
Jakub Nedbalek – RBF NETWORKS FOR FUNCTION APPROXIMATION IN DYNAMIC MODELLING

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

110

RBF NETWORKS FOR FUNCTION APPROXIMATION
IN DYNAMIC MODELLING

Jakub Nedbalek

•
VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic

e-mail: jakubnedbalek@centrum.cz

ABSTRACT

The paper demonstrates the comparison of Monte Carlo simulation algorithm with

neural network enhancement in the reliability case study. With regard to process dynamics,
we attempt to evaluate the tank system unreliability related to the initiative input parameters
setting. The neural network is used in equation coefficients calculation, which is executed in
each transient state. Due to the neural networks, for some of the initial component settings
we can achieve the results of computation faster than in classical way of coefficients
calculating and substituting into the equation.

1 INTRODUCTION

Let us have the model of a dynamic system, in which the temperature is evolving according to

the time and initial component settings. The target is to specify the probability of a system failure,
which is defined as exceeding the temperature bounds. We are also interested in the time necessary
for computing the result. It is proposed to enhance the simulation algorithm with neural network
tools which will be used in calculating the differential equation coefficients a and b (chap. 3.
relation (4)) being changed according to ki component states (on/off). After each ki switching,
which is invoked by either passing the temperature transition state or failure of ki component, we
must calculate new values of parameters a and b in equation (4) according to (2).
As a solution, it is appropriate to apply neural networks for the approximation of parameters (2)
dependent on the k1, k2 and k3 component settings.
Optimal tool for constructing the simulation algorithm is the Monte Carlo (MC) method. This paper
is derived from (Nedbálek 2007, Pasquet et al. 1998).

2 THE BENCHMARK PROCESS DESCRIPTION

We dispose of the tank with warmed water, which temperature is kept in the specific maximal

or minimal bounds – in this range, we consider system as stable and reliable. The system also
contains two electric components, responsible for water heating, and security valve, which
decreases the temperature. In the bottom of the tank, there is a faucet for water supplying. We
suppose, the volume of water in the tank is constant during our experiment.

Let us define variables:
T(t) – temperature of water at the time t;
Tempmax – maximal temperature of water in the tank;
Tempmax = 368,15K

Author (s) Name – THE PAPER NAME

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

111

Tempmin – minimal temperature of water, for T< Tempmin failure occurs
Tempmin = 338,15K
Tempbas – security level for the minimal temperature
Tempbas = 343,13K
Temphau – security level for the maximal temperature
Temphau = 363,15K
Secu – reserve for the maximum temperature, for T> (Tempmax + Secu) failure occurs, Secu

= 2 K
M – water weight, M = 500kg
Te – external temperature, Te = 293K
A – tank surface, A = 6m2

h – thermal exchange coefficient, h = 6 WK-1m-2
cp – measure heat capacity, cp = 4184 Jkg-1K-1
W1 = W2 – heating power, W = 5000W
tm – process duration, tm = 720 h
hazard rate – transition to on-state
λW1on = λ W2on=6.10-4 h-1

hazard rate – transition to off-state
λW1off = λ W2off =4.10-4 h-1

hazard rate – transition to on or off-state
λVson = λ Vsoff =1.10-3 h-1

3 THE EQUATION SOLUTION

To evaluate the probability failure, we need to write the differential equation, describing our

system evolution. The equation obviously reflects the following points:
1. Decreasing the initial temperature due to heat penetration through the tank wall.
2. Increasing the water temperature caused by two heating components, if activated.
3. The water temperature decrease invoked by the security valve activation.

Our equation comes from (Pasquet et al. 1998) but it is altered for the behaviour of the system

baT
dt
dT

+= (1)

where

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅⋅
+

⋅
⋅

−=
p

ps

p cM
kcQ

cM
hAa 3 ()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅+⋅+⋅⋅⋅+⋅⋅⋅

⋅
= 22113

1 kWkWkTcQThA
cM

b epse
p

(2)

and

p

e
s c

hA
TTemp

WW

Q
⋅−

−
+

=
max

21

 (3)

The solution of (1) follows the equation

Author (s) Name – THE PAPER NAME

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

112

a
b

a
bTT ta −⎟

⎠
⎞

⎜
⎝
⎛ += ⋅exp0 (4)

where T0 is the starting simulation temperature.

The k1, k2 and k3 coefficients equals 1 or 0 (the specific component is either on or off). For k1
= k2 = 1 the heating components are active and temperature of water in the tank is increasing, for k3
= 1 the vent is unclosed and the temperature is decreasing, etc. We watch the process along the
period of tm = 720 h. The initial temperature is set between Tempmin and Tempmax, that is – T0 =
353.15 K.

