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The technique for calculation failure frequency measure of reliability in class of logical-
probabilistic-models is proposed. The technique is applicable for models of redundant repairable
systems which are not limited by serial-parallel structures. In conjunction with system
decomposition the techniques makes it possible to analyze high dimensional systems very
efficiently.

1. INTRODUCTION

Most of the papers regarding algorithmization of reliability&safety characterization in class of
logical-probabilistic-models are devoted to truth probability estimation of some logical function
defined on Boolean variables (elements of the analyzed system). It should be mentioned that in
logical-probabilistic-models one can calculates only so-called differential measures, that is
measures of some state or transition in given moment of time, for example, system availability
(unavailability). In this paper we examine a system of repairable elements with given failure and
repair time distribution and specify its availability and failure frequency (both stationary and not
stationary). Using availability and failure frequency it is possible to calculate other reliability
indices of the system.

Failure frequency is important reliability measure. It characterizes system transitions in the
space of states, for example transition from good state to failed state. It is necessary to calculate this
index when doing effectiveness, safety, risk analysis. Failure frequency is defined as time derivative
of average number of failures. Therefore average number of failures (in the general case average
number of transitions) one can calculate via integration failure frequency (transitions frequency) in
given time interval. Failure frequency and number of failures are the main measures when
calculating cost (loss) per unit time. Mean system cost on time interval (0,t) (mean effectiveness
E(0,t)) in systems with multilevel performance is defined as:

E(O,t) = Zj'Pri (t)h.dt + zj'm”. (th, dt,

where Pr;(t) — system state i probability in time point t;

w; j — frequency of transitions from the ith state to the jth state;

h; — reward (gain or loss) per unit time associated with state i;

hij — nonrecurring gain or loss per transition from the ith state to the jth state.

The first integral presents average holding time in each system states on time interval (0,t)
multiplied by reward per unit. The second integral presents average number of transitions weighted
by nonrecurring reward. So, if some faults bring to the damage of adjoining equipment or processed
part, then with the help of failure frequency we can estimate total loss. Known, traditional
estimation of average effectiveness E(t) in time moment t gives too optimistic result:

E() = 3 PRDE (),

Ei(t) — effectiveness in state i (particularly, Ej(t) can be equal to h;).
It should be mentioned that using failure frequency one can calculate interval reliability index
for repairable systems, which is not directly calculated in logical-probabilictic models.
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Known method of failure frequency calculation, which is based on formula of joint event
union, leads to considerable timetable and even to inability of obtaining accurate estimate at high
dimensionality because of enumeration type of the algorithm.

In this paper we suggests less time-consuming method of calculation failure frequency for the
high dimensional systems.

2. PROBLEM DESCRIPTION

Let elements of a system x;, i=1,n and system S(x), x={xi} can be in two state — good and
failed
1, whenelement i isgood

Xj = s
E), when element i is failed

@)

, When system is good

S(x) = é’; @

, When systemis failed
Let system state exhaustively defined by state of its elements in time point t. Denote minimal
path sets of the system by A={A;}, minimal cut sets by C={C;}.
Then systems availability in time point t can be defined as

r 0
S(x,t) =?Aj =1, (3)
ey |:|
and unavailability
_ L0
S(x.t) :ajc ,0=1. (4)
U= O

Every minimal path (cut) corresponds to conjunction of some numbers of good (failure)
elements x={x;}.
Availability (unavailability) of a system is defined as:

P{S(x,t) =1}= P{S(x,t) = O} = P{ |jAj:1} =1- P{ _'[|c =1}, (5)

P{S(x,1)=0} = P{S(x.t) = 1} = P{ _'Dc (=1 =1- P{[JA =1} ©6)

where P{.} — occurrence probability of events in brackets in time point t.

