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ABSTRACT 
 

The paper is concerned with the exact and asymptotic calculations of the availability, 
average failure rate and MTTF (Mean Time To Failure) for a recursive, meshed architecture 
proposed by Beichelt and Spross. It shows that the asymptotic size dependences of average 
failure rate and MTTF are different, but not inverse of each other, as is unfortunately 
assumed too frequently. Besides, the asymptotic limit is reached for rather small networks.  

 
 
 
1  INTRODUCTION 
 
Network availability and reliability have long been a practical issue in telecommunication 
networks, among others. Quality of Service (QoS) requirements imply high availabilities A, but also 
a good knowledge of the failure frequency ν – and of the average failure rate A/νλ =  – of (for 
instance) point-to-point connections, when the system is repairable. When the system is not 
repairable, an important parameter is the MTTF (Mean Time To Failure). As explained in many 
textbooks (Shooman 1968, Singh & Billinton 1977, Kuo & Zuo 2003), a system whose failure rate 
λ is constant over time has a reliability described by the exponential distribution R(t) = exp(-λ t), so 
that the MTTF, defined by  
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is in this case MTTFexp = 1/λ. This may lead to confusions in repairable systems, where it may still 
be legitimate to consider constant failure rates for each element of the system, and yet obtain an 
average failure rate λ . If A is the availability of a system made of m elements – whose failures are 
assumed to be statistically independent – having individual availabilities pi (1 ≤ i ≤ m) and constant 
failure rates λi, then (Buzacott 1967, Singh & Billinton 1974, Schneeweiss 1981, 1983, Shi 1981, 
Hayashi 1991, Druault-Vicard & Tanguy 2006) 
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Most results of the literature are devoted to series-parallel systems, where all components are 
identical, with the same (constant) failure rate λ. For n components in series, A(p) = pn so that the 

aggregate failure rate is equal to λλλ n
p
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= . The reliability of n components in series is R(t) = 
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[exp(-λ t)]n = exp(- n λ t), which gives MTTF = 1/(n λ). For n components in parallel however, R(t) 
= 1-(1-exp(-λ t))n, which leads to 

 

)3(...
2
1Cln111MTTF

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ +== ∑

= n
n

i

m

i
parallel λλ

 

 
for n large (Shooman 1968, Kuo 2003) and where C = 0.577216... is the Euler constant. Quite 
generally, it is therefore important to estimate the reliability and related parameters of large systems 
in order to get a better understanding of key issues (Kołowrocki 2004). 
In this work, we consider a recursive, meshed – not series-parallel – network configuration first 
considered by Beichelt and Spross (Beichelt & Spross 1989) as well as Prékopa and collaborators 
(Prékopa et al. 1991). For the repairable case we shall use the availability A(p), and in the non-
repairable case the reliability R(p(t)), even though A(p) and R(p) are formally identical for the same 
network made of identical components. We show in detail that when such a system is large, 
knowledge of the generating function of the reliability/availability allows us find the analytic, 
asymptotic expressions for λ and MTTF. These expressions, which both have simple n-
dependences, are not the inverse of each other: while for λ , we find again a linear dependence in n 
(Druault-Vicard & Tanguy 2006), we obtain a n-1/5 dependence for the MTTF. Besides, they are in 
very good agreement with the exact values even when n remains relatively small. 

 
 
2  NETWORK ARCHITECTURE: A CASE STUDY 
 
2.1 Description 
 
The network configuration defined by Beichelt and Spross (Beichelt & Spross 1989) is represented 
in Figure 1. They wanted to estimate the two-terminal reliability between the endpoints of the 
structure (in the original paper, the destination point was S6).  
 

 

 
 

Figure 1. Recursive network architecture (Beichelt and Spross 1989). The source is S0 and the destination is Sn. 
 
 
Following the method developed in (Tanguy 2007), we have been able to show that the two-
terminal reliability between S0 and Sn may be expressed as a product of transfer matrices, in which 
each edge or link probability of functioning is arbitrary. It turns out that this transfer matrix is 
15×15. However, if nodes are perfect and if links have the same reliability/availability p, things are 
much simpler, because a single transfer matrix needs be considered, the successive powers of which 
are to be calculated. Fortunately, these necessarily obey a recursion relation of finite order 
stemming from the characteristic polynomial of the transfer matrix. When dealing with Rel2(S0 → 
Sn) ≡ Rel2

(n), a very useful tool is the generating function formalism (Stanley 1997), since it encodes 
the exact result in a very concise manner. 
 

