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ABSTRACT

The paper is concerned with the exact and asymptotic calculations of the availability,
average failure rate and MTTF (Mean Time To Failure) for a recursive, meshed architecture
proposed by Beichelt and Spross. It shows that the asymptotic size dependences of average
failure rate and MTTF are different, but not inverse of each other, as is unfortunately
assumed too frequently. Besides, the asymptotic limit is reached for rather small networks.

1 INTRODUCTION

Network availability and reliability have long been a practical issue in telecommunication
networks, among others. Quality of Service (QoS) requirements imply high avallablhtles A, but also
a good knowledge of the failure frequency v — and of the average failure rate A=v /A —of (for
instance) point-to-point connections, when the system is repairable. When the system is not
repairable, an important parameter is the MTTF (Mean Time To Failure). As explained in many
textbooks (Shooman 1968, Singh & Billinton 1977, Kuo & Zuo 2003), a system whose failure rate

A is constant over time has a reliability described by the exponential distribution R(?) = exp(-A ¢), so
that the MTTF, defined by

MTTF ={f)= Tr (—R'(t)dt)=_TR(t)dt, 1)

is in this case MTTFc, = 1/A. This may lead to confusions in repalrable systems, where it may still
be legitimate to consider constant failure rates for each element of the system, and yet obtain an
average failure rate A .If 4 is the availability of a system made of m elements — whose failures are
assumed to be statistically independent — having individual availabilities p; (1 <7 < m) and constant

failure rates A;, then (Buzacott 1967, Singh & Billinton 1974, Schneeweiss 1981, 1983, Shi 1981,
Hayashi 1991, Druault-Vicard & Tanguy 2006)

— 1. 04
A== p 2. 2
A; Py, (2)

Most results of the literature are devoted to series-parallel systems, where all components are
identical, with the same (constant) failure rate A. For n components in series, A(p) = p" so that the

aggregate failure rate is equal to A=1 i ZA =n A . The reliability of n components in series is R(?) =
P
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[exp(-A 1)]" = exp(- n A t), which gives MTTF = 1/(n ). For n components in parallel however, R(?)
= 1-(1-exp(-A ©))", which leads to

I &1 1 1
MTTF =— > —=—|Inn+C+—+... 3
parallel /1 Zl /1( 2n j ( )

for n large (Shooman 1968, Kuo 2003) and where C = 0.577216... is the Euler constant. Quite
generally, it is therefore important to estimate the reliability and related parameters of large systems
in order to get a better understanding of key issues (Kotowrocki 2004).

In this work, we consider a recursive, meshed — not series-parallel — network configuration first
considered by Beichelt and Spross (Beichelt & Spross 1989) as well as Prékopa and collaborators
(Prékopa et al. 1991). For the repairable case we shall use the availability A(p), and in the non-
repairable case the reliability R(p(?)), even though A(p) and R(p) are formally identical for the same
network made of identical components. We show in detail that when such a system is large,
knowledge of the generating function of the reliability/availability allows us find the analytic,
asymptotic expressions forA and MTTF. These expressions, which both have simple n-
dependences, are not the inverse of each other: while for 4 , we find again a linear dependence in n
(Druault-Vicard & Tanguy 2006), we obtain a n”'”> dependence for the MTTF. Besides, they are in
very good agreement with the exact values even when »n remains relatively small.

2 NETWORK ARCHITECTURE: A CASE STUDY

2.1  Description

The network configuration defined by Beichelt and Spross (Beichelt & Spross 1989) is represented
in Figure 1. They wanted to estimate the two-terminal reliability between the endpoints of the
structure (in the original paper, the destination point was Sg).

Figure 1. Recursive network architecture (Beichelt and Spross 1989). The source is Sy and the destination is S,.

Following the method developed in (Tanguy 2007), we have been able to show that the two-
terminal reliability between Sy and S, may be expressed as a product of transfer matrices, in which
each edge or link probability of functioning is arbitrary. It turns out that this transfer matrix is
15x15. However, if nodes are perfect and if links have the same reliability/availability p, things are
much simpler, because a single transfer matrix needs be considered, the successive powers of which
are to be calculated. Fortunately, these necessarily obey a recursion relation of finite order
stemming from the characteristic polynomial of the transfer matrix. When dealing with Rel,(Sy —
Sy) = Rel,™, a very useful tool is the generating function formalism (Stanley 1997), since it encodes
the exact result in a very concise manner.
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2.2 Generating function of the reliability/availability

The generating function G(z) = X, Rel,(p) z" may eventually be written as G(z) = N(z)/D(z)
(Tanguy 2007), where

