx p t x
dt
x

p t x t
t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪Δ⎩

 

 
Family 6 ( )

( ) ( )

0 1

0 1

             

k

t
q

tk
q k k k

k

dx e p t x
dt
x

e p t x t
t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩
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Family 7 ( ) ( )

( ) ( ) ( )

0 1

0 1

sin               

sin

q

k
q k k k k

k

dx p t t x
dt
x

p t t x t
t

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪Δ⎩  

 
However, there are many open questions and many challenges in future DEAR developments. 

The first one is model specification (or identification) problem. It is true that DEAR model starts 
with a hypothesized differential equation model. Given real-world dynamic system, it is often there 
is no priori knowledge on the system and thus many possible candidate differential equation models 
may be suitable for the hypothesized model. Which one would be the best? We can not guarantee 
anything, particularly under the small sample availability. The second question is the model 
validation problem, which can be considered from the two aspects: the filtering the existing data (or 
backward prediction) and the extrapolation (or forward prediction). In either case, model accuracy 
criteria are required to be investigated, particularly, we have to admit that the average chance of 
quadratic forms and ratio of them are undeveloped yet. The third open question is given a set of 
data, the DEAR model may just start with a set of subset regression models and then couple with 
corresponding differential equation models. For example, Table 2 lists a set of data from a system. 

 
Table 2. A system state recording data 

 
No. Time kt  Obs ( ) ( )1

kx t  Approx. Der. ( ) ( )0€ kx t  Der. ( ) ( )0
kx t  

1 0.50 7.1788 N/A  
2 0.55 7.1236 -1.104573 -1.0198 
3 0.60 7.0768 -0.935078 -0.8504 
4 0.65 7.0385 -0.765817 -0.6813 
5 0.70 7.0087 -0.596785 -0.5123 
6 0.75 6.9873 -0.427976 -0.3436 
7 0.80 6.9743 -0.259385 -0.1752 

 
For this data set, Table 3 lists 10 sub-regression models with excellent R-square value and 

significant regression coefficients.  
  

Table 3. 10 fitted sub-regression models 
 

No. Sub-Regression Fitted 2R  
1 

( )(0.001122) 0.00165
2.9636 3.380732y t= − +  

0.99999 

2 
( ) ( )3.9293678 0.5585406

37.534371 5.432364y x= −  0.95943 

3 
( ) ( ) ( )

2

0.000129 0.000387 0.000286
2.98385 3.44172 0.01458y t t= − + −  

1.00000 

4 
( ) ( ) ( )0.0011942 0.0000979 0.0001605
2.76468 3.36477 0.02674y t x= − + −  

1.00000 

5 
( ) ( ) ( )

2

0.0002931 0.0000456 0.0000053
2.86031 3.36499 0.00187y t x= − + −  

1.00000 

6 
( ) ( ) ( ) ( )

2

1.0591 08 3.7187 09 2.1831 09 1.2924 09
1.165377 1.984874 0.810084 0.506302

E E E E
y t t x

− − − −
= + + −  

1.00000 

7 
( ) ( ) ( ) ( )

2 2

0.01040532 0.00646298 0.00380509 0.00015769
2.761762 3.303776 0.036038 0.003366y t t x= − + + −  

1.00000 
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8 
( ) ( ) ( ) ( )

2 2

0.01330144 0.00001955 0.00373362 0.00026212
7.0753757 1.9749804 1.2682231 0.0050625y t x x= + − +  

1.00000 

9 
( ) ( ) ( ) ( )

2

0.0000347 0.0167259 0.0046466 0.0003216
2.951019 0.626354 1.180800 0.087259y t tx tx= − − + −  

1.00000 

10 
( ) ( ) ( )

2

287.0542 81.4615 5.7791
1255.3080 351.0223 24.5172y x x= − +  

0.99420 

 
As a matter of fact, the true system dynamics is close to sub-regression 6 is 

2
0 11.20 2.0 0.80 - 0.50dx q q t t x

dt
= + +                                                           (42) 

But the data-fitted differential equation is 

( ) ( ) ( ) ( )
2

1.0591 08 3.7187 09 2.1831 09 1.2924 09
1.165377 1.984874 0.810084 0.506302

E E E E

dx t t x
dt − − − −

= + + −   .                                                        (43) 

 
ACKNOWLEDGEMENTS 
 
This research is partially supported by South African National Research Foundation Grant 
FA2006042800024. Authors deeply appreciate referee’s invaluable comments on open question 
aspects. 
 
