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CRITERION OF THE SUPERVISION ACCURACY OF INDEXES 

RELIABILITY OF POWER-GENERATING UNITS A STATE DISTRICT 
POWER STATION. 

 
Farhadzadeh E.M., Muradaliyev A.Z., Farzaliyev Y.Z. 

● 
Azerbaijan Scientific-Research and  

Design-Prospecting Institute of Energetic 
AZ1012, Ave. H. Zardabi-94 
e-mail: fem1939@rambler.ru     

Abstract 
 
 The automized system is developed, allowing to determine and compare indexes of 

individual reliability of complex plants in view of a random in character of an initial conditions.  
 

 Despite of numerous probing, the quantitative assessment of indexes of reliability of plants 
EES on former draws notice of technicians. It speaks, first of all, variations in EES: a lifetime of an 
appreciable unit of plants EES (50÷60)% exceeds rated, that has led to essential body height of 
working costs. It in turn has inevitably led to variation of the strategy of maintenance. If earlier, in 
conditions of the regulated scheduled maintenance, indexes of reliability were used mainly for a 
solution of design problems, and was to evaluate enough some averaged value of indexes of 
reliability and reparability today the principal direction of probing of reliability of plants EES has a 
little varied. The strategy of realization of scheduled maintenances more and more is guided by real 
availability index of product of particular plants. More and more actual the possibility becomes to 
sample most (least) safe plants. Alongside with indexes of reliability and reparability, the 
assessment of indexes of longevity since these indexes characterize availability index of product of 
the equipment is actual. The methodology of problem solving of an assessment and comparison of 
indexes of reliability is developed insufficiently full, and in practice selection comes true "in the old 
manner", or at an intuitive level. To number of the fundamental methodical problems concern: 

− how to evaluate reliability of particular plant (power-generating unit, a power line and 
so forth); 

− how to calculate accuracy of assessments of indexes of reliability; 
− as at matching to consider a random in character of assessments of indexes of 

reliability. 
−  In the present paper as plant EES power-generating units (PU) a state district power 

station are surveyed. Selection of plant not mated. PU a state district power station (SDPS): 
− in many respects determine reliability and overall performance EES; 
− concern to bunch of complex plants which are characterized by multidimensionality, 

diversity of types of properties of plant, lack of data on the functional intercoupling of indexes of 
reliability and the fundamental industrial indexes. The length of pipe ducts PU can be calculated in 
hundreds kilometers, hundreds units of the various equipment and systems, not speaking already 
about assemblies of the equipment and systems and their units; 

− require an individual approach. The in-service experience displays, that each PU the 
state district power station has the «weak links», the average duration of working, emergency and 
standby estates, the periodicity and structure of a between-repairs cycle. 
 Problems of an assessment of indexes of reliability and reparability PU (named by us – IIR) 
are surveyed by indexes of individual reliability in [1], and assessments of indexes of longevity 
which are evaluated according to measurement of diagnostic parameters and inherently, are 
individual – in [2]. The assessment of accuracy IIR PU is surveyed by a method of simulation 
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modeling in [3]. Accounts IIR are conducted under static data about estates PU a state district 
power station, assembled for series of years in the form of the empirical table in which columns 
match to flock of indications, and strings - to flock of estates. The table allows on purpose-built 
algorithms and programs [4] practically instantly to evaluate as averaged (on all PU) indexes of 
reliability and IIR for the preset combination of varieties of indications. 
 The empirical table represents a final population of static data (further a population) and the 
separate table lines describing estates particular PU, - sampling of a data set. 
 The of the same type averaged indexes of reliability PU and IIR as analogue quantities, will 
differ to some extent. Their accuracy will differ also. The natural problem on a significance of their 
divergence from here implies. It is known, that: 

− sampling of random quantity Y (for example, duration of estates) can be representative 
and unrepresentable. Unrepresentable sampling in mathematical statistics is fathomed as sampling 
which )(* yFm  distribution was nonrandom differs from distribution general or of a final collection 

)(* yFM , where m and M – number of random quantities, accordingly samples and collection; * - 
means an assessment. Unrepresentatively samples are caused with difference of the averaged 
indexes of reliability and IIR; 

− application analytical methods of mathematical statistics oriented on comparison of 
parameters of distributions two independent representative samples, methods of marshaling of 
plants on their significances and methods of an automatic group of plants also assume 
representatively samples from collection; 

− comparison of the same type IIR is normal comes true between IIR surveyed PU. The 
number of such comparisons for one index of reliability is peer Nc=(nδ-1)!, where nδ – number PU. 
For example, if nδ=8, Nc=5040. More expediently, in our opinion to compare the of the same type 
averaged indexes of reliability and IIR PU. Thus Nc=8 and in hundreds times diminishes number of 
evaluations; 

− the representative sampling can be received experimentally by means of random 
numbers. In actual conditions, in particular, at sampling data of empirical truth table PU, 
unconditional adoption of the supposition about representatively of sampling is unacceptable, that is 
quite physically explainable. If now to consider, that by means of the mathematical apparatus of 
check of statistical hypothesizes it is possible to deny only ours suppositions about representatively 
of sampling, but never it is impossible to proved justice, and versions of a possible divergence of 
compared indexes of reliability infinite flock, representatively of sampling appears improvable.  

It is possible to simplify a task solution, having received correspondence of watched 
distribution )(* yFm  to real regularities of variation of random quantities of sampling. Thus, flock 
the sample of volume m is divided into three not intersected subsets (we shall designate them 
through Wo, W1 and W2). Sampling with specified probability is considered representative if 
(evaluated on experimental data) the statistician describing a divergence )(* yFM  and )(* yFm  (we 
shall designate it through S*), hits in subset Wo, no representatively – if S* hits in subset W2 and if 
S* hits in subset W1 it is considered, that the information has not enough for an adoption of a 
decision. Therefore, the problem is reduced to presence  Wo, W1 and W2 for possible combinations 
m and M. 

− each time when it is necessary to muster a divergence of distribution of random 
quantities, deal not with one, and with two hypotheses which it is accepted to name initial (Н0) and 
alternative (Н1) and, accordingly, with errors of two types. First from them - an error of first kind 
(we shall designate it through α), originates if hypothesis Н0 when actually she is correct is denied. 
The second type of errors named as an error of second kind (we shall designate it through β), 
originates if hypothesis Н1 when actually she is correct is denied. What hypothesis to receive for 
initial and what for alternative soundly is not reserved. Traditionally, for initial Н0 the hypothesis 
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about a random divergence of compared allocations is received or of their parameters. However, it 
is not always correct, and at an automatic test can lead to essential errors. It speaks difference of 
means of simulated implementation of statisticians S. 

− in actual conditions the true is unknown. Distribution )(* yFM  also )(* yFm  have a 
random in character. Natural aiming simultaneously to diminish α and β it is impossible, since with 
decrease α value β increases and on the contrary. The problem consists in making the strategy 
ensuring minimum risk of an erratic solution. The justified selection of statistical criterions 
constitutes rather a challenge of modern mathematical statistics [6]. Practical references are reduced 
to selection on those or to premises are maximal acceptable values cα  (more often 0.1 or 0.05) and 
further – to selection of the criterion ensuring the least value β. More precise references here are 
absent, as selection of criterion depends on the big number of the interrelated factors. 

In [5] has been offered new non parametric criterion of the supervision of coefficient 
representativety of sampling (CRS) which short is reduced to following sequence of accounts: 

1. The collection {y}M is placed in ascending order and «y» a variation series of a 
collection the assessment of probability is compared with each value.  

M
iy =)(F*

M
 (i=1,M).     (1) 

2. Analogously p.1 sampling {y}m is placed in ascending order and «y» a variation series 
of sampling the assessment of probability is compared with each value  

m
iyFm =)(*  (i=1,m). 

3. The divergence is determined 

M
L

m
iyFyF i

Mmim −=−=Δ )()( ***
,

    (i=1,m)   (2) 

where a Li - serial number yi in variation series of a collection of random quantities {y}M 
4. The statistician is evaluated 

{ }
mimm i,

* max Δ=Δ .       (3) 

5. If the actual greatest divergence *
mΔ  will appear not less critical value of a statistician 

)(αmΔ  the hypothesis about representatively of sampling should be denied.  
In [5] was also a task in view of an assessment of preferability of some modifications of 

criterion CRS in which basis is: 
- peak value of a divergence ( mΔ ), 
- average statistical value of a divergence ( avrΔ ), 
- average quadratic value of a divergence (CR). 

 As in the subsequent we should refer repeatedly to statisticians mΔ , AVRΔ , and CR, we shall 
agree to designate them, as well as earlier, through S. Particular labels will be introduced only as 
required. 
 The simulation model has been developed, allowing to receive distributions 

α−=1)/( 0
* HSF  for arbitrary set values m and M. 

 With reference to the present paper, practical accounts have allowed to establish: 
− the discrete character of distributions )/( 0

* HF mΔ , )/( 0
* HF срΔ  and )/( 0

* HCF R ; 
− number of the discrete value of arguments of distributions )/( 0

* HSF , the greatest for 
distributions )/( 0

* HCF R ; 

− the discrete character of distributions )/( 0
* HSF , eliminates a possibility of account of 

critical value of statisticians (SK) at the fixed value cα . Value cα  is in some spacing which width 
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the is more, than it is less m and M. Events when the lower limit of the spacing which is switching 
on a design value cα , appears unfairly small are frequent, and the upper boundary value – is 
inadmissible greater; 

− the time of the automized account of distributions )/( 0
* HSF  at arbitrary M, m and at 

hundreds iterations is calculated by seconds. In conditions when the analytical aspect of laws of 
distributions )/( 0

* HSF  is unknown, simulation modeling is the powerful instrument at statistical 
probing and is non-comparable to the restrained possibilities of the manual bill. The faultlessness of 
outcomes of account is easily controlled by a solution technique of "inverse problem". 

− on particular instances it is displayed, that outcomes of application of various criteria 
CRS can differ is essential. Therefore, it is necessary to secrete criterion, which error of second 
kind the least. For this purpose, first of all, it is necessary to evaluate distribution )/( 1

* HSF  
Simulation algorithm of distributions β=)/( 1

* HSF . Distributions )/( 0
* HSF  in conditions 

of a solved problem is necessary for: 
− comparisons of criteria mΔ , AVRΔ , and CR; 

− assessments of value of argument S matching critical value of an error of second kind 
cβ , i.e. minimum from the possible discrete value S, satisfying to a condition cββ ≤ ; 

− assessments of an error value of the second stem β  for the greatest value of a 
divergence of distributions )(* XFM  and )(* XFm . 

As it has noted been above if the representative sampling from a data set is simulated by 
means of random numbers with an even distribution in the interval [0,1] it is obvious, that the no 
representatively sampling can be received, if random numbers mismatch the uniform law in the 
interval [0,1]. For each law of distribution )(* yFm  there will be distribution )/( 1HSF . In turn, this 
parity bears that at an assessment )/( 1

* HSF  nonparametric criteria S are converted in parametric.  
Analysis of statistical data of duration of estates PU displays, that in overwhelming majority 

of events minimum value of arguments of distributions )(* yFM  and )(* yFm  practically coincide. We 
shall designate a parity of spacing of variation of arguments )(* yFM  and )(* yFm  through δ, where 
0<δ≤1. This parity, unconditionally, is a particular case. However he is simple enough, obvious, 
easily controlled on the intermediate evaluations. 

The modeling algorithm in this case is similar to algorithm of an assessment of 
distributions )/( 0

* HSF . We shall analogously receive, that distributions Fm(y) and Fn(y) match to 
the uniform law, accordingly, in spacing [0;δ ] and [0,1]. 
 Modeling algorithm for surveyed statisticians is characterized by following sequence of 
evaluations:  

1. Under the standard program RAND(y) it is simulated n random numbers y with an even 
distribution in the interval [0,1], mapping value of a distribution function y=Fn(S). We shall 
designate a block of these numbers through {y1,i}n. 

2. It is analogously simulated m random numbers «y» in the interval [0,δ ], mapping value 
of a distribution function y=Fm(S). The block of these numbers will be {y2,i}m. 