N(2)=1-(1-p)’ p(1+4p+8p>-20p> +9p*) z
-(1-p)’ p*(-2-Tp+13p> +26p° -74p* +38p° +29p° -34p” +9p*) z*
-(1-p)° P’ (+6p-1Tp° +4p  +3p* +5p° - 14p° +8p" +5p° -7p° +2p'") 2’
-(1-p)° p*(2+16p* —4p* —36p* +34p° - T1p° -3p" +p*) z*
+(1-p)13p”(—1+3p—p2—3p3+p4)25, (4)
D(z)=1-p (2+4p—-p*>-33p> +58p* -38p° +9p°)z
+(1-p) p*(+6p+11p> =31p° -44p* +168p° —158 p°® +20p” +63 p°
—43p° +9p'%) 2?
-(1-p)* p* QR+10p-2p>=73p> +138p* —105p° +41p° —40p’ +64 p* —41p° —5p"°
+21p" —~11p"” +2p") 2°
+(1-p) p° (1 +8p+2p*—4p* —=30p* +23p° +43p° =76 p” +47 p* -10p°
-2p" +p"z*
-(1-p)? P’ 2+6p+p> —18p> +13p* +2p° —-4p° +p")2° +(1-p)'° p"” z°. (5)

We deduce forn =6

% =1+42 p+328 p*> +826 p° -1473 p* -11400 p° -9975 p°® + 61060 p” +160918 p*
-153606 p° -1203380 p'* 101102 p'' + 6957668 p'* + 2134306 p" -33913956 p'*
-11462384 p" +179889959 p'® -49002916 p'" -965490222 p'* + 2056136956 p"°
-213511696 p* - 7360834390 p*' +19329198282 p* -29836117826 p™*
+33105011509 p** -28179232812 p* +18911540288 p*° -10111211062 p*’
+4305721566 p** -1446762862 p* +376155108 p*° - 73146582 p*'

+10029258 p* -865872 p® +35442 p™ (6)

so that Rel,®(0.9) is equal to 0.9974544308852755355007942390030310588362, which is close to
the upper bound given by Beichelt and Spross (Beichelt & Spross 1989). A partial fraction
decomposition of G(z) gives

6

()= ). 1 _“; - (7)

There are six eigenvalues (;; a few of them may be pairs of complex conjugate values for some
values of p. When the ;'s are distinct, (7) immediately gives
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6
Rel,” (p)= D a,¢". (8)

i=1

2.3 Asymptotic reliability/availability

In the limit n — oo, a single eigenvalue will prevail in the sum of (8), that of largest modulus. In the
following, we shall name it ;. It is real for the whole range 0 < p < 1 (see Fig. 2), and necessarily
goes to 1 when p — 1 because Rel,™ (p = 1) = 1; all other eigenvalues tend to zero in that limit.
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p

Figure 2. Variation of ¢ with p; ¢, (0.9) = 0.9999596999379792.

Even though it is not possible to get an analytic expression for : as a function of p (D(z) is of
degree 6 in z), we may compute it numerically very effectively, and also derive the expansion of (;
as a function of ¢ =1 - p for small ¢'s. Using symbolic software, we deduce from the constraint
D(l/ C+) =0

. >1-4q¢°-4q"+9¢* +9¢° +13¢" +... 9)

When p is close to zero, we have instead:

5, > p+\/§p3/2+p2 +¥p5/2+... (10)

The prefactor o+ is deduced from p and C. because it is closely related to the residue of G(z) at
z=1/C;. The general result is in fact

e N(I/g)

toD.(/g) .

where D', = 0 D(z)/ 0z. From the knowledge of p and the numerical value of C.(p), we simply obtain
o+(p), which is plotted in Figure 3.

Here again, we may consider two limits. For p — 1,
a, >1-2¢°-4q¢" +10¢°-7¢° +... (12)

while when p — 0,
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Figure 3. Variation of {, with p; . (0.9) = 09976956497611774972.
The essential result is that, when # is large,
Rel," (p)= a, ¢." +(neglig. terms) (14)

Basically, it looks as if the recursive network is made of n elements in series, each of which having
the reliability/availability .. The two asymptotic expressions of A and MTTF we shall derive as
functions of 7 in the following section are a mere consequence of (14).

3 AVERAGE FAILURE RATE
3.1  Exact expression

In the case of identical links with constant failure rate A, (2) gives

Vi 4P 04,(p)

ZHZ -
4,(p) A,(p) Op

(15)

Knowing 4, = Relz(n)(p) by recursion (using (4)-(5)), the derivative is easily obtained for arbitrary
values 0 <p <.

3.2 Asymptotic expression

Because Rel,™ = a; " for n large, we get (Druault-Vicard & Tanguy 2006)

(16)

i z/{ndlng+ dlna+} .

+
dlnp dlnp

Of course, it would be easier to get d In {./d In p and d In a./d In p if C; were known analytically.
Still, as in the formal calculation of o+, D(1/C+) = 0 implies that
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oD .'(p) oD
—(l/a){—g (”Z]—(l/g):o, (17)
op c.(p)y)oz
from which we deduce C,'(p) and then
D' 1/
ding, ,1/¢,) , (8)

dinp C° D (Uc)
dlna_dlng{l_ N'Z(l/g+)+D"Zz(1/g+)}+ N',(/g,) D", (/g,)

— . 19
dinp dinp| ¢ N(ic) ¢.D.(lc)| P NWc) PD.s) (19

Their variations for 0 < p < 1 are displayed in Figures 4-5.

din

dlnp

Figure 4. Variation of d In £, /d In p with p.
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Figure 5. Variation of d In o, /d In p with p.

