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The technique for calculation failure frequency measure of reliability in class of logical-
probabilistic-models is proposed. The technique is applicable for models of redundant repairable
systems which are not limited by serial-parallel structures. In conjunction with system
decomposition the techniques makes it possible to analyze high dimensional systems very
efficiently.

1. INTRODUCTION

Most of the papers regarding algorithmization of reliability&safety characterization in class of
logical-probabilistic-models are devoted to truth probability estimation of some logical function
defined on Boolean variables (elements of the analyzed system). It should be mentioned that in
logical-probabilistic-models one can calculates only so-called differential measures, that is
measures of some state or transition in given moment of time, for example, system availability
(unavailability). In this paper we examine a system of repairable elements with given failure and
repair time distribution and specify its availability and failure frequency (both stationary and not
stationary). Using availability and failure frequency it is possible to calculate other reliability
indices of the system.

Failure frequency is important reliability measure. It characterizes system transitions in the
space of states, for example transition from good state to failed state. It is necessary to calculate this
index when doing effectiveness, safety, risk analysis. Failure frequency is defined as time derivative
of average number of failures. Therefore average number of failures (in the general case average
number of transitions) one can calculate via integration failure frequency (transitions frequency) in
given time interval. Failure frequency and number of failures are the main measures when
calculating cost (loss) per unit time. Mean system cost on time interval (0,t) (mean effectiveness
Е(0,t)) in systems with multilevel performance is defined as:
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where Pri(t) – system state i probability in time point t;
ωi,j – frequency of transitions from the ith state to the jth state;
hi – reward (gain or loss) per unit time associated with state i;
hi,j – nonrecurring gain or loss per transition from the ith state to the jth state.
The first integral presents average holding time in each system states on time interval (0,t)

multiplied by reward per unit. The second integral presents average number of transitions weighted
by nonrecurring reward. So, if some faults bring to the damage of adjoining equipment or processed
part, then with the help of failure frequency we can estimate total loss. Known, traditional
estimation of  average effectiveness E(t) in time moment t gives too optimistic result:
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Ei(t) – effectiveness in state i (particularly, Ei(t) can be equal to hi).
It should be mentioned that using failure frequency one can calculate interval reliability index

for repairable systems, which is not directly calculated in logical-probabilictic models.
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Known method of failure frequency calculation, which is based on formula of joint event
union, leads to considerable timetable and even to inability of obtaining accurate estimate at high
dimensionality because of enumeration type of the algorithm.

In this paper we suggests less time-consuming method of calculation failure frequency for the
high dimensional systems.

2. PROBLEM DESCRIPTION

Let elements of a system ix , ,ni=1 and system S(x), x={xi} can be in two state – good and
failed
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Let system state exhaustively defined by state of its elements in time point t. Denote minimal
path sets of the system by A={Aj}, minimal cut sets by C={Cj}.

Then systems availability in time point t can be defined as
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and unavailability
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Every minimal path (cut) corresponds to conjunction of some numbers of good (failure)
elements x={xi}.

Availability (unavailability) of a system is defined as:
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where P{.} – occurrence probability of events in brackets in time point t.
Numerous methods and algorithms were designed for calculating availability (unavailability)

indexes. The main purpose of these works was to increase efficiency of transformation of logical
expressions (3) and /or (4) for obtaining probability (5) and /or (6). The problem lays in exponential
growth of computational complexity in the system dimension increase (number of elements,
number of minimal cut or path sets). Thus, in calculating unavailability by (6), using formula of
joint event union, we obtain the following expression
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Number of terms in right side of equation (7) will be 12 −l . Besides generation software
algorithm for crossing symbol subsets of paths (cuts) is complex task. For instance, famous test
example of naval electrical power system, known as «I.A. Ryabinin task №35» [10], has 15
elements, 31 minimal cut sets and 92 minimal path sets (231 > 2 ·109). Software, implementing this
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method for reliability indexes calculation (e.g., Risk Spectrum), in large dimension makes only
approximate calculus, which gives rough estimate for system of elements with not a high reliability.
It should be mentioned that in [1-3,5,6,8,9] were suggested quite effective calculation methods for
availability (unavailability) in (5), (6) interpretation.

