AN ASYMPTOTIC ANALYSIS OF A RELIABILITY OF INTERNET TYPE NETWORKS

Tsitsiashvili G.Sh., Losev A.S.

Institute for Applied Mathematics, Far Eastern Branch of RAS 690041, Vladivostok, Radio str. 7, <u>guram@iam.dvo.ru</u>, <u>alexax@bk.ru</u>

Introduction

In this paper a problem of a construction of accuracy and asymptotic formulas for a reliability of internet type networks is solved. Analogously to [1] such network is defined as a tree where each node is connected directly with a circle scheme on a lower level with n>0 nodes. A construction of accuracy and asymptotic formulas for probabilities of an existence of working ways between each pair of nodes of the internet type network is based on a recursive definition of these networks and on asymptotic formulas for a reliability of a random port. This asymptotic formula represents the port reliability as a sum of probabilities of a work for all ways between initial and final nodes of this port. An estimate of a relative error and a complexity of these asymptotic calculations for a radial-circle scheme are shown.

1. An asymptotic formula for a reliability calculation of a port and its accuracy

An asymptotic formula for a reliability of the general type port with low reliable arcs. Consider the no oriented graph Γ with the final nodes set U, the arcs set W, the fixed initial and final nodes u, v and the set of the acyclic ways $\{R_1, ..., R_n\}$ between u, v. Suppose that the probability p_w of the arc $w \in W$ work depends on the parameter h > 0: $p_w = p_w(h)$ and $p_w(h) \rightarrow 0$, $h \rightarrow 0$. Denote $P(U_p)$ - the probability of the event U_p that all arcs $w_1^p, ..., w_{m_p}^p$ of the way R_p work. Then

the reliability of the port Γ is $P_{\Gamma} = P\left(\bigcup_{p=1}^{n} U_{p}\right)$, denote $P_{\Gamma}^{*} = \sum_{p=1}^{n} P(U_{p})$.

Remark that for $p \neq q$ the arcs sets $\{w \in R_p\}$, $\{w \in R_q\}$ can not satisfy the inclusion $\{w \in R_p\} \subseteq \{w \in R_q\}$. In an opposite case there is the node u_* in which the ways R_p , R_q diverge by the arcs (u_*, u_p) , (u_*, u_q) . But as the arc $(u_*, u_p) \in \{w \in R_q\}$ so there is a circle in the way R_q . This statement contradicts with a suggestion that the way R_q . is acyclic. As the inclusion $\{w \in R_p\} \subseteq \{w \in R_q\}$ is not true for $p \neq q$ so the way R_p contains the arc $\overline{w} \notin R_q$ and consequently $P(U_pU_q) = o(P(U_p)), h \rightarrow 0, p \neq q$. An induction by *n* gives the inequality

$$P_{\Gamma}^* - \sum_{1 \le p < q \le n} P(U_p U_q) \le P_{\Gamma} \le P_{\Gamma}^*.$$
(1)

But

$$\sum_{1 \le p < q \le n} P(U_p U_q) \le n \max_{w \in W} p_w(h) P_{\Gamma}$$

and consequently from the formula (1) we obtain

$$P_{\Gamma} \sim P_{\Gamma}^*. \tag{2}$$

Denote by A = $|P_{\Gamma}^*/P_{\Gamma} - 1|$ the relative error of the asymptotic formula (2). It is obvious that

$$A(h) \le n \max_{w \in W} p_w(h) = \Phi(h) \to 0, h \to 0.$$
(3)

Assume that $\varphi(h) \to 0$, $h \to 0$ then for the replacement of *h* by $\varphi(h)$ the upper bound $\Phi(h)$ of the relative error is to be replaced by $\Phi(\varphi(h)) = o(\Phi(h))$.

Radial-circle scheme. Consider the radial-circle scheme represented on the fig. 1. This scheme has the center 0 connected with the nodes 1, ..., n arranged on the circle.