Note that, unsurprisingly, they exhibit singular behaviors in the vicinity of p = 0:

dlng, _>1+£ P 1142 Py (20)
dnp 2 8
dl

SENN Q p'? —lp— —31\/5 P (21)
dlnp 4 4 16
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Exact results as well as the linear approximation (see (16)) are displayed in Figure 6 for p =0.9. We
see that the agreement is excellent even for n = 2.

Figure 6. Comparison between exact results (purple) and asymptotic approximation 0.06426+0.0018180 » (orange) for
A/ A and p=0.09.

4 MTTF CALCULATIONS
4.1  Exact expression

We are now considering a non-repairable system, and its reliability Ry(t). Let us recall that
MTTF, =j: RO (22)

If each element has reliability p(¢) = exp (-A ¢), we can write ¢ = (- 1/ A) In p(¢) and then (22) as

MTTF, =~ j‘ P Rel, " (p) . (23)
A% p

We can reuse the results obtained in Section II. Clearly, the exact MTTF, is obtained from (23),
since such an integration is routinely performed by mathematical software.

4.2  Asymptotic expression

The calculation of the asymptotic expansion of MTTF, is based again on R, ~ o (" when 7 is
large:

1 ¢ d p
MTTE, ~—[ = a,(p) ¢! () - (24)
A% p

We have plotted ¢ and ¢,*° in Figure 7. Because ¢ vanishes for p — 0, the 1/p factor does not play
a significant role in the integral. As n increases, the essential contribution to the integral will
obviously come from the domain "p close to unity".
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Figure 7. Variation with p of ¢, and ¢ ,*.

The best approach is therefore to use ¢ as the variable of integration
MTTF, ~—j ~.° (-¢)¢"(1-¢q) . (25)

The gist of the calculation, quite standard in asymptotic expansions, is to extract the prevailing
contribution of the integrand when ¢ — 0. We can write

st=exp(-n(-Ing,)) (26)
and derive the expansion of - In C; in ¢ from (9)
—Ing,=4¢"+49"-9¢"-9¢" -5¢" +..., (27)

so that

g =" expl-n(4q"-94" ~9¢" 54" +..)) (28)

This manipulation may seem clulte formal, but now we can use a rescaled variable t = 4 n ¢°, or,
equivalently, set ¢ = 1"°/(4 n)'”. Equation (28) then gives

7/5 8/5 4 7/5 9 8/5
T T T T
"ze_’ exp| —n| 4| — -9 — +... :€_T exp| — — + —| — +...1.(29
- ’ { (4n] (4nj ] p[ n”5(4j nw5(4j } @

Equation (25) leads to

1 pan 774%dr & +(1_(4i)’/5

4 r 7/5 9 r 8/5
MTTF"zﬂIO 5(4n)1/5 . (Ay/s e Xexp[—w(zl +n3T(Z] +] (30)

The upper bound of the integral depends on n. However, because of the e factor, the error made by

replacing this upper bound by +o vanishes exponentially with n (as also do the already dlscarded

contributions of the eigenvalues different from ). Consequently, we can merely integrate T ¢*
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multiplied by an expression admittedly depending on t and #n, but which can be easily expanded in
the n — oo limit, assuming t remains finite. For instance, the leading term of MTTF, is (see (12))

—4/5
MTTE, » L[* 247 1 T/5) _1T6/5)

A% 5(4n)° T A 5@n)'"S 4 4n)’

€2)

where I'(x) is the Euler gamma function. Using (30), going beyond the leading term is not difficult,
and we find

/5 1T(@2/5 2 T@3/5 1
+_ —_— —
(4n)'"° 5 (4n)*”° 25 (4n)’”°  40n
_0.6958417869 +0.2547996219 . 0.05185668604  0.025 .

1/5 2/5 3/5
n n n n

AMTTE, — (32)

(33)

By contrast to the series or parallel cases, the leading term in the asymptotic expansion of the
MTTF has a behavior in n”"°, which slowly decreases with n. Each of the following terms of the
expansion adds another n'” factor.

4.3  Comparison of exact and asymptotic results
We can now compare (33) with the exact values. The results are displayed in Figure 8. Even for

n =10, the asymptotic expansion gives a very satisfying agreement, despite the limited number of
used terms (four).

08F e
SMITE 6 F o,
04f

02Ff

00—
0

Figure 8. Comparison between exact values (purple) and the four-term asymptotic expansion of (33) (orange) of the
MTTF.

5 CONCLUSION AND OUTLOOK

We have calculated the availability of the architecture studied by Beichelt and Spross, and shown
that for perfect nodes and identical links with constant failure rate, the asymptotic expansions of the
associated average failure rate and MTTF obey quite different power-law behaviors in n (the
extension of the network). It could be useful as a reminder that average failure rate and MTTF are
not necessarily the inverse of each other.

The present study may be easily generalized to various recursive networks. Actually, it is possible
to find the asymptotic expansion of the MTTF for different classes of large, arbitrary recursive
networks, even though the exact generating function is not known (Tanguy 2008).
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