Failure frequency is expected number of failures in given moment of time t (i.е. in (t, t+∆t)
when ∆t→0). This implies appearance of at least one cut set in time moment t+∆t. Let ei – is
occurrence event of ith cut set in (t, t+Δt), where ei(t+Δt) – conjunction of ni variables (elements),
forming Сi cut set. At ordinary failure flow assumption appearance ei in Δt means, that in moment t
(ni – 1) elements of Сi were failing and then in Δt one good element failed. Denote this event as '

ie .
Using formula of total probability we can define occurrence probability of event ei in Δt:
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where )(),(ω tQt
ii gj - failure frequency and unavailability of element ji, gi in time moment t;

*ωi (t) – failure frequency, conditioned of appearance Ci cut set.
Well known method [7] of calculation failure frequency Sω also is based on formula (7):
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Event )}({
2121  iijj eeCC ∧∧ implies, that in time point t the system was failed because of

realization of two cut sets
21

, jj CC and during Δt general elements for cut sets
21

, ii CC have failed
(i.е. in (t, t+Δt) cut sets i1 and i2 have occurred). If there is no such element, then probability of
occurrence just two or more cut sets during Δt is equal to zero.  General term is
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where ωGU(t) - frequency of general elements group entering cut set G and not entering U

from the others (l – G); ∏
..G

U
tQ

.1

...1

)( - product of unavailability of all elements entering G and U cut

sets from other (l – G) except those elements, which are used in calculation of ωGU(t) (ωGU(t) are
calculated similarly to (5), but with regard to group of general elements entering G cut sets). Every
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element in the product is included only once. Failure frequency calculation by (9) - (11) – is more
laborious task (about three times), than availability (unavailability) calculation by (7).

Advantageous process of the high dimension problem solving is decomposition of structure or
logical representation of the system. At structural decomposition one can appropriate:

1. singly connected decomposition, when appropriated subsystems (assemblies,
modules, …) connect each other only through two nodes, and at that one node is input, the
other node is output, i.е. this is series connection of the subsystems. Each of the subsystem
can correspond to redundancy structure with some logical function (generally k out of m) in
output node (element). In this process we avoid complicated calculation of reliability, safety,
technical effectiveness indexes;

2. multiply connected decomposition, when separating subsystems can involve
any numbers of inputs/outputs. Only restriction on connection acyclicity exists:

a. all input nodes of subsystem Lk are either heading nodes or they are
connected with other elements (not entering into Lk ) through the input edges of Lk;

b. all output nodes are either terminal nodes or they are connected with
other elements through the outgoing edges of Lk.

This process has disadvantages relating to complexity of the subsystem separation and
indexes aggregation (e.g. failure frequency). But it is very efficien at solving high dimension
problem and analyzing features of «reliability behaviour »;

3. decomposition by divisible event group of element’s states
4. logical decomposition. In this process we do not make any transformation of

the system structure. In this case the task of reliability modeling is simplified by dividing
logical criteria of the system performance. For aggregation of indexes we can suggest
method using theorem of probability of joint events sum, making easy to calculate bilateral
estimation of the reliability indexes.

Decomposition methods, especially those, which have described in pt. 1 and 3, are known [7,
8, 11] and are used extensively for availability (unavailability) indexes calculation. In this paper we
suggest method of failure frequency calculation based on decomposition technique by pt.3. For
reduction calculation effort we also suggest decomposition by pt.1. Expression for failure frequency
calculation, using decomposition by pt.1 and separation into series and parallel groups of elements
and consequent convolution in one element with equivalent value of failure frequency, is the
following:

− parallel schema (1 out of m)
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− series schema (m out of m)
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− parallel schema (k out of m)
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where )(ω),(1)(),( ttRtQtR iiii −= - availability, unavailability, failure frequency of
element i.