3. The variation series of random numbers {yi}M and {y2,i}m, where M=m+n is constituted. 
4. Statistical distribution functions are evaluated MjyF jM /)(* =  and miyF im /)( ,2

* =  with 
j=1,M and i=1,m  

5. By formula (2) implementation of a divergence between equal value of arguments of 
statistical distribution functions are evaluated )(* yFm  and )(* yFM  

)()( *
,2

*
iMimi yFyF −=Δ        with i=1, m 
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6. Implementation are determined 

{ }mim Δ=Δ max , ∑
=

Δ=Δ
m

i
iAVR m 1

1  and ∑
=

Δ=
m

i
iR m

C
1

21  

7. Having iterated evaluations p.p. 1÷6 NI time, where NI – number of iterations, we build 
a variation series of implementation of each statistician and by that it is calculated assessments 

)/( 1
* HSF . 

The graphical case history of sequential account of a statistician Δ m is reduced on fig.1. For 
δ =0.7, m=4 and M=10. Some outcomes of accounts of distributions )()/( *

1
*

mm HF Δ=Δ β  of some 
δ  are reduced on fig.2.  

 
Fig 1. A graphical case history of an assessment of a statistician Δ m at δ =0.7 m=4 and M=10 

 

 
Fig.2, The graphical case history of error distributions of the first and second stem of criterion mΔ  

at m=10 and n=40  
1- ;3,0=δ       2- ;5,0=δ        3- ;7,0=δ       4- ;85,0=δ       5- 0=δ  

 
For matching, on fig.2 the assessment of a distribution function )/(1)( 0

** HF mm Δ−=Δα  is 
reduced at the same m and M, but for an event when sampling is representative )0( =δ . These 
distributions, first of all, confirm known character of their variation (with decrease α value 
increases β and on the contrary). 
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It is established, that: with body height δ  the mean of value mΔ  increases; distributions 
)/( 1

* HSF  are discrete; the discrete value of arguments of allocations )/( 0
* HSF  and )/( 1

* HSF  
for conforming statisticians not always coincide; the number of the discrete value of distributions 
CR and AVRΔ  is essential to statisticians is more, than for a statistician mΔ . On fig.3 experimental 
distributions )/( 1

* HF mΔ  for of some m and n are reduced. 
 

 
 

Fig.3. Distribution of the greatest spread of distributions Fm (x) and FM (x) at 5,0=δ  
1 –m=10; n=200;     2 -m=10; n =20;     3 -m=50; n=200 

 
As follows from fig.3, with magnifying of number of random quantities mΔ  of sampling (m) 

the mean )(*
mM Δ  and an average quadratic deflection )(*

mΔσ  are diminished (we shall compare 
distributions 1 and 3 fig.3). 

Distributions of random quantities a samples with equal m, taken of collections with a 
differing number of random quantities (for example М1>>M2), will have various ( )mM Δ*  and 

)(*
mΔσ . The М=m+n it is more, and m it is less, the ( )mM Δ*  it is less, and )(*

mΔσ  it is more. 
The magnifying )(*

mΔσ  at magnifying of M is caused by increasing agency of a random in 
character of distribution )(* yFn . Therefore, build-down of spread )(* yFn  is one of main routes of 

build - down )(*
mΔσ . The spread )(* yFm  depends not only on number of iterations, but also from 

correspondence of simulated pseudorandom numbers to the uniform law in the interval [0,1]. 
Analogous outcomes are received and at simulation modeling )(yFm  on )(* yFm  

Method of comparison of criteria. As it has noted been above to compare with criteria, it is 
necessary to compare with dependences [ ])()( SfS αβ = . Such comparison is most simply realized 
by a method of simulation modeling by: 

- constructions of distribution )/( 0
* HSF  and determination )/(1)( 0

** HSFS −=α : 
- constructions of distribution )/( 1

* HSF = )(* Sβ : 
- constructions of dependence [ ])()( ** SfS αβ = . 
Some singularities of comparison of criteria of testing of hypothesis about character of a 

divergence of distribution functions of sampling and a final collection have been surveyed by us in 
[7]. In the present section we shall try to update methodology of matching of these criteria and 
modes of build-down of agency of pseudorandom numbers on outcomes of account. 
1. Matching of criteria can be carried out by a solution technique of "inverse problem" when 
character of sampling of a final collection is previously known, namely: sampling is representative 
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or no representative . It is established, that for representative sampling, than at the fixed arbitrary 
value of an error of first kind (α), an error of second kind (β) it is more, that reliability of criterion 
is more. If sampling is no representative, at the fixed arbitrary value α, than β it is less, that 
reliability of criterion is more. 
 So that to compare with reliability of surveyed criteria of a test of hypothesis it is necessary 
to build characteristics )]([)( sfs βα =  for representative (R) and no representative (NR) a samples 
and to compare at the fixed value 0)( αα =s  with a design value )(sβ . If to designate criteria as S1 
and S2 it will be formal condition of preference S1 above S2 to look like: 

    
[ ] [ ]
[ ] [ ]⎭

⎬
⎫

=<=
=<=

022011

012011

)()(
)()(

αβαβ
αβαβ
fSfS

fSfS

NRNR

RR      (4) 

2. Singularities of statistical modeling. One of the fundamental difficulties at simulation 
analysis of distributions )(* Sα  also )(* Sβ  is build-down of agency of pseudo-random values 
program simulated a samples with an even distribution in the interval [0,1], on outcome of account. 
Fluctuations of numerical values )(* Sα  also )(* Sβ  cause the certain probability of an erratic 
solution which, in particular, the is more, than it is less number of implementation of sampling (m) 
and depends on number of iterations a little. Overcoming of this difficulty has been reached as 
application of a known method of common random numbers [7], and new approaches, in particular: 

− applications of criterion of Kolmogorov for the supervision of correspondence of 
random numbers program simulated a samples to the uniform law. "Classifying" a samples not only 
reduces fluctuations of implementation )(*

mΔα  and )(*
mΔβ , but also fulfills protective functions 

from imperfection of program implementation a samples at small m and disturbances of a computer; 
− removal of agency of distribution of the random quantities adding to a samples up to a 

data set, i.e. )(* yFn ; 
On fig.4. Experimental dependences )(Sβ = [ ])(Sf α  for m=10, М=30 and δ =0.5 are 

reduced. Analogous dependences are received and for of some other value m, M and δ . 

 
Fig.4. Curve variations of dependence [ ])()( SfS αβ =  at m =10; M=30 and δ =0,5 for criteria (S): 

1 – CR and AVRΔ ;    2-  mΔ  
 
Analysis of these data has allowed to conclude: 
- the least value β(S) at 0<α(S)<1 occurs for criterion mΔ ; 
- value β(S) at 0<α(S)<1 for criteria CR also AVRΔ  are practically peers and is essential 

above, than for criterion mΔ . In other words, difference of allocations )(τmF  also 
)(τMF  is determined not so much by an average or average quadratic value of their 

deflections, how much the greatest divergence. 
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Risk of an erratic solution and some outcomes of accounts. Traditionally, admissible 
errors at adoption initial or of alternative hypotheses are set, and as a rule, is received, as 

1.0≤cα 1.0≤cβ  . If again to convert to curves fig.2 it is easy to note, that the sum )(*
mΔα  and 

)(*
mΔβ  in process of body height mΔ  varies. First she is diminished, then magnified. Physically 

the sum )(*
mΔα  also )(*

mΔβ  matches to risk of the erratic solution, caused by a random in 
character *

mΔ . Generally the risk of an erratic solution is peer 
   )()()( mmm BA Δ⋅+Δ⋅=Δ βαγ     (5) 

where A and B – a relative significance of aftereffects of an erratic solution, where А+В=1. Then it 
is obvious, that to some value mΔ  there will match minimum value )( mΔγ which will be optimum. 

Having determined optm,Δ , we receive essentially new effect: cα  also cβ  are not set, and pay off 
proceeding from demands )()( ,оптmm Δ=Δ γγ . 

Instance. One of the fundamental indexes of reliability PU is the mean of duration of 
recovery at emergency cutoff ][*

ατΣM . Under arranged data value ][*
ατΣM =65hrs. At number of 

implementation М=145 also it is determined as an average arithmetical implementation aτ . 
However ][*

ατΣM  insufficiently full mirrors an aspect of cutoff PU and the aftereffects coupled to 
it. Failures can lead to sudden cutoff (automatically or manually) to be eliminated by cutoff PU 
under the emergency request (the possibility of cutoff is determined by supervisor EES). Failures 
can be repeated and at start-up from unloaded reserve or of emergency repair. In each of the 
enumerated events ][*

aM τ  and an aftereffect of cutoff PU are various. Is how much essential differ 
][*

aM τ  from the averaged index ][*
aM τΣ . In the capacity of ][*

aM τ  we shall survey average 
duration of sudden cutoffs ][*

sdM τ  of each PU. The conducted accounts, as one would expect, 
have displayed, that the distribution function )(*

aMF τ  is essential differs from distributions 
)(*

. sdimF τ  and consequently was nonrandom differ ][*
aiM τ  and ][*

sdiM τ  with i=1,nб. Further the 
collection of implementation of duration of emergency repair has been surveyed at sudden cutoffs 
of all PU with М=55 and ][*

sdM τΣ =37hrs. Outcomes of comparison ][*
sdM τΣ  and assessments 

][*
sdiM τ  for each PU are reduced in table 1. 

 
Matching of duration of emergency repairs at sudden failures  

of power-generating units 300 MW. 
Table 2 

i im  [ ]iM τ*  *
mΔ  ( )оптΔ*γ  

α,mΔ  β,mΔ  

1 13 101 0.25 0.01   
2 8 21 0.09 0.18 0,15 0,24 
3 8 6 0.27 0.0   
4 6 49 0.31 0.05   
5 4 29 0.09 0.25 0,29 0,27 
6 3 7 0.37 0.0   
7 5 6 0.38 0.0   
8 8 3 0.56 0.0   
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As follows from this table of an assessment ][*
sdiM τ  for PU with station numbers 2 and 5, 

peer, accordingly 21hrs. and 29hrs. (in difference from others PU) is random differ from 
][*

sdM τΣ =31hrs. Given tables 1 together with fig..4. Allow to trace algorithm of an adoption of a 
decision. As a result of account most (least) safe are secreted  PU. In our event it is the eighth (first) 
PU, and the divergence speaks difference of "weak links» PU and tame duration their emergency 
repair. 
 

Conclusions 
  

The fundamental outcome of the conducted probing is development of the automized 
system, allowing to determine and compare indexes of individual reliability PU with a state district 
power station in view of a random in character of an initial conditions, to submissive staff 
conforming references and by that, to contribute in junction from the intuitive problem solving, 
depending from the greatest (least) reliability PU, to a quantitative justification of solutions.  
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HOW PROFESSOR B.V. GNEDENKO  
GOT CAUGHT ON A HOOK IN KHARKOV 

 
Professor Mikhail Yastrebenetsky 

• 
Kharkov, Ukraine , ma_yastreb@mail.ru  

 
For the first time, I met B.V. Gnedenko in the Fall of 1970 at the USSR conference-school 

on queueing theory. The conference was organized by the Moscow State University. Boris 
Vladimirovich Gnedenko was a head of the conference. The conference took place at the fantastic 
city resort Dilizhan insite the Caucasus mountains in Armenia, in the house of composers. I would 
have to say that I never attended a more interesting conference in my life. The music was constantly 
playing from the open windows of the cottages nearby; there was a fascinating harmony of 
mountains, mathematics and music (additionally,  of football- we spent playing football all the free 
time ). 

I was inspired by everything I saw, by new ideas, by the people I met, the people who at that 
time were the face of Soviet school of reliability. There were B.V.Gnedenko, Ya.K. Belyaev, 
A.D.Soloviev, the authors of a bestseller on the topic of reliability; this book was probably learned 
word for word by all the attendees of the conference. There were my peers – Igor Ushakov, 
Vladimir Rykov, Alexander Andronov, Viktor Kashtanov, Illia Gertsbakh, Boyan Dimitrov and 
many more, who now are the lead professionals in the field of reliability in different countries of the 
world.  

Boris Vladimirovich’s hospitality, attention to youth, desire to help solving complicated 
mathematical problems has been just fascinating.  

Later, there were seminars at the Moscow State University that Boris Vladimirovich 
conducted, the discussions of my articles and my doctoral dissertation followed. The opponents of 
my dissertation in 1974 were two members of Boris Vladimirovich’s team – Alexander Dmitrievich 
Soloviev and Igor Alekseevich Ushakov.  