Fig.1 Radial-circle scheme

Each acyclic way from the node i, $1 \le i \le n$, on the circle (the circle node) to the center 0 of this scheme consists of a peace along the circle and a transition to the center 0. A way from the circle node i to the circle node j, $1 \le i \ne j \le n$, has a peace from the node i along the circle, a transition to the center 0, a transition to the circle and a peace along the circle to the node j.

Define the connection matrix $\mathbf{P} = ||P_{ij}||_{i,j=0}^{n}$ of the radial-circle scheme in which P_{ij} is the probability that there is a working way between the nodes *i*, *j* of this scheme. Represent the results of the matrix \mathbf{P} calculation with *n*=6 and

$p_{01} = 0.0471595$	$p_{02} = 0.0469944$
$p_{03} = 0.0287418$	$p_{04} = 0.0499121$
$p_{05} = 0.0135117$	$p_{06} = 0.00822811$
$p_{12} = 0.0490761$	$p_{23} = 0.0340865$
$p_{34} = 0.0442866$	$p_{45} = 0.0004677$
$p_{56} = 0.00818179$	$p_{16} = 0.0173955$

Here the matrix **P** is calculated by the Monte-Carlo method with 1000000 realizations during 14 hours. Denote by $\mathbf{P}^* = ||P_{ij}^*||_{i,j=0}^n$ the connection matrix with elements calculated by the asymptotic formula (2). The matrix \mathbf{P}^* have been calculated during one minute that is

approximately 1000 times faster. As $P_{ij} = P_{ji}$ and $P_{ii} = 1$ we show only the elements P_{ij} , P_{ij}^* with $1 \le i < j \le n$.

P*=		0.0496627 	0.050371 0.0523323 - - - - - -	0.0326335 0.00549431 0.0378183 - - - - -	0.0512658 0.00262581 0.00408933 0.0458115 - - -	0.0136101 0.000817883 0.000753723 0.000532299 0.00123165 - -	0.00920024 0.0178084 0.00131303 0.00112028 0.00129662 0.00912706 -
P=	 	0,049758 _ _ _ _ _ _	0,049859 0,052157 - - - -	0,03268 0,005359 0,037725 - - -	0,051263 0,002637 0,004073 0,045997 - -	0,013703 0,000844 0,000743 0,000555 0,001253,	0,009279 0,017839 0,001327 0,001108 0,001301 0,009229
	-	_	_	_	_	-	_

The matrix of the relative errors $\mathbf{A} = \|A_{ij}\|_{0 \le i < j \le 6}$ satisfies the equality:

A=		0.00191948 - - - - - -	0.0101643 0.00335063 - - - - -	0.00142467 0.0246274 0.00246654 - - -	0.0000537835 0.0042632 0.00399357 0.00404871 - -	0.00682727 0.0319321 0.0142263 0.0426474 0.0173307	0.00856111 0.00171756 0.0106371 0.0109635 0.00337921 0.0111695
	_	-	_	-	_	-	-

Remark. Analogously it is possible to obtain asymptotic formulas for a general type network or a radial circle scheme with high reliable arcs. But in this case it is necessary to replace a work probability by a failure probability and a way by a cross section.

2. Recursively defined networks

A calculation of the connection matrix in recursively defined networks. Suppose that D_* is the set of networks Γ with no intersected sets of arcs. Define recursively the networks class $D, D_* \subset D$ by the condition

$$\Gamma_1 = \{U_1, W_1\} \in D , \ \Gamma_2 = \{U_2, W_2\} \in D_*, \ W_1 \cap W_2 = \amalg,$$

$$U_1 \cap U_2 = \{z\}, \ (z \text{ is a single node}) \rightarrow \Gamma_1 \cup \Gamma_2 \in D.$$
(4)