Numerous methods and algorithms were designed for calculating availability (unavailability)
indexes. The main purpose of these works was to increase efficiency of transformation of logical
expressions (3) and /or (4) for obtaining probability (5) and /or (6). The problem lays in exponential
growth of computational complexity in the system dimension increase (number of elements,
number of minimal cut or path sets). Thus, in calculating unavailability by (6), using formula of

joint event union, we obtain the following expression
-1 1 -2 1-1 1

Q(t) = 'Z P{C,}- Z Y PLC, DC‘2}+Z Y Y PC, Le, Uey-..+

1>h 1>h 13>, (7)

+(-1)*p{c, Ue, L. Ue y.
Number of terms in right side of equation (7) will be 2'-1. Besides generation software
algorithm for crossing symbol subsets of paths (cuts) is complex task. For instance, famous test

example of naval electrical power system, known as «l.A. Ryabinin task Ne35» [10], has 15
elements, 31 minimal cut sets and 92 minimal path sets (2** > 2 -10°). Software, implementing this
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method for reliability indexes calculation (e.g., Risk Spectrum), in large dimension makes only
approximate calculus, which gives rough estimate for system of elements with not a high reliability.
It should be mentioned that in [1-3,5,6,8,9] were suggested quite effective calculation methods for
availability (unavailability) in (5), (6) interpretation.

Failure frequency is expected number of failures in given moment of time t (i.e. in (t, t+At)
when At 0). This implies appearance of at least one cut set in time moment t+At. Let e —is
occurrence event of ith cut set in (t, t+At), where ej(t+At) — conjunction of n; variables (elements),
forming C; cut set. At ordinary failure flow assumption appearance e; in At means, that in moment t

(ni — 1) elements of C; were failing and then in At one good element failed. Denote this event as e, .
Using formula of total probability we can define occurrence probability of event g; in At:

Ple} =0 (DAL= Y [0, (D[] Q, (AL ®)

5=l Gi* i
where w; (t), Q, (t) - failure frequency and unavailability of element ji, gi in time moment t;

; (t) — failure frequency, conditioned of appearance C; cut set.
Well known method [7] of calculation failure frequency wg also is based on formula (7):

a,t = PEs00 =0 D Uey=PeUJed-Pes e =0 O(Uep= @y ~o)at - ©)

WAt = Z P{e }- :Zli P{eilﬂei2}+Z I P{e.( e[ e}

=1 i, > =1 i, >0 i3>T,

+(-1)"*P{e e[ )---[&t:

(10)

wszAt—z[ZP{C [e3- Z zp{c Lc, Dey+..+

1=l J# h=ljp=)+1

-»2pge, L. . Oe_ Ue.,, O Ue, De.}]—

S Z [ZP{C L, Ne)- > ZP{C DC D(e e+ (1)

1=li, =1+l jZ1,1, ]1—1 =)+l
ho i iy, iz

-n"*pgc, Ue, LL..Ue,, Ue, ., L. Ue, , Ue, ., L. .U, D(eiﬂeiz)}]J,
+Z(—1)|—1P{Cj D(elﬂ...ﬂej_lﬂej+lﬂ...ﬂe,)},

Event {C; Llc i D(ehﬂeiz )} implies, that in time point t the system was failed because of
realization of two cut sets C;, C; and during At general elements for cut sets C; , C; have failed

(i.e. in (t, t+At) cut sets i; and i, have occurred). If there is no such element, then probability of
occurrence just two or more cut sets during At is equal to zero. General term is

pic, Lc, LL..0..Ue, Ue.Ne.N--Net= wGU(t)AtHQ(t) (12)

where weu(t) - frequency of general elements group entering cut set G and not entering U

i+l

from the others (I — G); H Q(t) - product of unavailability of all elements entering G and U cut

sets from other (I — G) except those elements, which are used in calculation of wgu(t) (Weu(t) are
calculated similarly to (5), but with regard to group of general elements entering G cut sets). Every
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element in the product is included only once. Failure frequency calculation by (9) - (11) — is more
laborious task (about three times), than availability (unavailability) calculation by (7).