Now about the hook. During a number of years, I was a head of seminar in Kharkov -
Ukraine on the topic of reliability. This seminar took place in the regional Center for Technology, 
and a number of specalists from the cities of the former USSR presented there. After several years 
of conducting this event, I got brave enough to invite Boris Vladimirovich to this event. Luckily for 
me, Boris Vladimirovich happily accepted the invitation:  “I am an  academican  of Ukrainian  
Academia of Science but in Kharkov, the first capital of Ukraine, was not for quite some time.” 

 Boris Vladimirovich came to Kharkov. Besides the usual participants of the seminar, a lot 
of mathematicians and engineers came to listen to Boris Vladimirovich. The grand room of the 
Center of Technology was filled with people. Boris Vladimirovich’s presentation was on a topic of 
how mathematics and the theory of reliability is connected to the use of technical systems and 
equipment that is being developed and produced in Kharkov. Boris Vladimirovich was extremely 
well informed about large plants based in Kharkov that produced turbines,  tractors, electrical 
engines and electrical equipment. He even knew that there was one of the largest in USSR tank 
factory; and this fact at that time was considered top secret. Boris Vladimirovich had almost a 
unique ability to talk in simple terms about complicated matters, and his presentation that day was a 
direct evidence of it.  

The seminar went for a long time, Boris Vladimirovich was faced with a lot of questions, 
and he tried to give a full explanation to each. After the seminar, we started to walk slowly to my 
house, where among all delicious foods, a big pike awaited us.  

“I am from Volga river,” said Boris Vladimirovich proudly and chose a pike’s head. You 
can only imagine how horrified my wife and my parents were when they realized that there was a 
hook in pike’s head, but by this time Boris Vladimirovich already had this piece of fish with hook 
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in his mouth. Happily enough, the hook did not get too far. “That is it, now I am hooked by you,” 
said Boris Vladimirovich. “This hook I am going to take with me as a memory and a proof that you 
caught me with a hook.” 

The next day was dedicated to paintings. “In every city that I visit, I always go to the local 
museum, and every museum has something interesting to look at,” after Boris Vladimirovich said 
this, we went to the local museum, but unfortunately, the museum was closed on that day. I have no 
idea how Boris Vladimirovich has done it, but he managed to persuade museum employees to let us 
in; we were the only ones in the museum. Afterwards we went to city of Chuguev, a small city near 
Kharkov, where a famous Russian painter Illia Repin was born, and where a museum in his names 
is located. Later in the evening I took Boris Vladimirovich to the railway station. 

Today, at my house I have a number of books by Boris Vladimirivoch signed by him.  I look 
at his books and my book on the a subject of control systems reliability  that was published in 
Moscow in 1982 with the foreword by professor Gnedenko.  I think that I got very luck in my life 
to work with Boris Vladimirovich, and with  his followers. 
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In this paper we consider an autoregressive random sequence 

1 1k k kX RX η− −= + , 0 0X = , 
with 0 1R< <  and assume that kη  has exponentials mixture distribution with 

 ( ) ( )
1

exp
l

k r r
r

P t p tη λ
=

> = −∑ . 

Our problem is to calculate a distribution of a reaching moment ( )inf : kk X Xτ = ≥ . This 
problem origins in the risk theory, in the financial mathematics, in the statistics of random 
processes and in the reliability theory. Interest to mixtures of exponentials as approximations of 
distributions with heavy tails is initiated by papers [1], [2]. At first look this problem may be solved 
by martingale technique. But in different applications when 1R >  or ,R X depend on k  or we need a 
distribution of a jump over X  it is too complicated. In this paper we apply some recurrent integral 
equalities to get over these difficulties. We solve the considered problem in symbols and illustrate 
obtained solutions by numerical calculations. 

Denote the deriving moment for this sequence reaching some boundary and designate  
j j

kX XR= , 1k ≥ , 0 1j k≤ ≤ − , 0k
kX = . 

Theorem 1. The following formula are true for 1k ≥ : 

                                       ( ) ( )
1 0

, exp
l k s

r
k k k k s j r j

r j

xT x P X x k a
R
λτ

−

−
= =

⎛ ⎞= > ≥ = −∑ ∑ ⎜ ⎟
⎝ ⎠

,                                   (1) 

1k s k s
k kX x X− + −≤ ≤ , 1,...,s k= , and 

                                                           ( ) ( )00
1

exp
l

k r r
r

P k a Xτ λ
=

= = −∑ .                                                (2) 

Here for 1 r≤ , q l≤  
                                                                             100 r ra p= ,                   

(3) 

( ) ( )
1

1 1 0 11 0 1
1 , , , ,

s k t l q r k k t j r
k k s q jt j r r q
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a I s A k t q r j

R
λ
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+ + − +

= = =
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−
 

                                   ( ) ( )11 1
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k s l q r k k s j r
jj r r q
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I s k B k s q r j

R
λ

λ λ

− −
+
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−
, 1 1s k≤ ≤ + ,                                 (4) 

                                 1
1 1

1
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a

R
λ
λ λ
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=
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−
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with  

( ) 2
1 1, , , , exp k s r

k qjB k s q r j X
R
λ λ+ −

+ +
⎛ ⎛ ⎞⎞= − −⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

, 

( ) ( ) 1
1 1, , , , , , , , exp k t r

k qjA k t q r j B k t q r j X
R
λ λ+ −

+ +
⎛ ⎛ ⎞⎞= − − −⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

. 
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Proof. As ( ) ( )1
1

exp
l

r r
r

T x p xλ
=

= −∑ , 0 x X≤ ≤ , so we have an equality 

( ) ( )
1

1 exp
l

r r
r

P p Xτ λ
=

= = −∑  and (1)-(3) are true. 

Denote ( ) ( ), 1k kQ x P RX x kτ= > ≥ + and calculate 
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l

r
r
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xQ x p
R

λ
=

⎛ ⎞= −∑ ⎜ ⎟
⎝ ⎠

 , 0 x XR≤ ≤ . 

Then we have 
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Then we have ( ) ( )200
1

2 exp
l
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P a Xτ λ
=

= = −∑ . So for 1k =  the formulas (4), (5) are true also. 

Assume that the formulas (1), (2) are true for fixed k then 
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with 
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1 1 1, , , , exp min , k s r
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From another side we search ( )1kT x+  as follows: 
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So for 1s =  we have 

1
1 0

exp
l k

r
k k j r j

r j

xa
R
λ

+
= =

⎛ ⎞−∑ ∑ ⎜ ⎟
⎝ ⎠

( )
1 1

1 10 1 1
exp exp

k l l q r k k j r r
qj jj q r r q

p a xx
R R

λ λλ
λ λ

− −
+ +

= = =

⎛ ⎛ ⎞⎞= − − −∑ ∑ ∑ ⎜ ⎜ ⎟⎟− ⎝ ⎝ ⎠⎠
 

and obtain (4), (5). For 2 1s k≤ ≤ + we have 
1

1 1
1 0

exp
l k s

r
k k s j r j

r j

xa
R
λ+ −

+ + −
= =

⎛ ⎞−∑ ∑ ⎜ ⎟
⎝ ⎠

( )
( )

1

11 0 1 1

exp
, , , ,

s k t l l q r q k k t j r
jt j q r r q

p x a
A k s q r j

R
λ λ

λ λ

− − −
+

= = = =

−
= +∑ ∑ ∑ ∑

−
 

( )
( )

( )1 1
0 1 1

exp
1 , , , , exp

k s l l q r q k k s j r r
qj j

j q r r q

p x a
I s k B k s q r j x

R R
λ λ λ λ

λ λ

− −
+ +

= = =

− ⎛ ⎛ ⎛ ⎞⎞⎞+ ≠ + − − −∑ ∑ ∑ ⎜ ⎜ ⎜ ⎟⎟⎟− ⎝ ⎝ ⎝ ⎠⎠⎠
. 

As a result obtain (2), (4), (5). 
Denominators in (4), (5) may be small or even zero. This circumstance creates difficulties in 

calculations. These difficulties may be got over by a following statement. 
 
Lemma 1. Suppose that 1,..., lλ λ  are different positive numbers and /R m n=  where ,m n  are 

integers and mutually simple. Then for any 0ε >  satisfying inequalities 2i jλ λ ε− > , 1 i j l≤ ≠ ≤ , 

there are rational numbers 1,..., lλ λ% %  so that 
  i iλ λ ε%− < , k

i jRλ λ≠% % , 1 , 0i j l k≤ ≠ ≤ ≥ .                                         (6) 
Proof. Denote L mn=  for any 0ε >  there are integers 1, ,..., lN k k so that 

1
2NL
ε< ,  

2
i

i
k
N

ελ − < ,  1 i l≤ ≤ , 

then 

i iλ λ ε%− < , with 1i
i

k L
NL

λ%
+

= , 1 i l≤ ≤ . 

As 2i jλ λ ε− >  so i jλ λ≠% % , 1 i j l≤ ≠ ≤ . Each pair of integers ( )1,ik L L+ , 1 i l≤ ≤ , has not 

joint divisors larger 1 so ( ) ( )1 1k k
i jk L n k L m+ ≠ + , 1 i j l≤ ≠ ≤ , 0k ≥ . 

Remark 1. Suppose that 1, 0.9, 13X R l= = = and iλ , ,1 ,ip i l≤ ≤ are described by Table 1 
then in an accordance with Theorem 1 we obtain Table 2. 
 

i  iλ  ip  
1 4.491 0.193963 
2 1.422 0.651199 
3 0.371 0.147817 
4 0.076 0.006832 
5 0.014 41.88 10−×  
6 0.03 64.61 10−×  
7 45 10−×  71.11 10−×  
8 58.8 10−×  92.65 10−×  
9 51.6 10−×  116.35 10−×  
10 62.9 10−×  121.52 10−×  
11 75.4 10−×  143.63 10−×  
12 89.7 10−×  168.61 10−×  
13 81.5 10−×  171.72 10−×   

k  ( )P kτ =  
3 0.267786 
6 0.214032 
9 0.001387 
12 0.000051 
15 61.621 10−×  
18 84.747 10−×  
21 91.345 10−×  
24 113.755 10−×
27 121.042 10−×
30 142.9 10−×  

 
                 Table 2. 

 
                            Table 1. 
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Remark 2. The results of Theorem 1 remain valid for variable boundary  
( )( )inf : kk X X kτ = ≥  

with the replacement of the designations  
( )( )1

1min ,j j
k kX X R X k−

−= , 1,..., 1j k= − , 0k
kX = , ( )0

kX X k= , 1k ≥ . 

 
Remark 3. Obtained formulas are true for variable R : 

1 1 1k k k kX R X η− − −= + , 10 1kR −≤ ≤  , 
with the replacement of the designations  

j j
k kX XR= , 1

11
j j

kk kR R R−
−−= , 0 1j k≤ ≤ −  , 0 1kR = , 0k

kX = . 
 
Remark 4. In an accordance with (2) we have that a jump of kX , 1k ≥ , over a level X  may 

be characterized by the following formula: 

( )
( )( )

( )
1 00

1 00

exp
/ , 0

exp

l
r k r r

k l
r k r r

a X y
P X X y k y

a X
λ

τ
λ

=

=

− +∑
> + = = >

−∑
. 
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Evaluation of structural reliability under processes of deterioration presents very important 
problem in design. The structure’s wear shows a reduction of bearing capacity in time that for one’s 
turn leads to increasing the probability of failure. The reasons for long duration and irreversible 
change of structural features can be corrosion in steel structures, decomposition in wood structures, 
ageing in polymer structures, and processes of abrasion or erosion also. The problem of defects 
accumulation should be mentioned too, when reduction of the bearing capacity connects with load’s 
value and its duration. 

The models and peculiarities of corrosion wear and its influence on bearing capacity are 
discussed in this paper. 

 
1. MODELS OF CORROSION WEAR 
 
Corrosion is an important factor in reducing of reliability and durability due to different 

kinds of structures or equipments. From 10% to 12% of fabricated and used steel is lost annually 
due to destructive effects of corrosion. In spite of widely used protection methods, the quantity of 
steel destroyed is growing almost proportionally to the accumulated stores of steel. Losses from 
corrosion average are between 2% to 4% of GDP in almost every country. About 30% of structural 
steel is subjected to atmospheric corrosion, and 75% is subjected to atmospheric and aggressive 
corrosion simultaneously [1]. Under corrosion’s influence the initial cross-section of a structural 
element is decreased, and consequently so its bearing capacity. Fig.1 presents the types of corrosion 
for structural steel. 