4 CREATING AN ALGORITHM

To construct the correct algorithm for our test case simulation, we take into account following

points:

1. As mentioned before, for T< Tempmin and also for T> (Tempmax + Secu) failure occurs
2. The temperature passes by 5 stages generally – see the diagram:

Figure 1. Dynamic rules of the system

For each of the temperature stages, the change (switch) of the specific component to the
opposite state, that causes the required temperature turnover (see (1)) and stabilization in tolerable
bounds. In case of random failure of the ki component, we keep on monitoring evolution of the
temperature, until it exceeds limits – we consider the system as disfunctional. (In the terms of the ki
failure definition, the whole system does not have to be failed yet. The temperature of water in the
tank could be still between bounds.)

3. There are following rules for components changes at temperature borders crossing:

State 1: If T(t-1)>= Temphau and T(t) <= Temphau, then k3 = 0 (vent will be closed)

2: If T(t-1) <= Temphau and T(t) >= Temphau, then k1 = 0 (heating component num. 1 will be
cut off)

3: If T(t-1) <= Tempmax and T(t) >= Tempmax, then k3 = 1 (vent will be opened)

Author (s) Name – THE PAPER NAME

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

113

4:If T(t-1) >= Tempbas and T(t) <= Tempbas, then k1 = 1 & k2 = 1 (both heating components
are active)

5: If T(t-1) <= Tempbas and T(t) >= Tempbas, then k2 = 0 (heating component num. 2 will be
cut off)

4. Time step option-considering fact, that we present the evolution of (4) at time t during the

period of tm, it is necessary to select an appropriate time to explore all detail changes of the
temperature bahaviour and also to reduce the inadequate number of cycles of numerical simulation.
The optimal solution seems to be the one minute pattern, which reflects suitably all changes at
temperature borders crossing. Longer patterns do not suit our solution due to inaccuracies – a
“jump-over” of some of the states mentioned in 3. occurs sometimes.

5. Switching the component to the opposite state could happen at any time in the simulation
due to random failure.

6. Period of the process is set for 720 hours.

5 APPLICATION OF THE RBF

Our simulation algorithm contains cycle, running over the process duration, in which (4)

evolves according to time. This equation has coefficients a and b, that depend on ki component
states (on/off) – see (2). In the simulation, the ki state is influenced by either passing the
temperature transition state (see Fig. 1) or failure of component itself. It means, that we must
recalculate the a and b whenever the temperature transition or failure of the ki occurs. Simply, we
are able to write lines of code to enumerate new values of the a and b right in the body of process
duration cycle, whenever it is necessary to do so. The second possibility is to apply the Radial Basis
Function (RBF) neural network to approximate the function of a and b coefficients depending on ki
component states.

It is acceptable to use other types of neural network, nevertheless the RBF is obviously the
best to solve the problem. This is the result of two main facts, firstly, we are not urged to design the
network architecture (RBF has two layers standardly) and secondly, the RBF can not be trapped in
a local minimum during training phase (Chen et al. 1991). RBF complies our requirements on the
function approximation (Yee & Haykin, 2001). Applying other types of neural network to unriddle
this case study and to compare them with the used RBF network is the matter of a future research.

At the beginning, we need to find out the convenient training set. This is obtained by simple
computation of (2) for all combinations of the ki states (see Tab. 3). Then, before the process
duration cycle, we are ready to create and train the standard RBF architecture – there are several
implementations and function support of the RBF in programming languages – for example, the
Matlab software provides large neural network toolbox.

Consequently, the a and b parameters in (4) everywhere in the cycle are replaced with the
callback function of the RBF network.

We can generally summarize, that the main modification consist in using the RBF as an
auxiliary tool for working with equation (4) during the time of a simulation cycle. In any case, the
MC construction of the algorithm remains the same for both cases.

Author (s) Name – THE PAPER NAME

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

114

6 THE RESULTS PRESENTATION

Table 1. contains the distribution function of failure probability value averages for each initial

components settings. The results were obtained for 105 Monte Carlo simulations (1- the comp.
active, 0 – comp. inactive at the beginning). The fifth column shows the computational time. All
results are obtained in the state of tm = 720 h. The simulation was implemented in the Matlab
software.

Table 1. The results for 105 cycles of Monte Carlo
k1

k2

k3

)(tmF

t [s]

0 0 0 0.3517 2315.0
0 0 1 0.5303 2174.0
0 1 0 0.5567 1928.6
0 1 1 0.5312 2170.7
1 0 0 0.3518 2332.1
1 0 1 0.5306 2194.0
1 1 0 0.5580 1920.4
1 1 1 0.5602 1915.6

Average 0.4963 2118.8
Sigma 0.0901 174.1

Table 2. The results for the same Monte Carlo algorithm with

RBF neural network enhancement
k1

k2

k3

)(tmF

t [s]

0 0 0 0.3510 2383.1
0 0 1 0.5305 2037.1
0 1 0 0.5574 2002.9
0 1 1 0.5325 2042.2
1 0 0 0.3506 2390.6
1 0 1 0.5305 2040,5
1 1 0 0.5578 1975.2
1 1 1 0.5593 1968.9

Average 0.4962 2105.1
Sigma 0.0906 176.2

From comparison of Table 1. with Table 2., we can see the results of simulation at the time of

720 hours are very close – the RBF neural network is able to approximate with good accuracy (that
was tested in the simulation code itself).