S0 Sn S1 S2 Sn-1 
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2.2 Generating function of the reliability/availability  
 
The generating function G(z) = Σn Rel2

(n)(p) zn may eventually be written as G(z) = N(z)/D(z) 
(Tanguy 2007), where 
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We deduce for n = 6 
 

)6(, 35442  865872 - 10029258 
 73146582 - 376155108  1446762862 - 4305721566 

 21011121106 - 81891154028  22817923281 - 93310501150 
 62983611782 - 21932919828  7360834390 - 213511696 -

 2056136956  965490222 - 49002916 - 179889959  11462384 -
 33913956 - 2134306  6957668  101102 -1203380 - 153606 -

160918  61060  9975 - 11400 -1473 - 826  328 42 1
)(Rel

343332

31302928

27262524

23222120

1918171615

14131211109

8765432
6

(6)
2

ppp
pppp

pppp
pppp

ppppp
pppppp

pppppppp
p

p

++

++

++

+

++

++

+++++=

 

 
so that Rel2

(6)(0.9) is equal to 0.9974544308852755355007942390030310588362, which is close to 
the upper bound given by Beichelt and Spross (Beichelt & Spross 1989). A partial fraction 
decomposition of G(z) gives 
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There are six eigenvalues ζi; a few of them may be pairs of complex conjugate values for some 
values of p. When the ζi's are distinct, (7) immediately gives 
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2.3 Asymptotic reliability/availability 
 
In the limit n → ∞, a single eigenvalue will prevail in the sum of (8), that of largest modulus. In the 
following, we shall name it ζ+. It is real for the whole range 0 ≤ p ≤ 1 (see Fig. 2), and necessarily 
goes to 1 when p → 1 because  Rel2

(∞) (p = 1) = 1; all other eigenvalues tend to zero in that limit. 
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Figure 2. Variation of ζ+ with p; ζ+ (0.9) = 0.9999596999379792. 
 
 
Even though it is not possible to get an analytic expression for ζ+ as a function of p (D(z) is of 
degree 6 in z), we may compute it numerically very effectively, and also derive the expansion of ζ+ 
as a function of  q = 1 - p for small q's. Using symbolic software, we deduce from the constraint 
D(1/ζ+) = 0 
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When p is close to zero, we have instead: 
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The prefactor α+ is deduced from p and ζ+ because it is closely related to the residue of G(z) at 
z = 1/ζ+. The general result is in fact 

)11(
)/1('

)/1(

+

++
+

−
=

ς
ςς

α
zD
N

 

 
where D'z = ∂ D(z)/ ∂z. From the knowledge of p and the numerical value of ζ+(p), we simply obtain 
α+(p), which is plotted in Figure 3. 
 
Here again, we may consider two limits. For p → 1, 
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while when p → 0, 
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Figure 3. Variation of ζ+ with p; ζ+ (0.9) = 09976956497611774972. 
 
 
The essential result is that, when n is large, 
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Basically, it looks as if the recursive network is made of n elements in series, each of which having 
the reliability/availability ζ+. The two asymptotic expressions of λ and MTTF we shall derive as 
functions of n in the following section are a mere consequence of (14). 
 
 
3  AVERAGE FAILURE RATE 
 
3.1 Exact expression 
 
In the case of identical links with constant failure rate λ, (2) gives 
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Knowing An ≡ Rel2

(n)(p) by recursion (using (4)-(5)), the derivative is easily obtained for arbitrary 
values 0 ≤ p ≤ 1. 
 
3.2 Asymptotic expression 
 
Because Rel2

(n) ≈ α+ ζ+
n for n large, we get (Druault-Vicard & Tanguy 2006) 
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Of course, it would be easier to get d ln ζ+/d ln p and d ln α+/d ln p if ζ+ were known analytically. 
Still, as in the formal calculation of α+, D(1/ζ+) = 0 implies that 
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from which we deduce ζ+'(p) and then 
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Their variations for 0 ≤ p ≤ 1 are displayed in Figures 4-5. 
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Figure 4. Variation of d ln ζ+ /d ln p with p. 
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Figure 5. Variation of d ln α+ /d ln p with p. 
 