 
 

Fig.1 Types of corrosion of a structural steel. 
a) Uniformly distributed wear. b) Irregular distributed wear. 

c) Corrosion with spots. d) Corrosion with ulcers. 
e) Corrosion with points. f) Corrosion with cracks. 
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The speed of a corrosion process depends upon degree of aggressive environment and is 
changing with 0.05mm/year to 1.6mm/year. The damage of structural steel in soil depends on the 
duration of an exposure, as shown in Fig.2. Data are based on 16 types of soil. Similarly, the 
damage of the steel from atmospheric corrosion is shown in Fig.3. Distribution of corrosion speed 
(measured at the inner reservoir surface along its height) for different products is presented in Fig.4. 

 

 
 

Fig.2 Corrosion of structural steel in soil over years. 
Y-axis shows the mean depth of corrosion in mm.; X-axis shows the years of duration. 

 

 
 

Fig. 3 Corrosion of structural steel in open air. 
Y-axis shows the average depth of corrosion (mm). 

X-axis shows the years of duration. 
 

 
 

Fig.  4 Variation of corrosion’s speed 
1. Gasoline. 2. Kerosene. 3. Diesel. 

 
The evaluation of structural durability depends essentially on the choice of the model that is 

capable to reflect the influence of an aggressive environment. When modeling corrosion processes, 
there are important damage characteristics to consider, such as depth of defect (δ) and corrosion 
speed (v=dδ/dt). Classification of mathematical models of corrosion (based on empirical approach) 
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presents in Table 1 [1,2,3]. The kinetics of the corrosion process in different metals for different 
aggressive environments looks very similar, and this fact presents the opportunity to use these 
models in design. 

In general, processes of wear can be presented as time-dependent random functions of time. 
Type of processes depends on maintenance conditions, methods of structure’s fabrications, steel’s 
composition and others. 

 
                                                                                                                        Table 1 
 

# Models of corrosion Functional relationship 
1 tv0=δ  Linear 

2 n
t ktv −=  Power 

3 tba lg+=δ  Logarithmic 
4 )ln(kt=δ  Logarithmic 
5 )exp(0 tvvt α−=  Exponential 

6 )/exp(2 τtmtvt −=  Exponential 

7 )]/exp(1[0 τδδ t−−=  Exponential 

8 

)exp(1 ctb
a

−+
=δ  

Exponential 

9 

cbtat
tvt ++

= 2  
Fractionally linear 

10 

at
t

+
=

1
0δ

δ  
Fractionally linear 

 
Models of long-term processes presents as random time processes, but its uncertainty 

defines, due to random, independent from time parameters. Such kind of random processes were 
called “deterministic random processes “[4]. 

In the case that all loads iF  presents independent random values, probability of no failure 
during working life can be expressed as: 

 
P(n)=P [ ],...,, 2211 nn FRFRFR >>> ,                                        (1) 

 
where nRRR ,...,, 21 - values of bearing capacity in considered time intervals. If designate 

),(0 nRRn ϕ= then n=t –term of maintenance in years; 0R -initial (random) value of bearing 
capacity; )(nϕ - monotonically decreasing nonnegative function (i=1,2,3,n.), satisfying to the 
conditions: ;1)0( =ϕ .0/;0)( <=∞ dtdϕϕ  It should be mentioned also the additive property of φ (t) 
function, independence of wear’s process in the subsequent time interval it from previous process’s 
value in time 1−it , i.e. )()()( 2121 tttt += ϕϕϕ . 

nFFF ,...,, 21  -  Loads, corresponding to considered time intervals. 
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2. UNIFORMLY DISTRIBUTED CORROSION WEAR 
 
This problem is illustrating in considering a steel pipeline’s section (cylindrical tube), 

subjected to inner pressure, changes of the temperature and corrosion. The inner pressure F and 
steel yield stress Ry are random values with given distributions. The corrosion process considers 
deterministic. The limit state condition is taken in the form: RySi ≤ . Here iS - intensiveness of 
stresses in considered cylindrical shell. In accordance with Guber-Mises condition [5], general case 
looks as: 

2
31

2
32

2
21 )()()(

2
1 SSSSSSSi −+−+−=                              (2) 

In discussed situation 2S =0, and the radial and the tangential stresses reads: 

.
4

,
2 31 θα Δ−== E

h
FD

S
h

FD
S ii  

Here F is the inner pressure, and its maximum value is random for some time intervals; Di-
inner diameter of the pipe; α-parameter of linear extension; E-modulus of elasticity; θΔ -
temperature drop (difference between temperature of the pipeline during use and assembly). 

The reliability condition expresses as follows: 
2222

2

22

16
3

y
i RE

h
DF

≤Δ+ θα                                          (3) 

As temperature’s drop presents an uncertain value with unknown distribution, then 
temperature’s stresses are given as some part of the yield stress. 

χθα sinyRE =Δ                                                    (4) 
χ  is a value of angle in the given interval [0,π/2].  The condition (3) presents now in 

the form: 

χcos
3
4

y
i

R
D
hF ≤                                                (5) 

Corrosion wear causes a reduction of tube thickness as ),(0 thh ϕ= where 0h  is the 
initial thickness. In accordance with the Table 1 one can takes: 

)/exp()( τϕ tt −=                                                                                        (6) 
From (6) comes: 

/exp(1[0 thh −−−= δ τ)]                                    (7) 
where δ is the depth of corrosion bubble. It is assumed that the corrosion process in 

interval 2t  is independent of the preceding values in interval 1t , so that 
),(),(),0( 11 ttttott ++=+ ϕϕϕ . It is assumed also that time t takes only discrete values: t=n, 

where n is number of years or months. An assumption is made for pressure F supposing that 
statistic data belong to some period of time, a month, for example. From all observations, 
maximum values selects only. If the time interval is large in comparison with correlation 
zone, then Fisher-Tippet distribution (second type) of maximum values can be used [6]. 

P (x) = exp ])/([ ηξ −− x                                       (8) 
If FFsv FF ,/= are correspondingly the coefficient of variation and the mean value, 

then parameters ξ and η are determinated from the solution of two equations, which includes 
gamma functions. 

)(/
)()(1 2

aF
bavF

Γ=

ΓΓ=+

ξ
                                     (9) 
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Gamma functions are: 

.)(

,)(

0

1

0

1

∫

∫
∞

−−

∞
−−

=Γ

=Γ

dzzeb

dzzea

bz

az

                                                        (10) 

The case when b=0 and η=2 is excluded. 
For yield stress Weibull distribution is applied. 

P (x) = 1- μω)/(exp[ x− ]                                                    (11) 
Form’s parameter μ is expressed through coefficient of variation Rsv RR /= : 

)/11(
)]/11([)21( 2

μ
μμ

+Γ
+Γ−+Γ

=Rv                                              (12) 

Values Rv and μ define scale parameter ω. 
Taking into account (8) and (11) the reliability function is written in the form: 

P (n) = - 
η

ξ
χ −

∫
∞

− )
3

cos4
(exp[

0

0

iD
xh

] ∑
−

=

− −
1

0
}])/([exp{)(

n

i
xdt μη ωϕ             (13) 

Example. After statistic data processing of pressure in pipelines and yield stress the 
following values of the distribution parameters were defined: ξ = 73.5; η = 65; ω = 42.5; μ = 
23.5.Coefficients of variations are: .0522.0;0201.0 == RF vv  Temperature stresses (9.4) show 
essential influence on pipeline’s reliability. When χ = π / 3, P (n) is close to zero. P (n) values for 
different n are presented in the Table (2). 

                  
Table 2 

 
Values of function P (n) 

Time in years τ χ 
1 5 10 15 20 25 30 

100 0 0.9989 0.9989 0.9989 0.9989 0.9987 0.9962 0.9860 
100 6 0.9989 0.0087 0.9968 0.9880 0.9590 0.8600 0.6000 
100 4 0.9560 0.8500 0.5800 0.1800 - - - 
120 0 0.9989 0.9989 0.9989 0.9989 0.9989 0.9975 0.9872 
120 6 0.9989 0.9941. 0.9941 0.9750 0.9600 0.8990 0.8060 
120 4 0.9560 0.8790 0.6870 0.3790 - - - 
150 0 0.9989 0.9989 0.9989 0.9989 0.9988 0.9985 0.9900 
150 6 0.9989 0.9988 0.9980 0.9900 0.9760 0.9570 0.3200 
150 4 0.9989 0.8820 0.7500 0.5200 0.3800 - - 

 
From (13) the member responsible for corrosion process’s influence is picked out: 

( )
μη

μ

ηϕλ
+−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

1

0
/

n

i
ni                                                   (14) 

where λ characterizes decreasing of reliability in regard of corrosion’s development. 
Parameter τ in (6) and in Table 2 defines intensiveness of uniform corrosion. Physical sense 

of this value consists in decreasing of initial tube’s thickness. This essential decreasing is possible 
under large values of τ = 100…150. 

Results of many experiments and real observations demonstrated [1,.3] the influence of 
stresses in structures to the speed of corrosion. Especially large is this influence in places of 
concentrations of stresses. Dependence between corrosion’s speed and increasing level of stresses 
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can be as linear as nonlinear. If to take dependence between the intensiveness of stresses and the 
depth of the corrosion’s penetration such as ( )ikSt expβαδ = , and substituting it in the formula for 

the circular stresses in cylindrical shell 
h

FD
S i

21 = , then the condition of the failure reads: 

( )[ ] y
io

i R
kSth

FD
>

− exp2 βα
                                               (15) 

After decomposition into the row ( ) ii kSkS +≅ 1exp , expression (15) performs to: 

F< ( )[ ] io DkRyth /2/312 +− βα                                          (16) 
Here the expression in brackets takes into account influence of stress state at speed of 

corrosion. If to take the same distribution for inner pressure (8) and for yield stress (11), and to 
consider process of corrosion as a function of discrete argument then the expression for reliability 
function can be written in the form: 

P (n) = -
( )( )[ ] μηβ

ωξ
α

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

+−
−

−∞

=
∫∏

xd
D

xkihxn

i i

o exp
2/312

exp
0 1

        (17) 

Expression (17) allows to evaluate the reliability of pipelines, subjected to continuous 
corrosion and to take into account influence of stress state to the corrosion’s depth penetration or 
corrosion’s speed. 

 
 
3. IRREGULAR DISTRIBUTED CORROSION WEAR 
 
A problem of structural durability and the protection from a local corrosion turns out to be 

very important as well. Local corrosion leads to some local destruction seen on the surface of the 
structure in the form of spots, ulcers, points or cracks (Fig.1). Appearance of this destruction in time 
is random too. 

Corrosion cavities’ ensemble is based on the following assumptions: 
• Events, which have to do with the appearance of various numbers of cavities at disjoint time 

intervals are independent. 
• Probability of corrosion’s cavity appearance in the arbitrary time interval t is proportional to 

the length of this interval with the factor of proportionality equal to μ. 
• Probability of the two or more events appearance through an extremely small time interval 

presents an infinitely small value of more high order. 
The simultaneous realization of all these assumptions should be present and have an 

existence of the primary flow of events – a uniform Poisson process. Such process can be 
described by the system of differential equations: 

0
0 P

dt
dP

μ=  

…………..                                                           (18) 

)( 1 nn
n PP

dt
dP

−= −μ  

Initial conditions for this system of equations are: 
Pn (t) = 1, when n=0 
Pn (t) = 0, when n=1,2,                                             (19) 

There will be only one solution for the system (9.18) and together with the conditions 
(9.19) it can be presented as the Poisson distribution: 
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)](exp[!
)([

)(
0

0

ttn
tt

tP
n

n −−
−

=
μ

μ
                                                   (20) 

From (20) probability of the fact follows that in the moment 0tt ≥  the system is in the 
state n (n = 1,2,3,). If the number of cavities appearing in some time interval submits to Poisson 
distribution, then the amount time before appearance of the next cavity possesses exponential 
distribution [7]. 

).exp()( ttP μ−=                                                       (21) 
The number of experimental data that connects with investigations of kinetic due to 

cavity growth or an increase of cavities number is very small. Experimental dependences were 
received in [8]: 

)1( t
gr e βμμ −−=                                                       (22) 

Here βμ ,gr are empiric coefficients. Value grμ  varies in wide limits and measures as 
number of defects to unit of structural surface. 

Important parameters for considered type of irregular corrosion are - maximum depth of a 
cavity, its diameter and square of a cavity. 