Analogously to [2] in this paper we calculate $\{P_{\Gamma}, u, v \in U, u \neq v\}$, not its single element. These calculations are based on the recursive formulas: if $\Gamma' \in D$, $\Gamma'' \in D_*$, $U' \cap U'' = \{z\}$, then

$$P_{\Gamma'\cup\Gamma''} = \begin{cases} P_{\Gamma'}, \, u, v \in U', \\ P_{\Gamma''}, \, u, v \in U'', \\ P_{\Gamma'}P_{\Gamma''}, \, u \in U', v \in U''. \end{cases}$$
(5)

In the last equality the quantity $P_{\Gamma'}$, characterizes the connection between the nodes u, z and the quantity $P_{\Gamma'}$ – the connection between the nodes z, v. The number of arithmetical operations $n(P_{\Gamma})$ necessary to calculate $\{P_{\Gamma}, u, v \in U, u \neq v\}$, by the recursive formulas (5) is characterized by the following statement.

Theorem. Suppose that $\Gamma_1,...,\Gamma_l$ is the sequence of networks with the no intersected sets of arcs. If D_* consists of sequences of independent probability copies of $\Gamma_1,...,\Gamma_l$, then for each $\Gamma \in D$ the inequalities

$$\frac{l(\Gamma)(l(\Gamma)-1)}{2} \le \sum_{u,v \in U, u \neq v} n(P_{\Gamma}) \le \frac{l(\Gamma)(l(\Gamma)-1)}{2} + \sum_{i=1}^{l} \sum_{u,v \in U_{i}, u \neq v} n(P_{\Gamma_{i}})$$
(6)

are true with $l(\Gamma)$ the number of nodes in the graph Γ .

From the inequalities (6) obtain that

$$\lim_{l(\Gamma)\to\infty}\frac{2\sum_{u,v\in U,u\neq v}n(P_{\Gamma})}{l(\Gamma)(l(\Gamma)-1)}=1.$$

So asymptotically when $l(\Gamma) \rightarrow \infty$ to calculate a connection probability for a single pair of nodes it is necessary a single arithmetical operation.

Proof. Suppose that the inequality (6) is true for Γ' then from the recursive formulas (5) and the equality $l(\Gamma' \cup \Gamma'') = l(\Gamma') + l(\Gamma'') - 1$ we have

$$\sum_{u,v\in U'\cup U'', u\neq v} n(P_{\Gamma'\cup\Gamma''}) \leq \sum_{i=1}^{l} \sum_{u,v\in U_{i}, u\neq v} n(P_{\Gamma_{i}}) + \frac{l(\Gamma_{1})(l(\Gamma_{1})-1)}{2} + \frac{l(\Gamma_{2})(l(\Gamma_{2})-1)}{2} + (l(\Gamma_{1})-1)(l(\Gamma_{2})-1) = \sum_{i=1}^{l} \sum_{u,v\in U_{i}, u\neq v} n(P_{\Gamma_{i}}) + \frac{l(\Gamma_{1}\cup\Gamma_{2})(l(\Gamma_{1}\cup\Gamma_{2})-1)}{2}.$$

A calculation of the transition matrices in the internet type networks. Analogously to [1] define the class of the internet type networks as the recursively defined class of networks D with the set of originating schemes D_* which consists of radial-circle schemes and in the formula (4) the node z is the center of the radial-circle scheme Γ_2 .

Fig.2. The internet type network

So if we have the transition matrix for the radial-circle schemes it is possible to calculate the transition matrix of the internet type network by the formula (5). This algorithm is significantly faster than general type algorithm from [1]. It contains fast algorithm to calculate the transition matrix in the radial-circle scheme and practically optimal algorithm to calculate the transition matrix for the internet type networks.

REFERENCES

- 1. Ball M. O., Colbourn C. J., and Provan J. S. Network Reliability. In Network Models. Handbook of Operations Research and Management Science. 1995. Elsevier. Amsterdam. Vol. 7. P. 673-762.
- Floid R.W, Steinberg L. An adaptive algorithm for spatial greyscale.// SID 75 Digest. 1975. Pp. 36-37.