 
Note that, unsurprisingly, they exhibit singular behaviors in the vicinity of p = 0: 
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Exact results as well as the linear approximation (see (16)) are displayed in Figure 6 for p = 0.9. We 
see that the agreement is excellent even for n = 2. 
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Figure 6. Comparison between exact results (purple) and asymptotic approximation 0.06426+0.0018180 n (orange) for 
λλ /  and p = 0.9. 

 
 
 
4 MTTF CALCULATIONS 
 
4.1 Exact expression 
 
We are now considering a non-repairable system, and its reliability Rn(t). Let us recall that 
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If each element has reliability p(t) = exp (-λ t), we can write t = (- 1/ λ) ln p(t) and then (22) as 
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We can reuse the results obtained in Section II. Clearly, the exact MTTFn is obtained from (23), 
since such an integration is routinely performed by mathematical software. 

 
4.2 Asymptotic expression 
 
The calculation of the asymptotic expansion of MTTFn is based again on Rn

 ≈ α+ ζ+
n when n is 

large: 
 

)24(.)()(1MTTF
1

0∫ ++≈ pp
p

dp n
n ςα

λ
 

 
We have plotted ζ+ and ζ+

40 in Figure 7. Because ζ+ vanishes for p → 0, the 1/p factor does not play 
a significant role in the integral. As n increases, the essential contribution to the integral will 
obviously come from the domain "p close to unity". 
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Figure 7. Variation with p of ζ+ and ζ +

40. 
 
 
The best approach is therefore to use q as the variable of integration 
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The gist of the calculation, quite standard in asymptotic expansions, is to extract the prevailing 
contribution of the integrand when q → 0. We can write 
 

( ) )26()ln(exp ++ −−= ςς nn  
 
and derive the expansion of - ln ζ+ in q from (9) 
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This manipulation may seem quite formal, but now we can use a rescaled variable τ = 4 n q5, or, 
equivalently, set  q =  τ 1/5/(4 n) 1/5. Equation (28) then gives 
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Equation (25) leads to 
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The upper bound of the integral depends on n. However, because of the e-τ factor, the error made by 
replacing this upper bound by +∞ vanishes exponentially with n (as also do the already discarded 
contributions of the eigenvalues different from ζ+). Consequently, we can merely integrate τ-4/5 e-τ 
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multiplied by an expression admittedly depending on τ and n, but which can be easily expanded in 
the n → ∞ limit, assuming τ remains finite. For instance, the leading term of MTTFn is (see (12)) 
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where Γ(x) is the Euler gamma function. Using (30), going beyond the leading term is not difficult, 
and we find 
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By contrast to the series or parallel cases, the leading term in the asymptotic expansion of the 
MTTF has a behavior in n-1/5, which slowly decreases with n. Each of the following terms of the 
expansion adds another  n-1/5 factor. 
 
4.3 Comparison of exact and asymptotic results 
 
We can now compare (33) with the exact values. The results are displayed in Figure 8. Even for 
n ≈10, the asymptotic expansion gives a very satisfying agreement, despite the limited number of 
used terms (four). 
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Figure 8. Comparison between exact values (purple) and the four-term asymptotic expansion of (33) (orange) of the 
MTTF. 

 
 
5 CONCLUSION AND OUTLOOK 
 
We have calculated the availability of the architecture studied by Beichelt and Spross, and shown 
that for perfect nodes and identical links with constant failure rate, the asymptotic expansions of the 
associated average failure rate and MTTF obey quite different power-law behaviors in n (the 
extension of the network). It could be useful as a reminder that average failure rate and MTTF are 
not necessarily the inverse of each other. 
The present study may be easily generalized to various recursive networks. Actually, it is possible 
to find the asymptotic expansion of the MTTF for different classes of large, arbitrary recursive 
networks, even though the exact generating function is not known (Tanguy 2008). 
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