The random value of a cavities depth δk (k-random point on structural surface) is distributing 
in the final interval [0,h0], where h0 is the thickness of structural element. It is considered that this 
value had uniform distribution, i.e. 

                0                     x < 0 
Pδ(x) =   x / h0          0 ≤ x ≤ h0                                                     (23) 

    1                     x > h0 
Distribution of the maximum depth for n cavities, i.e. δn = max {x1, x2, x3,…,xn} is well 

known from theory of extreme values [9] and can be taken as exponential. 
 

Pδn = exp  [- n (h0-x)]       0 ≤ x ≤ h0 
Pδn= 1                               x > h0                                                  (24) 

The next important parameter is the diameter of considered cavity, due to an assumption that 
this cavity has cylindrical form (Fig.5). Let the depth of the cavity is equal to x. Then the possible 
region for variation of diameter is the chord AB with the length 222 xrx − , and r is the external 
radius. An assumption is taken that the random value of diameter yi has uniform distribution in the 
interval [0, 222 xrx − ]. 

 

 
Fig.5. Element of ring’s cross-section 

 Pd (y) =0                              if y<0 
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Pd (y) = 
222 xrx

y
−

           if 0 < y < 222 xrx −                              (25) 

 Pd (y) =  1                            if y > 222 xrx −  
Distribution of the maximum diameter for n cavities dn = max (y1, y2, y3, …yn) is: 

 Pdn = ,22(exp[ 2xrxn −−       2220 xrxy −≤≤                        

Pdn = 1,                                    222 xrxy −>                                            (26) 
Third parameter of this cavity is its square Ak. The knowledge of the maximum square 

value is important in solution of the considered problem. There are some difficulties, however, 
unclear even in the theory of order statistics. The point is that the maximum δn value doesn’t 
always correspond to the maximum value of dn. If to agree with this position then the solution 
will be received in safety margin. Two kinds of versions can be offered, distribution of 
maximum depth’s value δn and distribution of diameter’s value dk for k-cavity in the first case, 
and otherwise: distribution of maximum diameter’s value dn, and distribution of depth’s value 
δk in the second case. 

Types of PA(x) distributions are written for three cases: 
Case 1: 

.220,
22

)(

],,0[)],(exp[)(

2

2

00

xrxy
xrx

yyP

hxxhnxP

dn

n

−≤≤
−

=

∈−−=δ

                                       (27) 

The square of the cavity Ak is equal to the square of the segment at Fig.5: 

yyrrxyry
r
yrAk ]

4
[

422
arcsin

2
2

2
22 −+−+−−=                         (28) 

The maximum possible value of the cavity square Ak will be when x = h0 and 
.22 2

00 hrhy −=  
In pipes of large diameter x / r, y / 2r values are highly small numbers and possible 

reasonable approximation will be Ak = xy, and it follows: 

PAk (A) = dxxxhn
r

An h
2
3

0
0

0

)](exp[
22

−

∫ −−                                           (29) 

Ak is here uniformly distributed at interval [0,A*] random value. 
Case2: 

Pδn(x) = ],0[, 0
0

hx
h
x

∈  

Pdn(y) = ( )[ ] [ ]22 22,0,22exp xrxyyxrxn −∈−−−                               (30) 
Distribution of Ak is: 

PAk (A) = dx
x
Axrxn

h

h

∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−

0

0

2

0

22exp1
                                     (31) 

Case 3: 
Pδn (x) = ( )[ ] [ ]00 ,0,exp hxxhn ∈−−  

Pdn (y) = ( )[ ] [ ]22 22.0,22exp xrxyyxrxn −∈−−−                             (32) 
It follows: 
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PAk (A) = ( )( )[ ]xhnd
x
Axrx

h

−−⎟
⎠
⎞

⎜
⎝
⎛ −−−∫ 0

0

2 exp22exp
0

                       (33) 

The last case, as it was written before, leads to safety margin. 
 
Example 1. Reliability of pipeline subjected to one-sided irregular corrosion. 
 
Dimensions of the resulting cavity-depth and diameter are increasing in time in such 

degree that the failure of pipe will occur i.e. formation of a reach-through hole will take place. 
Time, tn before this hole will appear calculates from the expression: 

n

tn

hdttv δ−=∫
0

0)(                                                       (34) 

Here δn – maximum depth from an ensemble of n cavities; v(t) = v0exp(-αt) – corrosion’s 
speed (Table 1,5). From (34) we get: 

tn = 
nh

v
δα −0

0ln1
                                                       (35) 

Time distribution P(tn < t) to reach –through hole can be written as: 

Pn(t) = ( )( ) ( )( )⎥⎦
⎤

⎢⎣
⎡ −−−−=

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−−≥ t

v
nt

v
hP n α

α
α

α
δ exp1exp1exp1 00

0     (36) 

After averaging on “n” it follows: 

P (t) = ( ) ( )[ ]{ }t
n
t

n

n

αμ
−−−∑

∞

=

exp1exp1exp
!0

                                (37) 

 
Example 2.  Design of structural members under central tension. 
 
Cylindrical element having a ring cross-section is considered. This element is subjected to 

irregular corrosion under deterministic load F. If A0 is initial value of cross-section (t = 0), Ak is 
square of cavity with given distribution PAk(A,) then the condition of no failure will be: 

 
F / (Ao – Ak) < Ry   or Ak < A0 – F / Ry                                       (38) 

 
Substituting the last expression into distribution function as an argument and carrying out an 

average on n and Ry probability of no failure in t moment is: 
 

( ) yy
y

Ak
n

n

dRRp
R
FAP

n
tttP ∫∑

∞∞

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

0
0

0 !
)()exp()( μμ                            (39) 

 
Here p(Ry) – is density of yield stress distribution. In numerical example the following data 

are taken. External diameter D = 6.26in; initial thickness h0 = 0.24in; F = 127929ft; 
)]exp(1[ tgr βμμ −−= and β = 0.05; yR = 290Mpa; sRy = 25Mpa.  Parameters of the cavity are 

== kkd δ 0.008in. Results of numerical realization are shown at Fig.6 
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Fig.6 The reliability function 

 

 
Fig.7 Variation of the function of reliability 

due to number of cavities 
 

 
 
4 CALIBRATION OF MODEL PARTIAL FACTOR 
 

Partial factor for model uncertainties can be determined from comparison with identical 
structures operating in normal or in aggressive environment. Let us consider the structure under 
load F and with resistance equal to R. In case when random value of the load maximum for the 
definite period of time (one year, for example) has  distribution )(xPF and year’s load maximums 
are independent random values, the reliability function can be written as follows 

∫
∞

=
0

1 )()()( xdPxPnP R
n

F                                                     (40) 

It is assumed that there is a structure operating in aggressive environment in the terms of 
uniformly corrosion. To guarantee the sufficient reliability level in the design it is necessary to go 
on additional expense of structural material such as increasing cross-section square, for example. 
The condition of no failure is 

RF D
~~ γ≤                                                                  (41) 
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Though the corrosion process is continuous in time it is proposed to consider the function 
)(tϕ which influences to geometric characteristics of cross-section as a function of discrete 

argument ).(nϕ (41) to nth year could be rewritten as 
)(nRF D ϕγ≤                                                         (42) 

Reliability function will be 

[ ] )()()(
0 1

2 xdPixPnP R

n

i
DF∫∏

∞

=

= ϕγ                                        (43) 

The equation for definition of Dγ arrives from the equality (40) to (43). 

[ ] )()()()(
00 1

xdPxPxdPixP R
n

FR

n

i
DF ∫∫∏

∞∞

=

=ϕγ                           (44) 

If we consider tensioned non-corrosive structural element then (41) can be presented as 
0RAF ≤                                                             (45) 

Where 0A  -initial cross-section square. 
Function of reliability will be 

∫
∞

=
0

01 )()()( xdPxAPnP RF                                               (46) 

For corroding structural element cross-section square is - DA γ0 , and Dγ >1. The failure 
condition can be expressed as 

RnAF D )(0ϕγ≤                                                    (47) 
Reliability function (43) will be 

[ ] )()()(
0 1

02 xdPixAPnP R

n

i
DF∫∏

∞

=

= ϕγ                                     (48) 

Equality (44) for the fast n value allows to determinate Dγ . Fisher-Tippet distribution (8) 
was chosen for )(xPF .  Equality (44) will be performed to 

)(
)(

exp)(exp
0 1

0

0

0 xdP
ixA

xdP
xA

n
n

i
R

D
R ∫∏∫

∞

=

−∞ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ηη

ξ
ϕγ

ξ
            (49) 

From here, it follows 

ηηϕ

γ 1

1
])([

1

∑
=

−

=
n

i

D

in
                                                  (50) 

Introducing corrosion model in the form of (6) and presenting the sum in (50) in the row we 
will get 

⎪⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=
η

τ
η

τ
η

τ
η

γ
1

exp...2expexp

1

nn

D                       (51) 

After transformation we get 
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⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

−⎟
⎠
⎞

⎜
⎝
⎛ +

=
1exp

11exp

τ
η
τγ

n

n

D                                                           (52) 

Table 3 contains modal factor’s values in accordance with (52) 
                                                                                                                                                  Table 3 
 
n 
 

 
η  
 
 

Dγ  
 

100=τ  

Dγ  
 

150=τ  

Dγ  
 

200=τ  

 
 
10 
 
 
 
15 
 
 
 
20 
 
 

 
10 
20 
30 
 
10 
20 
30 
 
10 
20 
30 
 

 
1.0666 
1.1304 
1.2098 
 
1.0657 
1.1374 
1.2263 
 
1.0665 
1.1443 
1.2401 

 
1.0461 
1.0828 
1.1280 
 
1.0439 
1.0851 
1.1354 
 
1.0433 
1.0881 
1.1424 

 
1.0364 
1.0612 
1.0920 
 
1.0337 
1.0618 
1.0958 
 
1.0327 
1.0632 
1.0999 
 

 
Aggressiveness of environment can be classified depending on parameterτ : heavily aggressive 

,100=τ middle aggressive ,150=τ weakly aggressive 
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Introduction 
 

In this paper we consider the Laplas model described by the following autoregressive random sequence 
1k k kX RX η−= + , 0 0X = , ( )inf : kk X Xτ = ≥ , 

(1) 

( ) ( )exp , 0
2k

tP t tλη −> = > , ( ) ( )exp
2k

tP t λη ≤ = , 0t ≤ ,. 

Our problem is to calculate a distribution of a reaching moment τ . This problem was put before the authors 
of this paper by A.A. Novikov. The problem origins in the risk theory and in the reliability theory. M. 
Jacobson found approximate solution of this problem by martingale technique. V.V. Mazalov suggested to 
solve the problem for 1R < approximately by some recurrent procedure which includes a compressing 
operator. In this paper we apply some recurrent integral equalities to find accuracy solution represented by 
mixtures of exponentials. This solution is illustrated by numerical calculations. Our solution may be used for 
an arbitrary R  and when as R  so X  depend on k .  
 
1. Main results  
 
Denote 0k

kX = , k s k s
kX XR− −= , 1,..., ,s k=  and designate for 1k ≥  

( ) ( ),k kT x P X x kτ= > ≥ , 0x ≥ , ( ) ( ),k kS x P X x kτ= ≤ ≥ , 0x < , 
( ) ( )kP k T Xτ = = . 