Expression (13) – (15) can be derived from (9) – (11) or drawn directly from

)}(1)=t),(({ω
1

'
l

i
iS eSP

=

∧= x . (16)

Redundant structure k out of m very often consists of identical elements, in this case
expression (15) takes on form
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where km
m

−C - number of (m – k) out of m combinations of elements.
In [1] method of recursive variables increase was suggested for availability (unavailability)

calculation. The kernel of problem is follows. Let
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on the nth last step of recursion we’ll get system availability.

3. TECHNIQUE FOR FAILURE FREQUENCY CALCULATION

Method of recursive variables increase (18), (19) is also applicable for failure frequency
calculation. Let
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Lemma.
System failure frequency can be recursively calculated like that:

)(ω)(ω,0)(ω),(ω)()(v)()(ω)()(ω )(
сист

)0(
1предотк

)(
1

)(
1

)1( 1 tttttPttQttRt n
k

xk
k

k
k

k k ==++= +++
+ + ,        (21)

где )()( )()(
предотк

1 kkx rptP k −=+ , k =(0,1, …, n-1)
Lemma Proving. On  the (k+1)th recursion step elements xk+2, …, xn of the system are

completely reliable and we consider divisible group of disjoint events relative to the element xk+1:
− element xk+1 is good in time point t. Probability of this event is Rk+1(t), and failure

frequency is equal to ω(k) in accordance with expression (20);
− element xk+1 in time point t is failed. Probability of this event is Qk+1(t), and failure

frequency is equal to ν(k) in accordance with expression (20);
− element xk+1 failed on (t,t+∆t). Probability of this event is ωk+1(t)∆t (i.е. failure frequency

is equal to ωk+1(t)). For the system to transfer to failed state at failure of element xk+1 it is
necessary to be in the state that are previous to failure and the element xk+1 is good, but
it’s further failure results in failure of the system. Let us denote probability of such
subsets as )(1

предотк tP kx + . It is proved in appendix that

}0{)(}1{)()( // систсистпредотк =−== ii
x xtRxtRtP i ,                                              (22)

where }{)( /сист AtR - conditional system availability subject to А.
Taking into account (22) we can come up on the (k+1)th step )()(

предотк )(1 kkx rptP k −=+ .
In accordance with formula of total probability we come up on (21). Note that (22) is

Birnbaum reliability measure [7, 11].
Failure frequency calculation method (20), (21) (like availability calculation technique (18),

(19)) can be used without system decomposition.  But we advise to use system decomposition for
overcoming dimensionality problem and rising performance of numerical algorithms. In case of
system decomposition we suggest the following algorithm for failure frequency calculation.
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− All series, parallel, k out of m reliability schemes are enlarged in one element with
failure frequency, calculated by (13) - (15) (for availability calculation one may use well-known
formulas for series-parallel schemes).

− As a result of several enlarging iterations one can get irreducible system part.  In this
case failure frequency calculation is implemented by (20), (21). And it is recommended to
assign greater numbers to those elements, which incomes in different conjunctions several
times. After that while these elements are treated as good (in accordance with expression (20)) it
is possible to use simple formulas for series-parallel structures. At formalizing the step of
minimal cut sets calculation one make use algorithm, proposed in [4, 5], which allows to pick
out the elements,  “making” reliability structure irreducible.

General way of r(k) and ν(k) calculation includes the following. At each recursion step value xi,
stated in condition, are substituted in logical expressions (3), (4) and final expressions are
transformed into probabilistic functions relative to availability index and failure frequency (in given
step). At “hand-made” calculation one can figure the resulting structures, then all advantages of
formulas (13) – (15), (17)  together with decomposition and aggregation will be evident. Note, that
in general case some steps of r(k) and ν(k) calculation will include substeps, if resulting logical
expressions will not fit series-parallel structures. In this case at given step one have to solve new
task with resultant reduced logical description.

