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ABSTRACT 
 

This paper discusses the problem of the optimization of maintenance threshold and 
inspection period for a continuously deteriorating system with the influence of covariates. 
The deterioration is modeled by an increasing stochastic process. The process of covariates 
is assumed to be a temporally homogeneous finite-state Markov chain. A model similar to 
the proportional hazards model is used to represent the influence of the covariates. 
Parametric estimators of the unknown parameters are obtained by using Least Square 
Method. The optimal maintenance threshold and the optimal inspection interval are derived 
to minimize the expected average cost. Comparisons of the expected average costs under 
different conditions of covariates and different maintenance policies are given by numerical 
results of Monte Carlo simulation.  

 
 
 
1 INTRODUCTION 

 
Optimal replacement problems for deteriorating systems have been intensively studied in the past 
decades by a number of researchers (for instance, Aven & Jensen (1999), Wang (2002) and Wang 
& Pham (2006), van Noortwijk (2009)). As far as continuously deteriorating systems are 
considered, most of the attention has been focused on static environment and on monotonic 
increasing deterioration systems, with periodic or non-periodic inspection. Various stochastic 
processes have been proposed to represent the degradation or wear process (e.g. Grall et al. (2002),  
Bérenguer et al. (2003) and van Noortwijk (2009)). Recently more interest and attention has been 
given to two approaches. One approach is to deal with degradation models including explanatory 
variables (covariates). These variables describe the dynamic environment; in the experiments of life 
science and engineering, they are often expressed by the proportional hazards model (Newby 
(1994), Singpurwalla (1995), Meeker & Escobar (1998) and Lawless & Crowder (2004)). 
Bagdonavičius & Nikulin (2000) propose a method to model an increasing degradation by a gamma 
process which includes time-dependent covariates. Makis & Jardine (1992) consider an optimal 
replacement problem for a system with stochastic deterioration which depends on its age and also 
on the value of covariates.  Kharoufeh & Cox (2005) deal with a degradation-based procedure to 
estimate lifetime distribution, where the single-unit system is exposed to a stochastically evolving 
environment characterized by a stationary continuous-time Markov chain. Meeker et al. (1998) 
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describe a degradation reliability model, where the dynamical temperature is represented by an 
accelerated model. The other approach is to consider a non-monotonic deteriorating system with 
increasing tendency (Newby & Dagg (2002), Newby & Dagg (2003), Newby & Barker (2006), 
Barker & Newby (2009)). Barker and Newby (2009) study the problem of optimal inspection and 
maintenance policy for a non-monotonic system. They use the last exiting time from a critical set 
instead of the first hitting time to determine the optimal policy. 

In this paper we focus on the optimal policy of periodic inspection/replacement for a 
monotonic deteriorating system with explanatory variables (covariates), in which the covariate 
process is supposed to be a temporally homogeneous Markov chain. The influence of the covariates 
on degradation is considered by a multiplicative exponential function. The system is supposed to be 
failed when the system state crosses a fixed threshold known as failure threshold. The purpose is to 
propose an optimal maintenance policy for the considered system in order to minimize the global 
long-run expected average maintenance cost per time unit.  

The other particularity of this paper is that we compare the maintenance cost under following 
cases: (1) the optimization when the covariates are defined as a Markov chain; (2) the optimization 
when the covariates iZn = ( 3,2,1=i ) are fixed; (3) the weighted mean of the optimal costs for each 

iZn = )3,2,1( =i weighted by the steady-state probabilities. All results are illustrated by a Monte 
Carlo study. 

The structure of the paper is as follows. In Section 2 we model the degradation process by a 
stochastic process, where the influence of the covariates is modeled by a multiplicative exponential 
function. In Section 3 we study the maintenance optimization problem. Finally, we compare the 
expected average maintenance costs per unit time for the different cases mentioned above. 

 
2. STOCHASTIC DETERIORATION PROCESS 

 
In this section, we consider a single-unit replaceable system in which an item is replaced with a new 
one, either at failure or at preventive replacement.  

 
2.1. Deterioration model without covariates 

 
The degradation of the system is represented by a continuous-state stochastic process )(tD  

with initial degradation level 0)0( =D . We also suppose that the increment of the system can be 
modeled by a continuous nonnegative-valued process )(tX  with exponential distribution, that is, 
the random increment )()( tDsD −  subjects to an exponential distribution with mean )( ts −λ .   