Denote  
 

( ) 2
1 1 1

1, , exp 1k s
k jB k s j X

R
λ + −

+ +
⎛ ⎛ ⎞⎞= − −⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

, ( ) 2
2 1 1

1, , exp 1k s
k jB k s j X

R
λ + −

+ +
⎛ ⎛ ⎞⎞= +⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

, 

 

( ) 1
3 1 1

1, , exp 1k s
k jB k s j X

R
λ + −

+ +
⎛ ⎛ ⎞⎞= − +⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

, ( ) 1
4 1 1

1, , exp 1k s
k jB k s j X

R
λ + −

+ +
⎛ ⎛ ⎞⎞= −⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

, 

( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 4 2 2 3, , , , , , , , , , , , , ,A k s j B k s j B k s j A k s j B k s j B k s j− −= − = −  

( ) ( ) ( ) ( ) ( ) ( )1 1
3 2 3 4 1 4, , , , , , , , , , , , , .A k s j B k s j B k s j A k s j B k s j B k s j− −= − = −  

 
Theorem 1. The following formulas are true for 0k ≥ , and for 0x ≥  

                                   ( )
0 0

exp exp
k s k s

k k k s j k k s j k k sj j
j j

x xT x a b c
R R
λ λ− −

− − −
= =

⎛ ⎞ ⎛ ⎞= − + +∑ ∑⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                (2) 

with 1k s k s
k kX x X− + −≤ ≤ for some { }1,...,s k∈  and for 0x <  

                                                         ( )
1

0
exp

k
k k j j

j

xS x d
R
λ−

=

⎛ ⎞= ∑ ⎜ ⎟
⎝ ⎠

                                                                (3) 

and 
                                                       ( ) ( )0 0 expkP k a Xτ λ= = − .                                                            (4) 
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Here 

                                  1 0 0
1
2

a = , 1 0 0 0b = , 1 0 0c = , 1 0
1
2

d = , 1 1 0c − =                                                       (5) 

and 

                          
2

1 1 1 21

j

k k s j k k s j j
Ra a

R+ + − − −= −
−

, 0 1j k s< ≤ − + , 1 s k≤ ≤ ,                                           (6) 

                          
2

1 1 1 21

j

k k s j k k s j j
Rb b

R+ + − − −= −
−

, 0 1j k s< ≤ − + , 1 s k≤ ≤ ,                                            (7) 

( ) ( )1 1 1 2
1 1 0 1 1 10 1 0

, , , ,1
2 1 1 1

k s k tk j k k t j k k t j
k k s j j jj t j

d A k t j a A k t j b
a

R R R
− − − − −

+ + − + + +
= = =

⎛ ⎡ ⎤
= + + +∑ ∑ ∑⎜ ⎢ ⎥+ − +⎝ ⎣ ⎦

 

                                             
( ) ( )1 2

1 10

, , , ,
, 1 1,

1 1
k s k k s j k k s j

j jj

B k s j a B k s j b
s k

R R
− − −

+ +
=

⎡ ⎤ ⎞
+ + ≤ ≤ +∑ ⎟⎢ ⎥− +⎣ ⎦ ⎠

                       (8) 

( ) ( )3 4
1 1 0 1 11 0

, , , ,1
2 1 1

k k s k k s j k k s j
k k s j jt s j

A k t j a A k t j b
b

R R
− − −

+ + − + +
= + =

⎛ ⎡ ⎤
= − + +∑ ∑⎜ ⎢ ⎥+ −⎝ ⎣ ⎦

 

                                  
( ) ( )3 4

1 10

, , , ,
, 1 ,

1 1
k s k k s j k k s j

j jj

B k s j a B k s j b
s k

R R
− − −

+ +
=

⎡ ⎤ ⎞
+ + ≤ ≤∑ ⎟⎢ ⎥+ −⎣ ⎦ ⎠

1 0 0 0kb + = ,                     (9) 

                                      ( )1 1 0 0 exp , 1 ,k k s k k s kc c a X s kλ+ + − −= − − ≤ ≤  1 0 1 1 0k kc c+ + −= = ,                    (10) 

                       ( ) ( )
1

1 0 3 41 1 10 1 0 1 0

1 , , , ,
2 1 1 1

k k k s k k sk j k k s j k k s j
k j j jj s j s j

d a b
d A k s j A k s j

R R R
− − −− −

+ + + +
= = = = =

⎛ ⎞
= + +∑ ∑ ∑ ∑ ∑⎜ ⎟− + −⎝ ⎠

,                (11) 

                                                     
( )

( )

2 1

1 1 2 11

j

k j k j j
Rd d

R

+

+ + += −
−

, 0 1j k≤ ≤ − .                                             (12) 

 
2. Theorem 1 proof 
 
It is obvious that 

                                        ( ) ( )
1

exp
2

xT x λ−= ,  0x > ,  ( ) ( )
1

exp
2

xS x λ= ,  0x ≤ ,                                    (13) 

and  

( ) ( )exp1
2

XP λτ −= = . 

Calculate now for 0x ≥  

( )
( ) ( )( )min ,0

2 1 1
0

exp
2

x XR x uu uT x dS dT
R R

λ
−∞

− −⎛ ⎞⎛ ⎞ ⎛ ⎞= − −∫ ∫⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ( )

( )( )
1

min ,

exp1 .
2

XR

x XR

x uudT
R

λ −⎛ ⎞⎛ ⎞ −∫ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 
As a result obtain 

( ) ( ) ( ) ( )2
2 2

1 1exp exp exp
22 1

xT x x R X
RR

λλ λ⎛ ⎛ ⎞⎞= − − − − − +⎜ ⎜ ⎟⎟− ⎝ ⎝ ⎠⎠
 

         (14) 
( ) ( )( )

( )
exp exp 1

4 1
x X R

R
λ λ− +

+
+

, 0 x XR≤ ≤ , 

                                             ( ) ( ) ( )( )
( )2 2

exp 1exp 1
2 2 11

R XxT x
RR

λλ −− ⎛ ⎞= −⎜ ⎟−−⎝ ⎠
, XR x X≤ ≤ .                     (15) 

Calculate now for 0x <  

( ) ( )( )
2 1

exp1
2

x x uuS x dS
R

λ
−∞

− −⎛ ⎞⎛ ⎞= − +∫ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

( )( )0

1 1
0

exp .
2

XR

x

x uu udS dT
R R

λ −⎛ ⎞⎛ ⎞ ⎛ ⎞−∫ ∫⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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As a result obtain 

( )
( ) ( )2

1 1 1exp
2 4 1 4 1

xS x
R R R

λ ⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠
 

(16) 
( )

( ) ( )
( )( )( )exp 1 1 1 exp 1

2 2 1 2 1
x X R

R R
λ λ⎛ ⎞+ + − − +⎜ ⎟− +⎝ ⎠

, 0x < . 

In an accordance with (14) - (16) assume by an induction that for 0x ≥  the formula (2) is true and for 0x <  
the formula (3) takes place. Then for 0x ≥  

( ) ( ) ( ) ( ) ( )1 1 2 3 4 .kT x J x J x J x J x+ = + + +                                         (17) 
Here 

                                    ( ) ( )( )0

1
exp

2k
x uuJ x dS

R
λ

−∞

− −⎛ ⎞= =∫ ⎜ ⎟
⎝ ⎠

( ) 1

10

exp
2 1

k k j
jj

dx
R

λ −

+
=

−
∑

+
.                            (18) 

Calculate now 

( )
( ) ( )( )

1
1min ,

2
0

exp
2

kx X

k
x uuJ x dT

R
λ+ − −⎛ ⎞= − =∫ ⎜ ⎟

⎝ ⎠
 

( )
( )

( )2
1

1
1

min ,

1 11 0 min ,

exp 1exp 1
2 1

k t
k

k t
k

x Xk k t k k t j
j jt j x X

ax u
R R

λ λ
+ −
+

+ −
+

− −
+ +

= =

− ⎛ ⎛ ⎞⎞= − − +∑ ∑ ⎜ ⎜ ⎟⎟
− ⎝ ⎝ ⎠⎠

                                (19) 

         ( )

( )

( )2
1

1
1

min ,

1 1
1 0 min ,

exp 1exp 1
2 1

k t
k

k t
k

x Xk k t k k t j
j j

t j x X

bx u
R R

λ λ
+ −
+

+ −
+

− −
+ +

= =

− ⎛ ⎛ ⎞⎞+ −∑ ∑ ⎜ ⎜ ⎟⎟
+ ⎝ ⎝ ⎠⎠

, 0x ≥ . 

Then we have for 2 1
1 1

k s k s
k kX x X+ − + −

+ +≤ ≤  

                                             ( )
( )

1
1

1
1

3
min ,

k

k

X

k
x X

uJ x dT
R

+

+

⎛ ⎞= − =∫ ⎜ ⎟
⎝ ⎠

( )0 0 expka Xλ− − + 

(20) 

1 1
0 0

exp exp
k s k s

k k s j k k s j k k sj j
j j

x xa b c
R R
λ λ− −

− − −+ +
= =

⎛ ⎞ ⎛ ⎞+ − + +∑ ∑⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and 

( )
( )

( )1
1

1
1

4
min ,

exp ( )
2

k

k

X

k
x X

x uuJ x dT
R

λ+

+

− −⎛ ⎞= =∫ ⎜ ⎟
⎝ ⎠

 

( )
( )( )

( )( )1 1
1 1

2 1
1 1

min max , ,

1 1
1 0 min max , ,

exp 1exp 1
2 1

k s
k k

k s
k k

x X Xk k s k k s j
j js j x X X

ax u
R R

λ λ
+ −
+ +

+ −
+ +

− −
+ +

= =

⎛ ⎛ ⎞⎞= − + +∑ ∑ ⎜ ⎜ ⎟⎟
+ ⎝ ⎝ ⎠⎠

 

(21) 

( )
( )( )

( )( )1 1
1 1

2 1
1 1

min max , ,

1 1
1 0 min max , ,

exp 1exp 1
2 1

k s
k k

k s
k k

x X Xk k s k k s j
j j

s j x X X

bx u
R R

λ λ
+ −
+ +

+ −
+ +

− −
+ +

= =

⎛ ⎛ ⎞⎞+ −∑ ∑ ⎜ ⎜ ⎟⎟− ⎝ ⎝ ⎠⎠
. 

 
for { }1,...,s k∈ , 

                                                         ( ) ( )3 4 0J x J x= = , 1s k= + .                                                           (22) 
 
From (17) - (22) we have for 0x ≥ , { }1,...,s k∈  

                                      ( ) ( ) ( ) 1
1 0 0 10

expexp
2 1

k k j
k k j

j

dxT x a X
R

λλ
−

+ +
=

−
= − − + +∑

+
                                  (23) 

( )
( )

( )2
1

1
1

min ,

1 11 0 min ,

exp 1exp 1
2 1

k t
k

k t
k

x Xk k t k k t j
j jt j x X

ax u
R R

λ λ
+ −
+

+ −
+

− −
+ +

= =

− ⎛ ⎛ ⎞⎞+ − − +∑ ∑ ⎜ ⎜ ⎟⎟
− ⎝ ⎝ ⎠⎠
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Using the formulas (2) rewrite the formulas (23), (24) as follows: for { }1,...,s k∈  
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Calculate now for 0x <  
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From the equalities (13) - (16), (25) - (27) we have the formulas (4) - (12). Theorem 1 is proved. 
 
Remark 1. Obtained formulas remain true in a case of variable boundary and interest rate: 

1 1 1k k k kX R X η− − −= + , ( )( )inf : kk X X kτ = ≥  
then we rewrite 

0k
kX = , ( )0

kX X k= , ( )( )1
11min ,j j

kk kX X R X k−
−−= , 0 1kR = , 1

11
j j

kk kR R R−
−−= , 

and replace 1jR + by 1
1

j
kR +

+  and jR  by 1
j

kR +  in previous formulas,1 1j k≤ ≤ − , 1k ≥ , without assumption 

1 1kR − < . 
 
Remark 2. The proof of Theorem 1 contains sufficiently complicated and long symbol 

transformations.  The transformations create manifold mistakes. To avoid these mistakes we examined the 
transformations by numerical calculations. 

 
Remark 3. Suppose that X=1, R=0.5, λ=0.4491 then in an accordance with Theorem 1 we obtain 

Table 1. 
 

k ( )P kτ =  
10 0.03052 
20 0.00512968 
30 0.000861841 
40 0.000144798 
50 0.0000243276 
60 4.08729× 610−  
70 6.86708× 710−  
80 1.15374× 710−  
90 1.93841× 810−  
100 3.25672× 910−  

 
Table 1. 

 
The authors thank A.A. Novikov for useful discussions. 
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ABSTRACT 
 

A theoretical approach and applied techniques for designing analogous electronic 
devices and systems with due account of random variations in system parameters and 
reliability specifications are considered. The paper discusses the problem of choosing 
nominal values of parameters of electronic devices and systems for which the system 
survival probability or the performance assurance probability for the predetermined time 
period is maximized. Several algorithms for region of acceptability location, modelling and 
discrete optimization using parallel and distributed processing are discussed. For seeking a 
numerical solution of the parametric design problem a distributed computer-aided 
reliability-oriented design system is proposed.  

 
 
 
1  INTRODUCTION 

 
One of basic problems of Computer-Aided Design (CAD) systems design and usage is high 

computation cost of simulation, multivariate analysis and optimization. Solutions of these tasks 
constitute the basis of system design. 