4. EXAMPLE

Let us consider irreducible bridge structure (Figure 1) and make failure frequency calculation
by two stated above methods.

Figure 1. Bridge scheme.

3524514321 4321 ⋅⋅=⋅⋅=⋅=⋅= C;C;C;C (indexes are used instead of elements хi,
conjunction symbol are substituted by product character).

1. Under (9) – (12).
ωS1 = (ω1Q2 + ω2Q1) + (ω3Q4 + ω4Q3) + (ω1Q5Q4 + ω5Q1Q4 + ω4Q1Q5) +                           (23)

(ω2Q5Q3 + ω5Q2Q3 + ω3Q2Q5) – ω1Q2Q5Q4 - ω2Q1Q5Q3 –
ω4Q1Q5Q3 - ω3Q2Q5Q4 – ω5Q1Q2Q3Q4.

All еi and and cross product еi, еj were included in ωS1 (cross product е1∩е2 has not common
elements, therefore for this event failure frequency is zero).

ωS2 = [(ω1Q2 + ω2Q1) Q3Q4 + ω2Q1Q5Q4 + ω1Q2Q5Q3]1 – [ω2Q1Q3Q5Q4 +
ω1Q2Q5Q3Q4]2 + [(ω3Q4 + ω4Q3) Q1Q2 + ω3Q1Q5Q4 + ω4Q2Q5Q3]3 –
[ω3Q1Q2Q5Q4 +ω4Q1Q2Q5Q3]4 + [(ω4Q5 + ω5Q4) Q1Q2 + (ω1Q5 + ω5Q1) Q3Q4 +
(ω1Q4 + ω4Q1) Q2Q5Q3]5 - [ω5Q1Q2Q3Q4 + ω4Q1Q2Q5Q3 + ω1Q3Q4Q2Q5]6 +
[(ω3Q5 + ω5Q3) Q1Q2 + (ω2Q5 + ω5Q2) Q3Q4 +  (ω2Q3 + ω3Q2) Q1Q5Q4]7 – (24)
[ω5Q1Q2Q3Q4 + ω3Q1Q2Q5Q4 + ω2Q1Q3Q5Q4]8 - [ω1Q3Q4Q2Q5 + ω1Q3Q4Q2Q5 –
ω1Q3Q4Q2Q5]9 – [ω2Q1Q3Q5Q4 + ω2Q1Q3Q5Q4 – ω2Q1Q3Q5Q4]10 –
[ω4Q1Q2Q5Q3 + ω4Q1Q2Q5Q3 – ω4Q1Q2Q5Q3]11 – ω3Q1Q2Q5Q4 + ω3Q1Q2Q5Q4 –

1 3

5

42
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ω3Q1Q2Q5Q4]12 – [ω5Q1Q2Q3Q4 + ω5Q1Q2Q3Q4 - ω5Q1Q2Q3Q4]13.
In ωS2 were included the following events: е1ΛСi – the first square bracket (denoted as […]1);

е1ΛСiΛСj – the second square bracket (event С3 ΛС4 is the failure of all system elements there fore
failure frequency of this event is zero); е2ΛСi , е3ΛСi, е4ΛСi, - square brackets 3, 5, 7; е2ΛСiΛСj,
е3ΛСiΛСj, е4ΛСiΛСj - square brackets 4, 6, 8; е1∩е3ΛС2, е1∩е3ΛС4, е1∩е3ΛС2ΛС4 – square
bracket 9; е1∩е4ΛС2, е1∩е4ΛС3, е1∩е4ΛС2ΛС3 – square bracket 10; е2∩е3ΛС1, е2∩е3ΛС4,
е2∩е3ΛС1ΛС4 – square bracket 11; е2∩е4ΛС1, е2∩е4ΛС3, е2∩е4ΛС1ΛС3 – square bracket 12;
е3∩е4ΛС1, е3∩е4ΛС2, е3∩е4ΛС1ΛС2 – square bracket 13.