Suppose that the deterioration can be observed at each time unit kt  ( L,2,1=k  ), the discrete 
observed stochastic processes are defined as follows: )( kk tDD =  and )( kk tXX = .   
The process nD  is defined as: 

nnn XDD += −1  ,                                                              (1) 
 

where nX  are random  variables of exponential distribution with mean nμ , denoted by nX ∼ 
)/1( nμε . 

Denote 
i

i μ
λ 1

= , it can be proved (see Appendix) that if ∑=
=

n

i
iXX

1
where iX ∼ )( iλε  are 

independent, then: 
(1) If λλ =i  are the same parameters, then X  will be an Erlang distributed variable with 

parameters ),( λn  (Soong (2004));  
(2) If ji λλ ≠  for ji ≠ , when 0>y , the density probability function will be:  
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Since the degradation is calculated as ∑
=

=
n

i
in XD

1
 with independent exponentially distributed 

increment iX , then we can obtain the distribution function, the density function of the deteriorating 
process nD  by the above results. 
 
2.2. Modeling the influence of covariates on degradation 

 
The covariate process }0),({ ≥= ttZZ  is assumed to be a temporally homogeneous discrete 

Markov process with finite states },,,2,1{ KS L=  here S  describes the states of the dynamic 
environment. Suppose that covariates are available only at each time unit kt ),2,1( L=k , and the 
covariates at time kt  are defined by )( kk tZZ =   

 Let  )|()( 1 iZjZPkP kkij === +  be the transition probabilities of process { }.,2,1, L=kZk  The 
filtration }:{ tsZst ≤=ℑ σ  denotes the history of the covariates. Since the process Z  is a finite 
temporally homogeneous Markov process, so ijij PkP =)(  does not depend on k  for all ., Sji ∈  We 
denote by )( ijPP = the transition matrix. 

We assume that the increment of the degradation at time  nt  depends only on the covariates at 
that time. We shall denote by nD  the observed process at time nt , defined as:  

 
)(1 nnnn ZXDD += − ,                                                                           (2) 

 
where )( nn ZX  are exponential distributed with mean parameters )( nn Zμ . So { }nn ZD ,  is a non-
homogeneous   Markov process in the sense that the transition probabilities satisfy the following 
equality: 
 

),,,;0,,,|,( 112211221 zZzZiZDxDxDjZyDP nnnnnnnn =======≤ −−−−−− LL      
      ),|,( 11 iZxDjZyDP nnnn ===≤= −− . 
 
 To describe precisely the influence of the covariates nn zZ =  on nX , similar to the 

proportional hazards model proposed by Cox (1972), we suppose that the parameters )( nn Zμ  
depend on nZ  as follows: 

 
   )exp()11exp()( 0}{}1{10 nZKnZknZnn Z βμββμμ =++= == L ,                                           (3) 

 
where ),,( 1 Kβββ L= is a regression parameter. Considering the symmetrical property of β , without 
loss of generality, in what follows, we assume that Kββ ≤≤L1 . 
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                                  (a)                                                                        (b) 
Fig.1 An example of the non-maintained degradation process (a) and the corresponding 

covariates process (b)  
 
The distribution function and the density function of the increment under the condition of 

nn zZ =  are calculated in the same way as before. Then the distribution nF  of ∑
=

=
n

i
iin ZXD

1
)(  can be 

derived using the method of convolution and the total probability formula.  
 

Example 1 An example of degradation for 100 days is given in Figure 1, where nZ  is a 3-state 

Markov chain with transition matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

95.005.000.0
03.095.002.0
005.095.0

P  (corresponds to a steady-state 

distribution (0.3, 0.5, 0.2)), initial state 10 =Z , )1,5.0,2.0(=β , the baseline mean parameters 
2.00 =μ . 

 
 
For the covariates with initial state 10 =Z , denoted by ),,,( 21

n
K

nnn ππππ L=  the distribution of the 

covariates nZ with )1|( 0 === ZiZP n
n
iπ  the conditional distribution of nZ under the condition of 

.10 =Z  We have 
nn

K
nn P)0,,0,1(),,,( 21 LL =πππ , 

and  ,lim i
n
i

n
ππ =

+∞→
 where iπ  is the steady-state distribution of the Markov  chain.    

In this case, the distribution nF  of ∑
=

=
n

i
iin ZXD

1
)(    will be: 
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     When the covariates form a steady-state Markov chain, each replacement makes the system 
restart from its new state 00 =D and the covariates nZ  follow their trajectory.  Let us denote nT  the 
instant of replacement (preventive or corrective), then the variables ( )tt ZD ,  and ( )nTtnTt ZD ++ ,  have 
the same distribution, therefore the trajectory of the degradation does not depend on the history 
before the replacement. Henceforth, the deterioration process is a renewal process. 
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2.3 Parametric estimation using least square method 

 
In this section, we use the least square method to estimate the unknown parameters. The data 

sample is all the degradation data observed before failure, i.e., before the beyond of the critical 
threshold L . 