Advantageous process of the high dimension problem solving is decomposition of structure or
logical representation of the system. At structural decomposition one can appropriate:

1. singly connected decomposition, when appropriated subsystems (assemblies,
modules, ...) connect each other only through two nodes, and at that one node is input, the
other node is output, i.e. this is series connection of the subsystems. Each of the subsystem
can correspond to redundancy structure with some logical function (generally k out of m) in
output node (element). In this process we avoid complicated calculation of reliability, safety,
technical effectiveness indexes;

2. multiply connected decomposition, when separating subsystems can involve
any numbers of inputs/outputs. Only restriction on connection acyclicity exists:

a. all input nodes of subsystem L* are either heading nodes or they are
connected with other elements (not entering into L*) through the input edges of L¥;

b. all output nodes are either terminal nodes or they are connected with
other elements through the outgoing edges of L.

This process has disadvantages relating to complexity of the subsystem separation and
indexes aggregation (e.g. failure frequency). But it is very efficien at solving high dimension
problem and analyzing features of «reliability behaviour »;

3. decomposition by divisible event group of element’s states

4. logical decomposition. In this process we do not make any transformation of
the system structure. In this case the task of reliability modeling is simplified by dividing
logical criteria of the system performance. For aggregation of indexes we can suggest
method using theorem of probability of joint events sum, making easy to calculate bilateral
estimation of the reliability indexes.

Decomposition methods, especially those, which have described in pt. 1 and 3, are known [7,
8, 11] and are used extensively for availability (unavailability) indexes calculation. In this paper we
suggest method of failure frequency calculation based on decomposition technique by pt.3. For
reduction calculation effort we also suggest decomposition by pt.1. Expression for failure frequency
calculation, using decomposition by pt.1 and separation into series and parallel groups of elements
and consequent convolution in one element with equivalent value of failure frequency, is the
following:

— parallel schema (1 out of m)

@y} = i[w,— (t)ﬂ Q, M1, (13)
— series schema (m out of m)
Opond}= 3 [0, O R, O], (14
— parallel schema (k out of m;l "
Gonall}= z 00, -Q,. [z G |‘| R o). (15)

where R (t), Q,(t)=1-R (1), w,(t)- availability, unavailability, failure frequency of

element i.
Expression (13) — (15) can be derived from (9) — (11) or drawn directly from

o, =P{(s(x.)=1) LI(Uey. (16)

Redundant structure k out of m very often consists of identical elements, in this case
expression (15) takes on form

-12 -



R&RATA # 4

A. Stepanyants, V.Victorova - FAILURE FREQUENCY CALCULATION TECHNIQUE IN LOGICAL-PROBABILISTIC MODELS (Vol.2) 2009, December

Wy s (= Co Q™ (DK (DR (1), 7)
where CI"™ - number of (m - k) out of m combinations of elements.

In [1] method of recursive variables increase was suggested for availability (unavailability)
calculation. The kernel of problem is follows. Let

pY = P{S(X X )=1/%, g = 1%, 4,
r = P{S(X,, . X D)=1/%, 0y =0X,,, =
When calculating we use the formula
P =R, (Op™ + Q. (r™, (19)
where R,.,(t) =1-Q,.,(t) = P{x..,(t) =1}, p® =1. Sequentially calculating p®, ..., p,
on the nth last step of recursion we’ll get system availability.

1..x, =1
d (18)
peenn Xy =

I

3. TECHNIQUE FOR FAILURE FREQUENCY CALCULATION

Method of recursive variables increase (18), (19) is also applicable for failure frequency
calculation. Let

w® ()at = P{(sx,ty =1) L Ue;)/xk+1 =X, =... =X, =1},
i=1 (20)

System failure frequency can be recursively calculated like that:

0" (t) = Resy (D0 (1) + Qs (VY (1) + Pt Dwieis (1), 0¥ (1) =0, 00, () =™ (1), (20)
rae Pooo (1) =(p% -r®) k=(0,1, ..., n-1)
Lemma Proving. On the (k+1)th recursion step elements X2, ..., Xn Of the system are

completely reliable and we consider divisible group of disjoint events relative to the element Xys1:

— element xq1 IS good in time point t. Probability of this event is R+i(t), and failure
frequency is equal to w® in accordance with expression (20);

— element xy.1 in time point t is failed. Probability of this event is Qy.1(t), and failure
frequency is equal to v in accordance with expression (20);

— element x4+ failed on (t,t+At). Probability of this event is wy.1(t)At (i.e. failure frequency
is equal to wy+1(t)). For the system to transfer to failed state at failure of element Xy.q it is
necessary to be in the state that are previous to failure and the element x+1 is good, but
it’s further failure results in failure of the system. Let us denote probability of such

subsets as P 1 (t). Itis proved in appendix that

P (1) = Royer 08 == Ry, () x, =0}, (22)
where R, (1) /{A} - conditional system availability subject to A.

cuct

Taking into account (22) we can come up on the (k+1)th step PX (1) = p® —r®),

npegoTk
In accordance with formula of total probability we come up on (21). Note that (22) is
Birnbaum reliability measure [7, 11].
Failure frequency calculation method (20), (21) (like availability calculation technique (18),
(19)) can be used without system decomposition. But we advise to use system decomposition for
overcoming dimensionality problem and rising performance of numerical algorithms. In case of
system decomposition we suggest the following algorithm for failure frequency calculation.
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—  All series, parallel, k out of m reliability schemes are enlarged in one element with
failure frequency, calculated by (13) - (15) (for availability calculation one may use well-known
formulas for series-parallel schemes).

— As aresult of several enlarging iterations one can get irreducible system part. In this
case failure frequency calculation is implemented by (20), (21). And it is recommended to
assign greater numbers to those elements, which incomes in different conjunctions several
times. After that while these elements are treated as good (in accordance with expression (20)) it
is possible to use simple formulas for series-parallel structures. At formalizing the step of
minimal cut sets calculation one make use algorithm, proposed in [4, 5], which allows to pick
out the elements, “making” reliability structure irreducible.

General way of r® and v calculation includes the following. At each recursion step value X,
stated in condition, are substituted in logical expressions (3), (4) and final expressions are
transformed into probabilistic functions relative to availability index and failure frequency (in given
step). At “hand-made” calculation one can figure the resulting structures, then all advantages of
formulas (13) — (15), (17) together with decomposition and aggregation will be evident. Note, that
in general case some steps of r® and v® calculation will include substeps, if resulting logical
expressions will not fit series-parallel structures. In this case at given step one have to solve new
task with resultant reduced logical description.

4. EXAMPLE

Let us consider irreducible bridge structure (Figure 1) and make failure frequency calculation

by two stated above methods.
1 _¢_> 3
BN

Figure 1. Bridge scheme.