REFERENCES 
 
1. Carvalho, H. and Machado, V.C.  (2006). Fuzzy set theory to establish resilient production 

systems. IIE Annual Conference, Orlando, USA, Maio 2006. 
2. Deng, J.L. (1985). Grey Systems (SocialЧEconomical). Beijing: the Publishing House of 

Defense Industry. (in Chinese) 
3. Dubois, D. and Prade, H. (1980). Theory and Applications, Fuzzy Sets and Systems. New York: 

Academic Press. 
4. Field, C.A. and Ronchetti, E. (1990). Small Sample Asymptotics. Institute of Mathematical 

Statistics, Lecture Notes-Monographs Series 13, USA. 
5. Field, C.A.  and Ronchetti, E. (1991). An Overview of Small Sample Asymptotics, in: W. 

Stahel, S. Weisberg (eds.), Directions in Robust Statistics and Diagnostics, Part I. New York: 
Springer-Verlag. 

6. Guo, D., Guo, R., Midgley, G.F. and Rebelo, A.G.  (2007). PDEMR Modelling of Protea 
Species in the Population Size of 1 to 10, in Cape Floristic Region from 1992 to 2002, South 
Africa. Journal of Geographical Information Sciences, Vol. 12, No. 2: pp. 67-78. 

7. Guo, D., Guo, R., Midgley, G.F., and Rebelo, A.G. (2008). PDEAR Model Prediction of Rare 
Protea Species under Climate Change Effects. Proceedings of GISRUK 2008, Manchester 
Metropolitan University, UK, April 2-4, 2008. 

8. Guo, R. (2006).Grey Envelop Quality Control Charts. Journal of Quality, Vol. 13, No. 4, pp 
401-410.  

9. Guo, R. (2007). Grey Differential Equation GM(1,1) Model in Reliability Engineering. Chapter 
26, pp 387-413. “Computational Intelligence in Reliability Engineering – Vol. 2. New 
Metaheuristics, Neural and Fuzzy Techniques in Reliability”, Springer, Gregory Levitin 
(Editor).  

10. Guo, R. (2007). Modeling Imperfectly Repaired System Data Via Grey Differential Equations 
with Unequal-Gapped Times. Reliability Engineering and Systems Safety, Vol. 92, Issue 3, 
March, pp. 378-391. 



R. Guo, D. Guo – DEAR THEORY IN SYSTEM DYNAMIC ANALYSIS 

 
R&RATA # 2(13) part 1  

(Vol. 2) 2009, June 
 

 

78 

11. Guo, R. (2007). An Univariate DEMR Modeling on Repair Effects. Reliability: Theory & 
Applications. Vol. 2, No. 3-4, pp 89-98, December 2007.  (Electronic Journal of International 
Group on Reliability – Gnedenko E-Forum). 

12. Guo, R., Guo, D., and Thiart, C. (2006). The Coupling of regression Modelling and Differential 
Equation Model in GM(1,1) Modelling and Extended GM(1,1) Models, Journal of Grey 
System, 9(2) pp143-154. 

13. Guo, R. Guo, D., Midgley, G.F. , and Rebelo, A.G. (2008) “PDEMR Modelling of Protea Rare 
Species Spatial Patterns” Journal of Uncertain Systems, Vol. 2, No. 1, pp. 31-53. February, 
2008.   

14. Guo, R. and Dunne, T. (2006) Grey Predictive Control Charts. Communications in Statistics – 
Theory and Methods, Vol. 35, No. 10, pp. 1857-1868, 2006.  

15. Liu, B.D. (2004).Uncertainty Theory: An Introduction to Its Axiomatic Foundations. Berlin: 
Springer-Verlag Heidelberg. 

16. Liu, B.D.  Uncertainty Theory: An Introduction to Its Axiomatic Foundations, 2nd Edition 
2007; Berlin: Springer-Verlag Heidelberg.  

17. Zadeh, L.A.  Fuzzy Sets. Information and Control 1965; Vol. 8: 338-353. 
18. Zadeh, L.A.  Fuzzy sets as basis for a theory of possibility. Fuzzy Sets and Systems 1978; Vol. 

1: 3-28. 