Since in general case, the mean degradation at time kt  is equal to  
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Because of the difficulty of calculating the distribution i

jπ  of Z at time it , and the case that 
i
jπ  can be approximated by jπ  when i  is large enough, we can approximate the degradation mean 

as follows:  
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Therefore the Least Square Estimator ),,(€

3,210 βββμθ = is defined by 
 

 )(minarg€ θθ
θ

nQ= ,                                                                         (4) 

where ∑
=

−=
n

i
iin DED

n
Q

1

2))((1)(θ . 

 
3. CONDITION-BASED PERIODIC MAINTENANCE MODEL 

 
In this section, we study the optimal periodic maintenance policy for the deteriorating system 

described in Section 2. 
Suppose that the system is a monotonically deteriorating stochastic system with initial 

state 00 =D , and the state can exclusively be monitored by inspections at the periodic times ,τkTk =  
where ℵ∈τ  is the inspection interval. We now give some assumptions under which the model is 
studied. 

(1) Inspections are perfect in the sense that they reveal the true state of the system and the 
explanatory variables. 

(2) The system state is only known at inspection times and all the maintenance actions take 
place only at inspection times and they are instantaneous.  

(3) Two maintenance operations are available only at the inspection time: preventive 
replacement and corrective replacement. 

(4) The maintenance actions have no influence on the covariate process.    
 
3.1 Maintenance decision 
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                                      (a)                                                                       (b) 
Fig.2 An example of maintained deterioration system (a) and the corresponding covariate 

process (b) 
 
 
Suppose that the system starts with 00 =D , and is perfectly inspected at periodic times  

{ },,2, Lττ=Π  ( ℵ∈τ ), the states are only known at inspection times, and maintenance actions are 
instantaneous. We define a failure threshold L and a preventive maintenance threshold pL  
( LLp ≤ ). 

If at inspection time τkTk =  we have pk LD <τ , then three exclusive events may occur at 
time 1+kT : 

 
 E1: LD k ≥+ τ)1( :  which means that the system fails at time  ]( ττ )1(, +∈ kkt  and it will be 
correctively replaced at time τ)1( +k . Costs of corrective replacement FC  as well as a cumulative 
cost dCd ×  corresponding to the ‘inactivity’ time have to be considered, where tkd −+= τ)1( is the 
cumulated ‘inactivity’ time. 
 E2: ),[)1( LLD pk ∈+ τ : means that there is no failure in interval [ ]ττ )1(, +∈ kkt , however the 
degradation level is greater than  the preventive threshold pL at time τ)1( +k . So a preventive 
replacement action takes place at τ)1( +k  which induces a preventive maintenance cost. 
E3: pk LD <+ τ)1( : means that the degradation level is always lower than pL , so there is no 
replacement action at τ)1( +k  , we only have to take into account an inspection cost and the 
decision time is postponed to τ)1( +k .  

An example of a maintained system is given in Figure 2, where the preventive threshold 
,30=pL the corrective threshold ,35=L  and ,5=τ  other parameters are the same as in Example 1. 

 
3.2 Calculation of the maintenance cost 

 
Each action of inspection and replacement results in a unit cost. Let iC , pC , FC  denote 

respectively the unit cost of inspection, preventive replacement and corrective replacement. We also 
consider the cost for ‘inactivity’ with per unit time cost dC .   

Then the cumulative maintenance cost in  ],0( t  is: 
)()()()()( tdCtNCtNCtNCtC dFFppii +++= ,                                                 (5) 
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where )(tNi  (respectively )(),( tNtN Fp ) is the number of inspections (respectively number of 
preventive replacements, number of corrective replacements) from 0 to t . 

The expected average cost is calculated as follows:  
   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++
==

∞→∞→
∞ t

tDECtNECtNECtNEC
t

tECEC dFFppii

tt

))(())(())(())((
lim)(lim .                       (6) 

 
When the stochastic process ),( ZD is a regenerative process as we stated above, we can calculate 
the expected cost per time unit as follows: 

))((
)))((()(

ZLE
ZLVEZEC =∞  ,                                                                         (7) 

where ))((( ZVE  and ))((( ZLE  are respectively the expected cost and expected length of a renewal 
cycle. 