Cross products еi of order 3 and 4 for ωS1 и ωS2 have not common elements there fore this
term of failure frequency is equal to zero. But all these cross products must be done (by men or by
computer).

Final expression for failure frequency in accordance with (9) will be:
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2. After calculating conditional availability by (18), (19) we can calculate failure frequency.
Let us define logical operability function throw minimal path sets
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From (20), (21).failure frequency is
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;0)11(ω}1,0)(

1)=),({(0)(ωvωω

12121212125432

4

1

'

22
)1()1(

2
)1(

2
)1(

2
)2(

1521

4

1

'

11
)0()0(

1
)0(

1
)0(

1
)1(

/

QQRQRxxxxe

tSPQRrpQR

xxxe

tSPQRrpQR

i
i

i
i

+=−+=−+====

+⋅=−++=

=−⋅+====

+⋅=−++=

=

=

∧

∧



 

x

x

(27)
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;ωω)ωω()ωω(

)(ω}1,0/)(1)=),({(

)ωω()(ωvωω

12121212312123

1221223543

4

1

'
3

12123
)2()2(

3
)2(

3
)2(

3
)3(

QQQQQQQR

RQRRQRxxxetSPQ

QQRrpQR

i
i

+=+++

=−−++===

++=−++=

=

∧ x

))].1)(1(1())([(ω
)]1)(ωω()1)(ωω[(

)](ω)]ωω()1(ω[
)ωω([)(ωvωωω

);(ω))ωω()1(ω()ωω(

))((ω}1,0/)(1)=),({(

)ωω()(ωvωω

42313441225

3124424231135

12234122132134

121245
)4()4(

5
)4(

5
)4(

5
)5(
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1223412213213412124

1223122454
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12124
)3()3(
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)3(

4
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RRRRRQRRQR
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RQRQQQRQQQ
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RQRRRQRxxetSPQ
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−−−−++
+−++−+
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++=−++==

++++−⋅++=

+−++==

++=−++=

=

∧ x

Let us make a comments to some calculation of r(k) and ν(k).
1}1,0/1)({ 54321

)0( ======== xxxxxSPr x - on conditions that in time point t х1 failed
and all other elements are good, S(x) =1 is persistent event and required probability is 1.

}1,0)(1)=),({(Δν 521

4

1

')0( / =====
=

∧ xxxetSPt
i

i x - if elements 2 – 5 are good in time

point t system failure is impossible (i.е. 
4

1=i
ie - null event), so ν(0) = 0.

154321
)1( }1,0/1),(),({ RxxxxtxStSPr ======== x - at element х2 failure and elements

х3 – х5 in good state and after substitution into S(x) we get
S(x) = х1, and r(1) = R1.

txxxxetSPt
i

i Δω}1,0/)(1)=),({(Δv 15432

4

1

')1( ======
=

∧ x - substituting х2 = 0, х3 = х4

= х5 =1 into paths Аi(t) and cuts Ci (t+∆t), we have S(x) = х1, e1(t+∆t) = 11 1 xx =⋅ , other ei = 0. In
order to occur failure of х1 in t+∆t, it is necessary that х1 was good in time point t:

1
'
1 )( xte = . And, ν(1) = ω1.

12254321
)2( }1,0/1),()({ RQRxxxxxSSPr +======= x - substitute variables values into

condition S(x,t), expressed throw paths. As a result S(x,t) = S(x1,x2,t) = x1+x2, and it is easy to define
122

)2( RQRr += (parallel connection of х1 and х2).

1212543

4

1

)2( ωω}1,0/)(1)=),({(v QQxxxetSPt
i

i +=====∆
=

∧ x - we already got

expression for S(x,t) subject to condition, at condition substitution into cuts, which must occur in
point (t, t+∆t), we have e1(t, t+∆t) = C1(t, t+∆t) = 21 xx ⋅ . For this cut to occur in (t, t+∆t) it is
necessary to implement event 1221

'
1(t)e xxxx ⋅+⋅= in time point t. (S(x,t) = x1+x2) Λ (

1221
'
1 )( xxxxte ⋅+⋅= ) = 1221 xxxx ⋅+⋅ , so 1212

)2( ωωv QQ += (this can be write immediately in
terms of S(x,t) for parallel connection (13)).