System design with account of stochastic regularity of parameter deviations and reliability 
requirements is one of the most computational-intensive tasks. In this task, the simulation of 
stochastic processes of parameter deviations, statistical simulation and optimization are added to 
necessity of dynamic and often nonlinear systems simulation. The optimization, in addition, is 
performed using stochastic criteria. 

Despite the fact of continuous development of CAD tools for electronic circuit design, the 
examples of their successful use and particularly when the optimal design with the account of 
reliability criteria is used are virtually non-existent. However, in recent years a radical way to 
improve the efficiency of solving problems of high computational cost is successfully developed. It 
is based on the technology of parallel and distributed computing. The creation of CAD systems 
using the technology of parallel computing is very interesting and promising. 

This work is an attempt to outline the tasks which arise during development of parallel 
(distributed) CAD systems for electronic circuits and the ways to solve them. 

As a subject area the optimal parametric synthesis of analog electronic circuits with respect 
to random processes of parameters variations and the requirements of reliability is considered. 
2  PARAMETRIC SYNTHESIS PROBLEM 
 
                                                           
1 This work was funded by the Grant 09-I-П2-03 (Basic Research Program of Presidium RAS № 2). 
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Suppose that we have a system which depends on a set of n parameters x=(x1,..., xn). We will 
say that system is acceptable if Y(x) satisfy the conditions (1): 

bYa ≤≤ ,                                                                 (1) 
where Y, a and b are m-vectors of system responses (output parameters) and their specifications, 
e.g. Y1(x) is average power, Y2(x) - delay, Y3(x) - gain. 

The inequalities (1) define a region Dx in the space of input parameters 
}|{ bYax ≤≤∈= n

x RD .                                                      (2) 
Dx is called tolerance margin domain (region of acceptability) for the system. It is a region inside 
the input parameters space.  

The engineering system parameters are subject to random variations (aging, wear, 
temperature variations) and the variations may be considered as stochastic processes:  

{ }.)(),...,()( 1 tXtXt n=X  
In general the parametric optimization (optimal parametric synthesis) problem can be stated 

as follows (Abramov 1992). 
Let the characteristics of random processes X(t) of system parameters variations, a region of 

admissible deviation and a service time T are given, find such a deterministic vector of parameter 
ratings (nominals) xr=(x1r ,...,xnr) that the reliability 

[ ]
[ ] max

,0
,)(,...,)(

),( 11 =
⎭
⎬
⎫

⎩
⎨
⎧

∈∀
∈−−

=
Tt

DxtXxtX
PTP xnrnr

rrr x .                      (3) 

Any optimization technique requires, first, a method of objective function calculation and, 
secondly, an extremum searching method which allows to find a solution with a minimal cost. 
 
 
3  OBJECTIVE FUNCTION ESTIMATION 
 

The practical algorithm of the stochastic criterion calculation is based on the conventional 
Monte Carlo method and on the method of “critical sections” (Abramov 1992, Abramov 2006). 

At the beginning, the random vector of parameters is generated (this vector means random 
manufacturing device realization), and then the internal parameters degradation is simulated using 
degradation model. For example parameters variations can be approximated as follows 

∑
=

=
m

k
kk tuxtX

0
)()( , 

where xk  is a random variable; {uk(t)}, k=0,…,m are continuous deterministic functions of time. 
The Monte Carlo method approximates Pr(xr, T) by the ratio of number of acceptable 

realizations (falling into region Dx)-Na to the total number of trials - N. 

N
NP a

r = . 

Unfortunately often the region Dx is unknown. It is given only implicitly through system's 
equations and the systems response functions. If we do not know the region Dx, the Monte Carlo 
evaluation of probability Pr(xr, T) at particular nominal value xr requires N system analyses for each 
trial set of parameter xr. Typically, hundreds of trials are required to obtain a reasonable estimate 
for Pr(xr,T). 

Optimization requires the evaluation of the probability Pr(xr, T) for many different values of 
the nominal values of parameters xr. Since objective function calculation is based on the numerical 
technique we can only use the non-gradient-based optimization methods. These optimization 
methods require top computing powers. Particularly effective way to decrease total design time on 
the phase of simulation and statistical optimization is to use modern supercomputing technologies 
and distributed parallel processing techniques. The easiest implementation of this idea would be the 
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use of distributed processing technologies. In this case computational tasks can be distributed over 
the set of networked workstations. Realization means reflection of all computing scheme to parallel 
architecture of the computer, taking into account topology of interprocessor communications and 
providing correctness of interaction of set of process in parallel carried out separately from each 
other (Foster 1995). 

Using of parallel calculations within the Monte Carlo method is the easiest way of reduction 
of computational cost input of process of parametrical synthesis as the idea of parallelism - 
recurrences of some typical process with the various data - is incorporated in the structure of a 
method. 

It is intuitively clear that use of s separate processors, by distribution of independent tests 
between them, will reduce of computational cost input of statistical modelling in s times as 
expenses for final summation and averaging of results are practically insignificant. The final rating 
can be received under the formula: 

NnP
s

i

i
g /

1
∑

=

∧

= , 

where ni
g - the number of "good" realizations for each of processors, N – the required number of 

tests. 
 
 
4  SEQUENTIAL ALGORITHM OF OBJECTIVE FUNCTION CALCULATION. 
 

The yield estimation, based on a Monte Carlo and “critical sections” method, is made as 
follows. 
Algorithm 1. 
Let an initial vector of nominal values of parameters is   x(1)

nom. 
1. Proceeding from the defined distribution laws of parameters x1..., xn, we generate 

realization of a random vector of parameters x(k). 
2. For the realization of values of parameters we calculate output parameters: 

mjFy k
j ,...,1),( )( == x . 

This stage is the most cumbersome since calculation of output parameters is quite often associated 
with the solution of systems of differential (and not always linear) equations. 

3. Conditions of serviceability are checked 
yDy ∈ , 

where Dy={y | a≤y(x)≤b} is the known area of allowable values of output parameters y. 
Satisfaction of step 3 allows to refer the given realization x(k) to the number of "good" 

(providing an efficient status of system) or "bad". 
The first internal cycle is concluded with this operation and there is a return to item 1. 
We generate the next realization x(k+1) and pass steps 2 and 3 again. 
The total number of iterations N is determined by the necessary accuracy of probability 

estimation: 

NnP g /=
∧

, 
where ng - the number of "good" realizations from the total number N of tests. 

For calculation of probability of non-failure operation during the certain time P(t) the 
mentioned above procedure 1-3 is carried out several times, determined by the number of t sections, 
and looks as follows. 

Algorithm 2. 
Let the following data is known: 

- The distribution laws of parameters x1..., xn. 
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- The model of change of parameters in time, specifying number of time sections l. 
1. k=1, we set an initial vector of nominal values of parameters x(1)

nom. 
2. Proceeding from the set distribution laws of parameters x1..., xn, we generate realization of 

a random vector of parameters x0
(k) at the moment of time t=0. 

3. For the set realization of values of parameters calculate output parameters 
mjFy k

j ,...,1),( )( == x . 
4. Conditions of serviceability are checked 

yD∈y , 
where Dy is the known area of allowable values of output parameters y. 

5. In the case of satisfaction of conditions (step 4) on the given time section proceeding from 
models of change of parameters we form realization of a random vector of parameters x0

(k) for the 
following time section xi

(k), i=1,…,l. We carry out steps 3 and 4 of the given algorithms. 
Satisfaction of conditions of acceptability on all time sections allows to relate the given realization 
to the number of "good", we increase the counter  ng = ng + 1. 

If on the next time section the conditions (4) are not carried out, all realization concerns to the 
number of "bad". 

6. If k <N, k=k+1, we pass on to step 2 - generation of the following realization of a random 
vector of parameters. 

7. We receive the final rating 

NnP g /=
∧

. 
 
 
5  DISTRIBUTED PARALLEL MONTE-CARLO ALGORITHM. 
 

The main processor (master): 
1. Makes an exchange of seeds with the subordinated processes (initializes random numbers 

generator). 
2. Appoints the amount of Monte Carlo calculations ni to each processor. ni is the volume of 

sample for the processor number i. Thus 

Nn
s

i
i =∑

=1
. 

3. Carries out statistical tests using algorithm 2. As the result a number of "good" tests ni
g is 

received. 
4. Receives from the subordinated processors results of Monte Carlo calculations ni

g, i = 
1,…,s. 

5. Forms a final rating 

NnP
s

i

i
g /

1
∑

=

∧

= . 

The subordinated processors (slaves): 
1. Receive from the main processor a seed for random numbers generator. 
2. Receive the amount of statistical tests which are necessary to carry out by each of them. 
3. Carry out statistical tests using algorithm 2. 
4. Send to the main process a number of "good" tests ni

g. 
At the distributed parallel Monte Carlo method both message passing time and sleep time are 

reduced to a minimum.  
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6  DISCRETE OPTIMIZATION DISTRIBUTED ALGORITHMS. 
 

Evaluation of extr Pr(xr,T) requires a global optimization. The simplest method of global 
optimization is scanning (full enumeration) method. However, such method is considered 
computationally inefficient. The effective way to decrease optimization time is data decomposition. 

The region of extremum seeking is divided into non-overlapping subregions. These 
subregions are distributed between separate computation processes which perform extremum 
seeking. After calculations, the results are passed to main process which composes final result. 

The nominal values of the schematic components xr commonly used for engineering systems 
should lie inside the predefined set of values as it is required by various standards and technical 
recommendations, it is sometimes more preferable to search the optimal vector inside the discrete 
set of values that conforms to the standards and lies in the acceptable region Dx. 

The information on a variation of values of internal parameters can be presented as limits of 
their values, i.e. 

nixxx iii ,...,1,maxmin =≤≤ . 
The area inside the space of internal parameters assigned by these relations represents n-

dimensional orthogonal parallelepiped called box of tolerances (tolerance region) Bd: 
},...,1,|{ maxmin nixxxRB iii

n
d =≤≤∈= x  

Using the algorithm described in (Abramov, Katueva, Nazarov 2006) the circumscribed box 
Bo ⊆ Bd is determined with the following equations: 

},1|{ 00 nibxaRB iii
n

o =∀≤≤∈= x  
where  

iDiiDi xbxa
xx ∈∈

==
xx
max,min 00  

This algorithm is based on Monte-Carlo method and can be performed in parallel mode with 
linear speedup. 

Circumscribed box makes it possible to narrow the region of extremum searching (Abramov, 
Katueva, Nazarov 2006). Circumscribed box constraints do not exceed tolerance region’s ones. 

Figure 1 schematically illustrates tolerance region Bd , circumscribed parallelepiped Bo and 
acceptable region Dx in the case of 2-dimensional space of internal parameters. 

 

Figure 1. The approach to tolerance region discretization 

Standard nominal values of input parameters form a grid inside the circumscribed box. Do is a 
discrete set of grid nodes. 
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Let the vector of internal parameters values xr∈Do is known. Therefore at the each point of 
discrete set 

}|{ oxr
in
r

in
r DDxxD ∩∈=  

we need to find the Pr(xr
in) estimation (3). The optimum of nominal vector xr we are looking for can 

be found as a solution of the following task 
)(€max in

rr
opt
r P

r

xx
x

=                                                         (4) 

In the simplest case the solution can be found by complete verification of each element of the 
set Dr

in with the probability estimation for each of them. The construction of set Dr
in can be 

implemented as a preliminary procedure that puts the element values to the database. 
The optimum search process can be performed in parallel mode. 
The set Dr

in is distributed between separate processes. Each of the processes searches solution 
of task (4) on the subset given (local optimization). Then each of the processes passes the result of 
solution to main process. Main (Master) process composes final result (global optimization). The 
average speedup for distributed discrete optimization is close to linear. 
 
 
7  COMPUTER-AIDED RELIABILITY-ORIENTED DISTRIBUTED DESIGN SYSTEM 
 

All algorithms described above were included in the computer-aided reliability-directed 
distributed deign system (CARD). The CARD system was developed for parametric synthesis of 
analogous electronic devices with respect to reliability requirements.  

The CARD system includes: 
1. the simulation module (it facilitates the use of a variety of simulation programs for 

electronic circuits design); 
2. the module for multivariate (deterministic and statistical) analysis; 
3. the module for objective function (reliability and/or manufacturing yield) calculation; 
4. the optimization module. 
The system is organized from group of computers connected to a network. Such system 

allows using all advantages of client-server technology. It is necessary, however, to notice that tasks 
of the server and client stations in such system differ from usual client-server architecture. Let's 
consider it in detail. 