C,=102; C,=304; C,=1[504; C, =263 (indexes are used instead of elements x;
conjunction symbol are substituted by product character).
1. Under (9) - (12).
w1 = (W Q2 + wpQ1) + (WaQ4 + uQ3) + (W QsQs + 1Q1Q4 + tyQ1Qs) + (23)
(wQsQ3 + 15Q2Q3 + 1xQ2Qs5) — W1 Q2Q5Q4 - W Q1QsQ3 —
wQ1Q5Q3 - txQ2Q5Q4 — WsQ1Q2Q3Q4.
All g; and and cross product e;, &; were included in ws; (cross product e;ne; has not common
elements, therefore for this event failure frequency is zero).
02 = [(mQ2 + Q1) Q3Q4 + 1pQ1Q5Q4 + w1 Q2Q5Q3]1 — [WrQ1Q3QsQ4 +
w1 Q2Q5Q3Q4]2 + [(153Q4 + t4Q3) Q1Q2 + w3Q1Q5Q4 + WuQ2Q5Qs]s -
[13Q1Q2Q5Q4 +0Q1Q2Q5Qs]4 + [(buQs + w5Q4) Q1Q2 + (L Qs + wsQ1) Q3Q4 +
(@1 Qs + 1yQ1) Q2Q5Qs]s - [1Q1Q2Q3Q4 + LQ1Q2Q5Q3 + 1 Q3Q4Q2Qs]6 +
[(03Qs + w5Q3) Q1Q2 + (WrQs + wxQ2) Q3Qs + (LrQ3 + 1xQ2) Q1Q5Q4)7 — (24)
[65Q1Q2Q3Q4 + t3Q1Q2Q5Q4 + trQ1Q3Q5Qs]s - [(1Q3Q4Q2Qs + 1w Q3Q4Q2Qs5 —
w1 Q3Q4Q2Q5]e — [12Q1Q3Q5Q4 + 1rQ1Q3Q5Q4 — WQ1Q3Q5Q4]10 —
[6xQ1Q2Q5Q3 + tuQ1Q2Q5Q3 — wWyQ1Q2Q5Q3]11 — WQ1Q2Q5Q4 + W3Q1Q2Q5Q4 —
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w3Q1Q2Q5Q4]12 — [WQ1Q2Q3Q4 + W5Q1Q2Q3Q4 - W:Q1Q2Q3Q4] 13.

In ws, were included the following events: e;AC; — the first square bracket (denoted as [...]1);
e1/ACi/AC; — the second square bracket (event C3 AC, is the failure of all system elements there fore
failure frequency of this event is zero); e2ACi, es/\Ci, es/AC;, - square brackets 3, 5, 7; e2ACAC;,
esACIAC;j, esACIAC; - square brackets 4, 6, 8; e1nes\Cy, e1nes\Cy, e1nesAC/AC4 — square
bracket 9; e;nes\C,, e1nes/\Cs, e1nesAC,AC3 — square bracket 10; e,nes/\Ci, exnes/ACy,
e2nes/AC1AC, — square bracket 11; e;nes/\Cq, e2nes/\Cs, e2nesAC1AC; — square bracket 12;
e3nes\Cy, e3nesN\Cy, e3neg/AC1/AC, — square bracket 13.

Cross products e; of order 3 and 4 for ws; 1 wxs,; have not common elements there fore this
term of failure frequency is equal to zero. But all these cross products must be done (by men or by

computer).
Final expression for failure frequency in accordance with (9) will be:

Weper = Wgy ~Ws, =[00,(Q, +Q,Q5 ~Q,Q,Qs —Q,Q,Q, —Q,Q,Qs —

Q;Q.Qs +2[0Q,Q,Q,Q5)] +[w, (Q; +Q;Qs —Q,Q:Q; —Q,Q:Q, -

Q.Q,Qs —Q,Q,Q; +2Q,Q,Q,Q; )1+ [001 (Qz +Q,Qs —Q,Q,Q; -

Q,Q:Q, —Q,Q,Qs —Q,Q,Qs +2Q,Q,Q,Q5)] +[w;(Q, +Q,Q; — (25)
Q,Q,Qs -Q,Q,Q, —Q,Q,Qs —Q,Q,Q; +2Q,Q,Q,Q5 )1+ [(,04 (Qs +

Q1Qs ~Q1Q:Q5 ~Q1Q,Q; —Q,Q:Q5 —Q,Q,Qs +2Q,Q,Q,Qs)] +

[05(Q.Q, +Q,Q; ~Q,:Q,Q, ~Q,Q:Q, ~Q,Q,Q; ~Q,Q:Q, +2Q,Q,Q:Q,)]-

2. After calculating conditional availability by (18), (19) we can calculate failure frequency.
Let us define logical operability function throw minimal path sets