If in ωсист (27) all Ri will be replaced by (1-Qi) we shall get (25).

Resume from example. When calculating by known method by (9) – (12) it was done L steps
of logical expression transformation (logical expression includes 4 cut sets):

− For ωS1 calculation:
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L(ωS1) = ( 1
4C =4)+( 2

4C =6)+( 3
4C =4)+( 4

4C =1)=15. (28) (28)
In (28) the first bracket is equal to the number of terms of first sum in expression for ωS1 (10)

and associates with first four parentheses in (23).  The second bracket in (28) is equal to the number
of terms of second (double) sum in ωS1 expression (10) and associates with other five summands
(with minus sign; the sixth summand is zero in (23)). The other two brackets in (28) associate with
the number of terms of the third (triple) sum and last summand for ωS1 in (10). In (23) this terms are
absent because they are equal to zero.

− For ωS2 calculation in accordance with (24):
L(ωS2) = [( 1

4C =4)·( 1
3C + 2

3C + 3
3C =7)]1+[( 6C2

4 = )·( 1
2C + 2

2C =3)]2+[( 3
4C =4)·( 1

1C =1)]3 = 50.    (29)
The first parentheses in each square bracket defines number of occurrence of one, two, three

cuts ei on ∆t. The second parentheses defines number of combinations of possible cuts in time point
t.

As a result of fulfilment of some steps it is possible to get empty sets. Terms in expression
(10, 11) for these steps are zero. It is necessary to emphasize that all these steps must be executed
including those steps, which results in zero.

Thereby, total amount of steps L = 65.
In suggested method ((20), (21) taking into account (18), (19)) there are no combinatorial

steps. In suggested method the calculation steps are recursive iteration of variables increase. For the
example under consideration it was done 5 steps of calculation r(k) (r(0),…, r(4)) and 5 steps of
calculation ν(k) (ν(0), …, ν(4)).

The form of final result in suggested method is well-behaved viz approximation to final result
are calculated by summation of recursive iteration terms.

Expected number of failures on time interval (0,t) is

∫=
t

dtttN
0

систотк )(ω)( .                                                            (30)

Let assume exponential distribution of operating and recovery time (τвосст.) for all elements,
and element 1 is identical to element 2 (i.е. λ1= λ2= λ1,2 , µ1= µ2= µ1,2), element 3 is identical to
element 4 (λ3= λ4= λ3,4 , µ3= µ4= µ3,4). Availability and failure frequency of the elements are

})μλ(exp{
μλ

λ
μλ

μ)( ttR ii
ii

i

ii

i
i +−

+
+

+
= , })μλ(exp{

μλ
λλ

μλ
λμω tii

ii

ii

ii

ii
i +−

+
⋅+

+
⋅= , i =(1-5).

Let λ1,2=1·10-3, µ1,2=1/20 =0.05, λ3,4=2·10-3, µ3,4=1/15=0.0667, λ5=5·10-3, µ5=1/10 =0.1
(unit is hour-1). Figures 2, 3 show failure frequency and expected number of failures dependence on
time. One can see that interval of unstationarity is sufficiently small (~3τsystem recovery; this is known
theoretical result at µi >>λi), that is why it is acceptable to calculate stationary measures for a
systems with long operation life. In this case availability (Ri) and failure frequency (ωi) will include
only first terms, which is not dependant on time, and expected number of failures will be

ttN стац.систоткстац. ω)( = . (31)
5. CONCLUSION

In this paper we suggest the method of calculation failure frequency measure for system with
complex structure and known availability and failure frequency of system’s elements (in accordance
with expressions (20), (21)). The method is well algorithmizied and together with considered
techniques of decomposition and aggregation ((13) - (15), (17)) makes it possible to analyze the
system with considerably high dimensions. The method is more effective in comparison with other
known methods.
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Figure 2. Failure frequency time dependence.