Considering the three above exclusive events E1, E2, E3, denote by kV  (respectively kL ) the 
total cost (respectively length) from time kT   to the time when the system is replaced. 

Since the total cost kV  (respectively the total length kL ) is a combination of the cost 
(respectively the length) in time interval [ )1, +kk TT   and the cost (respectively the length) 
after ,1+kT we calculate the total maintenance cost )(ZVV = and the length of a renewal cycle 

)(ZLL =  by following iterate method: 
 

}3{1}2{}1{ 1)(1)(1))(( EkiEpiEdFik VCCCtdCCCV +++++++= ,                        (8) 

 

                        }{1}{}{ 321
1)(11 EkEEk LL ++++= τττ ,                                                                   (9)  

 
and the expectation will be 

 
),1()()()()1)(()()()( }3{132}1{1 EkipiEdFikk VEEPCEPCCtdECEPCCVEv +++++++==         (10) 

 
)1())()()( }3{1321 Ekk LEEPEPEPl ++++=  ( τ .                                                                         (11)                   

 
  The optimization problem is to find the value of *τ  and *

pL minimizing the expected long-
run average maintenance cost: 

 
)(minarg*),(

),(

* ZECL
pL

p ∞=
τ

τ .                                                                      (12) 

 
3.3 Description of the optimization procedurec 
 
We now give a formal description of the optimization procedure. 
For a given pL andτ , we estimate the expected maintenance cost as follows. 
Step 0: Initialization. 
 
At time 00 ≡t , let  .1,0 00 ≡≡ ZD  
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Step 1: Generation of the trajectory of the degradation process 
 
 Table1. Estimation of the parameters: mean and standard deviation (within parentheses) 
 

Sample 
size n  

 

 
0€μ  

 
1
€β  

 
2

€β  
 
3

€β  

100 0.180 (0.046) 0.186 (0.031) 0.480 (0.048) 0.985 (0.058) 
200 0.182 (0.039) 0.189 (0.022)  0.485 (0.040) 0.989 (0.039) 
500 0.183 (0.030) 0.190 (0.011) 0.488 (0.038) 0.993 (0.040) 

1000 0.184 (0.031) 0.196 (0.012) 0.492 (0.043) 0.996 (0.042) 
 

  
(1) Simulate a trajectory of the covariate process { }nZ with the initial state 10 ≡Z  and transition 

matrix P . 
(2) Generate a trajectory of the degradation process conditional upon the trajectory{ }nZ . 
 
Step 2: Estimation of the maintenance cost conditional upon covariates above  

  
      Estimate the total maintenance cost and the total length based on N  renewal cycles ( N  large 
enough). In each renewal cycle, the maintenance decision is taken according to the three exclusive 
events (E1)-(E3) mentioned above, the maintenance cost and the maintenance length are calculated 
as (8) and (9). 

 
Step 3: Estimation of the expected average cost for a stationary Markov chain. 

 
Repeat Step 0-Step 2 to derive the total maintenance cost and the total length for a stationary 

Markov chain, then calculate the expected average maintenance cost as (6) or (7) indicated. The 
repetition does not be stoped until the convergence of the expected average maintenance cost. 

After the calculation of the expected average maintenance cost by the procedure above for 
each pL andτ , we obtain a maintenance cost matrix with respect to pL andτ , then the optimal 

decision ( )** ,τpL   can be derived based on the criteria (12) 
 

4. NUMERICAL RESULTS 
 

4.1 Numerical results for parametric estimators  
 
We apply the least square estimator for a degradation sample described in Section 2. The 

estimator is defined by (4).  
We simulate 1000=N  samples with various sample size n . For each sample we give the 

estimator of the unknown parameter ),,,( 3210 βββμθ =  for ).1,5.0,2.0,2.0(0 =θ In Table 1 we 
summarized the results for Least Square Estimation. For each estimator we give the empirical mean 
and the empirical standard deviation based on the N  estimators we obtained. 