s 0
S(x,t)zéjAjgzl, A =103, A, =2[@; A, =153; A, =253,
=iy

p¥ =R pP+Qr®? =R A+Q I=1 (r =P{S(x) =1/x, =0,x, =...= X, =1} =1),

p® =R, pW +Q,r =R, M+Q,P{S(x) =S(x,) =1/x, =0,%; =X, =X =1} =R, +Q,R,,

PP =R,p® +Qyr® =Ry (R, +Q,R) +Qyr®” =Ry (R, +Q,R,) +Q;P{S(x) =

S(x,%X,) =1/, =0,%, =X, =1} =R,(R, +Q,R,) +Q,(R, +Q,R,) =R, +Q,R,,

p® =R, p¥ +Q,r® =R, (R, +Q,R,) +Q,P{S(x) = S(X;, X,,%;) =1/x, =0,x, =1} = (26)
R, (R, +Q,R)) +Q,R;(R, +Q,R,) = (R, +Q,R,)(R, +Q,R;),

Ry = P{S(x,)=1}=p® =R, p“ +Q,r =R, (R, +Q,R,)(R, +Q,R;) +

Q:P{S(x) =S(X;,X,,%5,%X,) =1/ %, =0} =R (R, +Q,R,)(R, +Q,R,) +

Qs (1-(1-RR;)A-R,R,)).

From (20), (21).failure frequency is
0% =R +Qu® +u,(p -r®) =R, D +Q,P{(S(x.1) =1) L

4
(Uen % =0x,=...=x, =3 +0,{1-1) =0;

=L 27)
0@ = R,0% + Qv +0,(p” - 1) =R, 0+Q,P{(s(x,) =1) L

4
(Uei)lxz =0,X; =X, =X =1}+0,(1-R}) =Q,0, +®,(1-R,) =Q,0, +w,Q;

i=1
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0 =Rw® +Quv® +w,(p? -r?) =R, (Q,0, +w,Q,) +
4

QP{(s06) =1) LI Je) /%, =0,%, = x; =+, (R, +Q,R, =R, ~Q,R,) =
i=1

R;(Q,w; +®,Q;) +Q;(Q,w; +0,Q;) =Q,w; +®,Q;;

w® = R4('°(3) +Q4V(3) +(*)4(p(3) - r(3)) =R, (Qw; +w,Q,) +
Q.P{S(x1)=1) D(Ue{)/m =0,% =11+ w, (R, +Q,R, —Ry(R, +Q,R,))
=R, (Q0; +0,Q,) +Q, (W, 1 -Q,Q,) + Ry (0,Q, +®0,Q,)) +w,Q5(R, +Q,Ry);

(‘OCMCT = 0‘)(5) = RSQ)M) +Q5V(4) +(‘05(p(4) - r(4)) = RS[R4 (szl +(.02Q1) +
Q4 [(,03(1—Q1Q2) + Ra (lez + wle)] + 004Q3(R2 +Q2R1)] +
Qs[(waRl + wle)(l_ R2R4) + (w2R4 + (*)4R2)(1_ Rle)] +
005[(R2 +Q2R1)(R4 +Q4R3) _(1_(1_ Rle)(l_ R2R4))]-
Let us make a comments to some calculation of r® and v®,
r® =pP{S(x) =1/x, =0,x, =X, = X, =X, =1} =1 - on conditions that in time point t x failed
and all other elements are good, S(x) =1 is persistent event and required probability is 1.

4
vOAL = P{(S(x,t) =1) D(Uei’)/xl =0,X, =...= X, =1} - if elements 2 - 5 are good in time
i=1

4
point t system failure is impossible (i.e. | Je; - null event), so v =0.
i=1
r® = P{S(x,t) = S(x,,t) =1/x, =0,x, = X, = X, =1} = R, - at element x, failure and elements
X3 — X5 in good state and after substitution into S(x) we get
S(x) = x4, and r'Y = R.
4
vOAL = P{(S(x,t) =1) D( Je)/x, =0,x; =x, =x, =1} =w,At - substituting x, = 0, X3 = X4
i=1
= x5 =1 into paths A;(t) and cuts C; (t+At), we have S(x) = X1, e1(t+At) = x1 [1= X1, other &; = 0. In
order to occur failure of x; in t+At, it is necessary that x; was good in time point t:
e,(t) = x,. And, vl = @,
r' = P{S(x) =S(x,,X,) =1/x, =0,x, =X, =1} =R, +Q,R, - substitute variables values into
condition S(x,t), expressed throw paths. As a result S(x,t) = S(X1,X2,t) = X1 +Xo, and it is easy to define
r' =R, +Q,R, (parallel connection of x; and X).