Figure 3. Expected number of failures time dependence.

6. APPENDIX

Proving the expression (22) for )(prefailed tP ix calculation.
Let logical function is defined through the cut sets {Сk} in the form of (4) (we shall use

product · and summation + character instead of conjunction Λ and disjunction V symbols), i.е.
unoperability function is lCCCtS +++= 21),(x , and operability function is

lCCCtStS ⋅⋅⋅== 21),(),( xx .
Let us divide cut set {Сk} into two subset: {Сki} = { С1i, С2i, …, Сki } and  {Сkj} = { С1j, С2j,

…, Сkj } = {Сk} \ {Сki};  {Сki} ∪ {Сkj} =  {Сk},  {Сki} ∩ {Сkj} = ∅; {Сki} – set of cuts, which
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include element i, {Сkj} - set of cuts, which do not include element i. Then system operability
function is lkjkiCCCCCCtS kiiikjjj =+⋅⋅⋅⋅⋅⋅⋅= ,),( 2121 x .

It is necessary to find probability of subset of pre failed states when the ith element is good.
Failure of the ith element results in system failure. And this probability must be formed from
original system description S(x,t), but not from specially constructed logical function for this subset
of pre failed states. Let define logical function of required pre failed states in the form of

.)( 21prefailed yyiy ⋅= Cuts {Сkj}, in which the ith element is not included, must not exist in time point

t (as these pre failed states are states of system operability), so kjjj CCCy ⋅⋅⋅= 211 . Let consider
the cuts, which include the ith element. As the ith element failure on (t, t+∆t) results in system
failure, then at least one of events {Сki} must exist in time point t, provided the ith element is map
out. So as to exist pre failed state in time t with the ith good element it is necessary to implement a
function with {Сki} хi = 0: })0/{(})0/{(})0/{( 212 =++=+== ikiiiii xCxCxCy  .

Thereby

})).0/{(})0/{(})0/{(1(

}))0/{(})0/{(})0/{((

}))0/{(})0/{(})0/{(()(

2121

2121

212121prefailed

=⋅⋅=⋅=−⋅⋅⋅⋅

==++=+=⋅⋅⋅⋅

==++=+=⋅⋅⋅⋅=⋅=

ikiiiiikjjj

ikiiiiikjjj

ikiiiiikjjj

xCxCxCCCC

xCxCxCCCC

xCxCxCCCCyyiy







Let define this probability

}.1})0/{(})0/{(})0/{({

}1{}1}))0/{(})0/{(})0/{(1({

2121

212121

==⋅⋅=⋅=⋅⋅⋅⋅

−=⋅⋅⋅===⋅⋅=⋅=−⋅⋅⋅⋅

ikiiiiikjjj

kjjjikiiiiikjjj

xCxCxCCCCP

CCCPxCxCxCCCCP





Note, that
1. 1}=1}))/{,({(}1{ 21 ===⋅⋅⋅ ikjjj xtSPCCCP x - system availability at хi = 1,

because kjjjikiiikjjji CCCxCCCCCCxtS ⋅⋅⋅==⋅⋅⋅⋅⋅⋅⋅=  212121 })1/{)((=1))/,(( x . Element

xi is a part of all {Сki } and his operability provides 1})1/{)(( 21 ==⋅⋅⋅ ikiii xCCC  regardless of
state of other elements.

2. ===⋅⋅=⋅=⋅⋅⋅⋅ }1}))0/{(})0/{(})0/{((){( 2121 ikiiiiikjjj xCxCxCCCCP 

}1})0/{),({( ==ixtSP x - system availability at хi = 0, which are obvious.

Thus, }0{)(}1{)()( // систсистпредотк =−== ii
x xtRxtRtP i .
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