The results of computing time look more interesting – the average time necessary to simulate
720 hours long process is shorter by roughly 10 sec. This value seems to be neglectable,
nevertheless the differences in results between the MC and the modification with RBF are larger
when we look at the specific initial component settings.

Generally, we can express the presumption, that if the vent is opened and maximally one
heating spiral is activated, it is more useful to enhance the MC algorithm with RBF network (the
result is reached by 2 – 2.5 min faster). In other cases, the Monte Carlo itself is faster (1 min.
advance).

Author (s) Name – THE PAPER NAME

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

115

In this place, we should stress out the information, that the comparison test on the MC and
RBF network enhancement was executed on the computer, which had all applications, including
hidden ones, and non-operation system processes not pertaining to simulation itself, halted. This
measure is needed in order to provide the simulation the similar computing system capacity along
the whole processing time and avert the distortion in result time values (operating system
sometimes allocates the memory to other running applications, as consequently leads to Matlab
processing slow down).

With respect to the length of algorithm, the MC enhanced with the RBF is larger in creation
and training of the network. In the simulation itself, the length of code remains the same.

In Table 2., we also considered time necessary to train the RBF network.
The results from Table 1. and 2. are presented in the figures. The x-axis denotes possible

component states according to binary code, as it is shown in Table 3.

Table3. The ki component states combination
(1 -on, 0 -off)

x axis

k1

k2

k3

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0

… etc.

0,2000

0,2500

0,3000

0,3500

0,4000

0,4500

0,5000

0,5500

0,6000

0 2 4 6 8 [-]

F(tm)[-]
RBF enhancement
MC

Figure 2. Failure probability comparison of the MC and the RBF neural network enhancement at time tm

Author (s) Name – THE PAPER NAME

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

116

1500,0

1600,0

1700,0

1800,0

1900,0

2000,0

2100,0

2200,0

2300,0

2400,0

2500,0

0 2 4 6 8
[-]

t[s]

RBF enhancement
MC

Figure 3. Computing time comparison of the MC and the RBF neural network enhancement

7 CONCLUSION

For 105 cycles, the failure probability at time t = 720hrs equals to the value F (720)=

0.4963 ± 0.0901 (MC) or 0.4962 ± 0.0906 (RBF enhancement). The algorithm in chapter 4 is
implemented in the Matlab software.

Out of the comparison of the Figure 1. and 2. follows, that the failure probability values are
similar for both methods.

The whole computing time needed to obtain results for each initial component settings is
shorter by approx. 10 sec. when we use enhancement with RBF network. The greater differences in
time consumption are evident for specific settings – we can state, that if the security vent is opened
and maximally one heating spiral is activated than it is preferable to add the RBF in algorithm (the
result is known by 2 – 2.5 min faster), in all other cases, the plain Monte Carlo method is more
suitable (faster by about 1 min). This piece of knowledge was verified on the 498 MHz and 256MB
RAM computer. The computation on the stronger machine – 3.1 GHz and 1GB RAM – took less
time and the RBF enhancement method was still faster than the plain MC.

Application of the RBF neural network can sometimes lead to obtain results faster. This
information is likely to be applicable in other, not only dynamic simulation, test cases. Participating
of the RBF neural network in some computation problems is the matter of future research.

ACKNOWLEDGEMENT

The author of this paper would like to thank for the financial support on behalf of the research and
development project num. 1M06047 (CQR), which is subsidized by the Ministry of Education of
the CR.

Author (s) Name – THE PAPER NAME

R&RATA # 2(13) part 2

(Vol. 2) 2009, June

117

REFERENCES

1. Chen, S., Cowan, C.F.N. and Grant, P. M.: Orthogonal Least Squares Learning Algorithm for

Radial Basis Function Networks. IEEE Transactions on Neural Networks, vol. 2, no. 2, March
1991, 302-309 s.

2. Nedbálek, J.: The Temperature Stability of Liquid in the Tank. Risk, Quality and Reliability,
Ostrava, 2007, 131-133 s. ISBN 978-80-248-1575-6.

3. Pasquet S., Chatalet E., Padovani E., Zio E.: Use of Neural Networks to evaluate the RAMS`
parameters of dynamic systems, Université de Technologie de Troyes France, Polytechnic of
Milan Italy, 1998

4. Pasquet S., Chatalet E.,Thomas, P. and Dutuit, Y.: Analysis of a Sequential, Non- Coherent and
Looped System with Two Approaches: Petri Nets and Neural Networks. Proceeedings of
International cenference on safety and reliability, ESREL’97, Lisabon, Portugal, 1997, 2257-
2264 s.

5. Virius, M.:Základy výpočetní techniky (Metoda Monte Carlo), ČVUT, Praha, 1985
6. Yee, Paul V. and Haykin, S.: Regularized Radial Basis Function Networks: Theory and

Applications, John Wiley, 2001.