4
v@At = P{(S(x,t) =1) D(Uei )%, =0,x, =%, =1}=Q,w, +w,Q, - we already got
i=1

expression for S(x,t) subject to condition, at condition substitution into cuts, which must occur in
point (t, t+At), we have ey(t, t+At) = Ci(t, t+At) = xi [X.. For this cut to occur in (t, t+At) it is
necessary to implement event e (t)=x, X2 +x, X in time point t. (S(Xt) = Xi+x2) A (
e (t) =x ko +x, K1) = X Ko+ X, 31, s0 v®? =Q,w, +w,Q, (this can be write immediately in
terms of S(x,t) for parallel connection (13)).

If in Weyer (27) all R; will be replaced by (1-Q;) we shall get (25).

Resume from example. When calculating by known method by (9) — (12) it was done L steps
of logical expression transformation (logical expression includes 4 cut sets):
— For ws; calculation:
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L(ws1) = (C}, =4)+(C%=6)+(C3=4)+(C;=1)=15. (28) (28)

In (28) the first bracket is equal to the number of terms of first sum in expression for ws; (10)
and associates with first four parentheses in (23). The second bracket in (28) is equal to the number
of terms of second (double) sum in ws; expression (10) and associates with other five summands
(with minus sign; the sixth summand is zero in (23)). The other two brackets in (28) associate with
the number of terms of the third (triple) sum and last summand for ws; in (10). In (23) this terms are
absent because they are equal to zero.

— For ws; calculation in accordance with (24):
L(ws2) = [(C,=4)-( C3+C3+C3=T)]1+[( C; =6 )-( C; + C3=3)]+[(C;=4)-(C;=1)]s=50. (29)

The first parentheses in each square bracket defines number of occurrence of one, two, three
cuts ej on At. The second parentheses defines number of combinations of possible cuts in time point
t.

As a result of fulfilment of some steps it is possible to get empty sets. Terms in expression
(10, 11) for these steps are zero. It is necessary to emphasize that all these steps must be executed
including those steps, which results in zero.

Thereby, total amount of steps L = 65.

In suggested method ((20), (21) taking into account (18), (19)) there are no combinatorial
steps. In suggested method the calculation steps are recursive iteration of variables increase. For the
example under consideration it was done 5 steps of calculation r® (r©,.... r®) and 5 steps of
calculation v (v©, ..., v®¥).

The form of final result in suggested method is well-behaved viz approximation to final result
are calculated by summation of recursive iteration terms.

Expected number of failures on time interval (0,t) is

N, (t) :jmm (t)dt . (30)

Let assume exponential distribution of operating and recovery time (Tgoccr) for all elements,
and element 1 is identical to element 2 (i.e. A1= A= A12 , la= M= H12), element 3 is identical to
element 4 (A3= As= Asz4, U3= W= M3 4). Availability and failure frequency of the elements are

_ A _ _ By N _ i —(1.

RO =5y OPC it @ = Bt e B expl-(h +) T=(1-5).