The results in Table 1 show that the least square method has a good behavior to estimate the 
unknown parameters. 
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4.2 Numerical results for optimal periodic maintenance  
 
In this section we give numerical results of our maintenance optimization problem. The 

deteriorating system is the system defined in Example 1. We consider four different cases of unit 
maintenance cost: 
Table 2. The optimal preventive threshold, the optimal inspection period and the expected average 
maintenance cost with periodical inspection 
 

 
Covariates 

*)*,,( * CLp τ
 

( Case 1) 

*)*,,( * CLp τ
 

( Case 2) 

*)*,,( * CLp τ
 

( Case 3) 

*)*,,( * CLp τ
 

( Case 4) 
Z general (12,   60,  1.0607) (12,   54, 1.1238) (19,  63,  1. 5923) (11,  80,  2. 6891) 
Z=1 (21, 120,  0.5158) (21, 114,  0. 5263) (23,  123,  0. 9292) (21,  120,  1. 3016) 
Z=2 (20,  87,  0.7183) (18,   81,  0.7901) (19,  90,   1. 2955) (19,  90,   1.7511) 
Z=3 (18, 51,  1.2509) (16,  48,  1.3437) (17,  51,  2.2431) (19,  54,   2. 9740) 
Mean cost 0.8376 0.90344 1.50657 2.028111 

 

 
Fig.3 The iso-level curves of ∞EC  for 10=iC , 50=pC , 100=FC  and  50=dC  for 

                         a deteriorating system. 
 
 
Case 1 (Inexpensive unavailability): ,10=iC  50=pC , 100=FC  and  50=dC ; 
Case 2 (Expensive unavailability): ,10=iC  ,50=pC 100=FC  and  150=dC ; 
Case 3 (Expensive PR): ,10=iC  ,100=pC     100=FC  and 50=dC ; 
Case 4 (Expensive inspection): 100=iC , 50=pC ,   100=FC  and 50=dC . 

 
For each case of maintenance cost, we compare the following three values. 
(1) Optimal maintenance cost when nZ  come from a general Markov chain; 
(2) Optimal maintenance cost when nZ is fixed to iZn = )3,2,1( =i ; 
(3) Weighted mean of the optimum cost for iZn =  )3,2,1( =i  with weight given by the steady-state 

probability:  

∑
=

∞∞ ==
3

1

* )(
k

kkZECCE π  
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       Results in Table 2 summarize the results of optimization for a deteriorating system with 
different maintenance costs. The iso-level curves of expected long-run average cost ∞EC  
with 10=iC , ,50=pC  100=FC  and  50=dC   for such a deteriorating system is depicted in Figure 3,  

 
Fig.4   The curve of )(* β∞EC  for ,10=iC  ,50=pC 100=FC  and  50=dC for a 
         deteriorating system. 

 
 
where the optimal parameter values are ,12* =pL  .60* =τ  These optimal values lead to the optimal 
expected average cost .0607.1* =EC  

In all cases of the different unit maintenance cost (expensive or inexpensive), the optimal 
expected average cost under the condition of 1=Z  ( )1ββ =  are the smallest one. Indeed, for ,1=Z  
the degradation increments are smaller in comparison with other cases. The cost for 2=Z  ( )2ββ =  
is higher than that of ,1=Z  and cost obtained for 3=Z )( 3ββ = is the highest one. As a 
consequence, the parameter  β  can be used to express the influence of the dynamic environment on 
the deteriorating system. 

In order to reveal the way that maintenance cost is influenced by the system parameters ,β  
using the symmetrical property, the optimal expected average cost is computed for various value of 

3β  with fixed 1β and 2β . The result appears in Fig 4. We see that the optimal expected average 
maintenance cost is an increasing function of the system parameter .3β  In fact, since the regression 
parameter β  expresses the influence of the dynamic environment, the expected average 
maintenance cost under the worst environment has higher cost than that of better environment. 

The expected average maintenance cost for system with a Markov chain is always greater 
than the weighted mean of the optimal costs for the three static environments, since we have less 
information for the deteriorating system under a Markov chain than under static environment. The 
weighted mean of the optimal costs gives the lower bound for the cost of a deteriorating system. 

 
 

5. Conclusion 
 
This paper deals with the periodic inspection/replacement policy for a monotonic 

deteriorating system with covariates, where the covariates form temporally homogenous finite 
states Markov chain. We use a method similar to the proportional hazards model to induce the 
influence of dynamic covariates on the degradation of the system. Expected average cost is 
estimated and optimum periodic inspection/replacement policies are derived for different 
maintenance cost per unit. The numerical results show that the optimal average cost is an increasing 
function of the regression parameters .β  Therefore the parameters β  can be used to express the 
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effect of the environment. The relationship between the optimal cost in the case of a covariates 
Markov chain and a combination of fixed covariates (with stead-state distribution) shows that the 
first is greater than the later. It will be interesting to apply the methods exposed in this paper on 
non-monotonic systems.  

 
 

Appendix:  The distribution of the increments of increasing degradation system  
 
 
We prove the conclusion by mathematical induction.  For 2=n , we have 
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