Let A1,=1-10", 1 ,=1/20 =0.05, A34=2-10", {3,=1/15=0.0667, As=5-10, ps=1/10 =0.1
(unit is hour™). Figures 2, 3 show failure frequency and expected number of failures dependence on
time. One can see that interval of unstationarity is sufficiently small (~3Tsystem recovery; this is known
theoretical result at p; >>A;), that is why it is acceptable to calculate stationary measures for a
systems with long operation life. In this case availability (R;) and failure frequency () will include
only first terms, which is not dependant on time, and expected number of failures will be

NCTaLI,.OTK (t) = wCTaLl,.CVICTt ' (31)

5. CONCLUSION

In this paper we suggest the method of calculation failure frequency measure for system with
complex structure and known availability and failure frequency of system’s elements (in accordance
with expressions (20), (21)). The method is well algorithmizied and together with considered
techniques of decomposition and aggregation ((13) - (15), (17)) makes it possible to analyze the
system with considerably high dimensions. The method is more effective in comparison with other
known methods.
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Figure 2. Failure frequency time dependence.
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Figure 3. Expected number of failures time dependence.
6. APPENDIX

Proving the expression (22) for P,.;.,(t) calculation.

Let logical function is defined through the cut sets {C} in the form of (4) (we shall use
product - and summation + character instead of conjunction A and disjunction V symbols), i.e.
unoperability ~ function is  S(x,t)=C,+C,+...+C,, and operability function is

S(x,t) =S(x,t) =C, [T, [I..[CT, .
Let us divide cut set {Ci} into two subset: {Cyi} = { Cui, Cyi, ..., Cii } and {Cy} = { Cyj, Cy;,
. ij } = {Ck} \ {Cki}; {Cki} O {ij} = {Ck}, {Cki} N {ij} =0; {Cki} — set of cuts, which
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include element i, {Cy} - set of cuts, which do not include element i. Then system operability
function is S(x,t) =C,; [C,, LI..[C,; [T, [T, [1..[C,;, ki+kj=1I.

It is necessary to find probability of subset of pre failed states when the ith element is good.
Failure of the ith element results in system failure. And this probability must be formed from
original system description S(x,t), but not from specially constructed logical function for this subset
of pre failed states. Let define logical function of required pre failed states in the form of
Yoretaitea (1) = Y1 OV, Cuts {Cyg}, in which the ith element is not included, must not exist in time point
t (as these pre failed states are states of system operability), so y, =C,, [T, [..[T,; . Let consider

the cuts, which include the ith element. As the ith element failure on (t, t+At) results in system
failure, then at least one of events {Cy} must exist in time point t, provided the ith element is map
out. So as to exist pre failed state in time t with the ith good element it is necessary to implement a
function with {Cyi} xi =0: y, =(C, {x, =0}) +(C,; /{x, =0}) +... +(C,; /{x, =0}) .
Thereby -
Yoretaitea (1) = Y1 B, =Cy; [C,; LL.IC,; TUC,; H{x; =0}) +(Cy {x; =0}) +... +(C; {x, =0})) =
Cy; [C,; L. [T, L(Cyy Hx, =0} +(Cy X, =0} +...+ (Cyy H{x, =0}) =
Clj EDzj L. Eij [ -(Cy; {x; =0}) UC, {x; =0}) L..Cy; {X; =0})).
Let define this probability
P{C,, [C,; [I..[C,; [1 - (Cy; {x; = O} LC, {x; =0}) L1..LC,; {x; =0})) =1} = P{C,; [C,; LI..[C}; =1}~
P{C,, [C,, L..[T, IC,; {x, =0}) LC,, {x; =0}) LI..LC,; {x; =0}) =1}.
Note, that
1. P{C,, [T, 0..[C,; =1} = P{(S(x,t)/{x; =1}) =1} - system availability at x; = 1,
because (S(x,t)/x, =1) = (C, [C,, L..[T, C,, [T, [I..[C,;\) {x;, =1}) =C,, [T, LI..[T,; . Element
xi is a part of all {Cy } and his operability provides ((C, [T, [I..[T,)/{x. =1}) =1 regardless of
state of other elemelts. - - -
2. P{(C,; [C,; L..[C;) LU(C,; {x; =0} LUC, {x; =0} LL.LCy H{x; =0})) =1} =
P{(S(x,t) /{x; =0}) =1} - system availability at x; = 0, which are obvious.
ThUS, B (1) = Royer (0 /0 =1 = R, (0 /{, = 0}
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