The first task is to connect clients to the server. Thus we do not only increase computing 
resources but also obtain the amount of prospective tasks for the analysis and decomposition of 
electronic circuits. In this case connections scheme at LAN looks as shown in Figure 2. 
 

 
 

Figure 2.  Connection to the server 
Any circuit represents a set of elements and a set of connections between these elements 

(node points). The decomposition of a circuit can be implemented by nodes or by elements. In both 
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cases the circuit is easier for representing as undirected graph where nodes represent circuit 
elements and edges represent connections between the elements. The other way of circuit 
decomposition is splitting an element. Necessity of implementation of transient element algorithms 
considerably complicates the task. In the first case need only to transfer volt-ampere characteristic 
of one circuit part to another place of circuit and obtain this characteristic. Then these data is 
analysed on the both parts. 

But taking into account digitization aspect of data transmitted there is a small computation 
inaccuracy and insignificant delays of signal stabilization and, as probably, unexpected signal 
attenuation in cyclic circuits. It is expedient to examine the extended model of network interactions. 

LAN represents set of the clients connected by switching device. The connections for data 
transfer can be established between any computers of the network. The network is represented by 
the complete graph. The server’s duty of switching data blocks is not a purpose for great amount of 
clients. In this case, to increase the rate of data transmission at the network it is necessary to 
establish connections between the clients; it reduces volume of the data transmitted twice. Thus, the 
network graph construction is required and then the rules of connection to be organized: 

• installation of uniform connection between two separate computers if necessary; 
• classification clients onto groups “connected” and “expecting” (distribution of client-server 

role between the clients). 
The example of splitting and connection for 5 clients is shown on Figure 3. 
 

 
 

Figure 3. Fragment of network CAD system architecture 
 
The following tasks are executed by server: 
1. generation of initial circuit according to the certain requirements, or granting of convenient 

manual input; 
2. gathering  information about clients, IP address and information of clients performance; 
3. splitting the circuit with special algorithms by pieces for modelling realization; 
4. transfer the data to client stations and start designing; 
5. receiving of the circuit parts finally optimized and associate it to the uniform circuit. 
The following tasks are executing by clients: 
1. reception of the information from the server and sending signal about readiness for begin 

designing; 
2. simulation on basis of the algorithm chosen; 
3. transfer results to the server. 
For network communications sockets are used. Socket is a final point of the network 

communications. Every socket used has a type and process associated with it. Sockets exist inside 
communication domains. The domains are abstraction which means concrete addressing structure 
and set of protocols and defines various sockets types inside the domain. As the protocol of sockets 
exchange TCP/IP protocol is used. It concerns to the transfer protocols with guaranteed delivery. It 
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is most convenient in this case to use stream sockets. With stream sockets the pipe created between 
two applications in stream form. The streams can be input or output, normal or formatted, with or 
without buffering. Note that stream sockets allow transferring the data only between two 
applications, as they assume a channel between these applications. However sometimes it is 
necessary to provide interaction of several client applications with one server or several client 
applications with the several server applications. The separate tasks and separate channels for each 
client application are created in this case in the server application.  

The CARD system uses a modification of widely distributed PSPICE circuit simulation 
program that allows simulating a large class of analogous devices in direct current, frequency and 
time domains. CARD also consists of features for nominal design, design centering, tolerances 
assignment, etc. Mathematical models of semi-conductor devices are used in many similar 
programs, and the lists of connections of the circuit in a format SPICE are made by the majority of 
applications (Micro-Cap, Dr. Spice, OrCAD, P-CAD, ACCEL EDA, Viewlogic, COMPASS, 
Design Architect etc.). These ones and the subsequent versions use the same algorithms as SPICE, 
the same format of the input data. PSPICE allows simulation and support of circuit development 
containing as analogue, and digital components without manufacturing real circuits. The circuits on 
input influences, circuit behaviour on various frequencies, noises and other characteristics of the 
circuit can be designed by the user. PSPICE allow user to create "a computer model of circuit" for 
testing and debugging of the developed circuit before the beginning of its manufacturing. Using the 
circuit tests it is possible to be convinced that in all cases PSPICE works in 1.3-30 times faster, than 
other similar programs. The CARD system has been tested on a number of complex designs 
involving filters, amplifiers and control systems. 
 
 
8  CONCLUSION 
 

We have attempted to describe some our work in progress on the problem of facilitating the 
phase of reliability analysis and optimization based on distributed CAD system. On the negative 
side, reliability optimization requires many stochastic function evaluations which can be expensive 
in terms of circuit simulation and optimization cost. The expenses of optimization can be reduced 
by the implementation of efficient parallel algorithms and distributed processing technologies. New 
computer-aided reliability-oriented distributed design (CARD) system was described. This CARD 
system had some initial success towards making reliability optimization applicable. 
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ABSTRACT 
 

We have considered the approach to determining a priori distribution of error-free 
running time for high-reliability components by the method of paired comparisons useful for 
the increase of their reliability indicators. We have introduced the distinct variables, whose 
grades of membership are interpreted as subjective probabilities of finding the error-free 
running time and its characteristics at various time intervals. The method of recording the 
expert evaluation accuracy has been suggested. 

 
 
 

1  INTRODUCTION 
 
To control the meeting of the requirements by such high-reliability components as components 

of nuclear reactors [1], aircraft and space-and-missile engineering [2], gas equipment [3], etc., it is 
necessary to evaluate small (below 0.01) failure probabilities for the preset error-free running time. 
When there is practically no statistics on the failures of these components during their operation, the 
error-free running time distribution law is required for evaluating the reliability indicators with 
acceptable accuracy. This permits, in particular, the subsequent use of information pooling 
techniques [4], for instance, Bayesian methods of pooling the a priori information and observational 
data [5].  

Determination of error-free running time distribution belongs to intricately formalized 
problems (there are no sufficiently accurate mathematical models for its solution in most cases [1, 
6]). There is also no sufficiently representative statistics on the failures of high-reliability 
components [2]. Therefore, to obtain the a priori distribution of error-free running time for a 
component, it is expedient to employ expert evaluation [7]. The necessity of using non-formal 
experience and appreciating the physical nature of failures is also caused by the fact that, as is 
shown by simulation modeling of various distribution laws, small samples with the same mean values 
may result in considerable differences in description of distribution tail areas, which substantially 
influences on the accuracy of determining the reliability indicators of high-reliability components.  

The aim of the article consists in employing expert evaluation for finding out the type and 
parameters of distribution of error-free running time for high-reliability components.  
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2 PROBLEM FORMULATION 
 
Let )()( tTPtF <=  be the law of distribution of error-free running time, T be the random 

value of error-free running time for a component. Select on the time axis n periods, within which 
the failures of the component under consideration are expected. During the operation a random 
component from a certain main entity may fail in the z-th (z = 1, 2, …, n) period, namely, its 
possible state. The error-free running time is associated with the discrete state of the component by 
relationship 

zttt ⋅Δ+= 0                                                                (1) 
where 0t is the maximum error-free running time, until which the component failures have not been 
observed yet; tΔ  is the duration of the time period corresponding to the discrete state of the 
component. Then, discrete random value Z described by means of bar chart )(~ zfZ  corresponds to   
continuous variate T  of the component with probability density function )(tfT . In its turn, 
continuous variate T can be made to correspond to discrete random value Z set by any method.  

It is necessary to obtain the expected distribution of the component’s error-free running time. 
 
 

3 SOLUTION METHOD 
 
The problem of obtaining bar chart )(~ zfZ  can be solved by the method of paired 

comparisons ( a n a l y s i s  o f  h i e r a r c h i e s ) [8] developed by T. Saaty [9]. All pairs of 
the  component’s states are presented to the expert and the latter each time determines which of 
them is preferable with respect to a possibility of finding the component’s error-free running time. 
In the course of assessment the experts take into account the following:  available data on all kinds 
of reliability tests of the component and its failures during the operation; own experience in 
evaluating the reliability indicators of similar components by various methods and other factors. 
The evaluation process results in paired comparisons matrix )( ijbB = where 

⎪
⎩

⎪
⎨

⎧
≈=

;  if 0
;  if  1
;  if 2

ji
ji
ji

bij

p

f

   ( ..,n,i,j .1= ), 

where i , j  are the component’s compared states of n  possible ones. 
The constituents of normalized maximum characteristic vector q of paired comparisons 

matrix B are taken to be relative weights characterizing a possibility of the component’s staying in 
each state. 

The method modification, namely, the method of paired comparisons based on a 
qualitative attribute with quantitative preference judgment. In the course of paired 
comparisons and filling-in of matrix B the expert not only selects the preferable state in each pair, 
but also indicates how many times this state is preferable with respect to a possibility of finding the 
error-free running time than in another state of the pair.  The method does not require compulsory 
transitivity of the expert’s preferences, while the processing of the paired comparisons matrices is 
easily realizable on computers.  However, the method has no clear physical interpretation and is 
unable to treat obtained evaluations q as subjective probabilities [10]. This hampers a possibility of 
employing the conceptual and mathematical apparatuses well developed in the theory of probability 
and mathematical statistics for further operations with the obtained results. Therefore, let us 
complement the method with a fuzzy model [8].  

Let us introduce the following indistinct variables: 
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1) “Possible error-free running time” (basic) – for evaluating the possibility of finding the 
error-free running time, i.e., probability density function )(tfT .  

Auxiliary indistinct variables can be also introduced for solving such subproblems as 
calibration - clarification of the parameters obtained with the aid of the first indistinct distribution 
variable, evaluation of the expert’s assessment accuracy, etc.; 

2) “Expected error-free running time”  – for evaluating average error-free running time cpt ; 
3) “Most probable error-free running time” – for evaluating the distribution mode. 
Let the considered indistinct variable be determined on discrete multitude { }zZ =  from n  

possible component states. Indistinct multitude Z~  on multitude Z  appears to be an aggregate of 

pairs { }zzZ /)(~
Zμ=  where )(Z zμ  is the function of the error-free running time’s membership in 

the fuzzy set, whose sense is formalized by the chosen indistinct variable. The function of 
membership is made up of degrees of membership (relative weights zq ) of states Zz ∈  in 
multitude Z~ . We shall treat them as subjective probabilities of finding error-free running time z . 
Meant by the subjective probability is the estimate of probability (relative weight) of finding the 
error-free running time within a certain time period obtained as a result of processing the experts’ 
opinions rather than mathematically on the basis of the statistic data on frequency of failures getting 
into this time period as it happens in case of objective probability.  

Greater values of )(Z zμ  correspond to the states conforming, to greater extent, to the meaning 
of the chosen indistinct variable (i.e., with a greater possibility of finding the component’s error-free 
running time in these state and time period). 

As usually 4≥n , the approximated method [11] is recommended for finding the normalized 
maximum characteristic vector. To do this, introduced is normalized characteristic vector 

)1()( −= rr Bqq of the paired comparisons matrix where r  is the No. of the approximate computation 
algorithm’s step. Then, let us assume that the relative weights are represented by the constituents of 
the normalized vector at the r -th iteration step determined from the formula 
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∧)( )1(

r
r r

qBq λ=
∧
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till reaching preset accuracyε . The required accuracy of calculation of the characteristic vector 
constituents is preset beforehand (henceforth we accept ε = 0.0001 for further computations) and the 

calculation is stopped at step r if n conditions  ε≤−
∧−∧ r

i

r

i qq
1

 i∀ are satisfied. 

 
4 PROCEDURE OF EXPERT EVALUATION AND INTERPRETATION OF ITS 

RESULTS 
 
It is expedient to begin expert evaluation by the selected method from plotting the function of 

the possible error-free running time’s membership in the fuzzy set, whose meaning is formalized by 
the first indistinct variable. To do this, first one should indicate the range of the component’s 
possible error-free running time: monad ntt ,,0 Δ expected in the initial approximation. Paired 
comparisons matrix B is obtained by way of interrogating the experts on the extent, to which, in 
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their opinion, state i corresponds to the meaning of the “Possible error-free running time” indistinct 
variable more than state j. When matrix B is filled in, the expert compares, with the aid of the scale 
developed by T. Saaty [9] (Table 1), all pairs of discrete states with respect to a possibility of the 
component failure in them. So, to allot marks bij, the expert actually compares the expected densities 
of probability of finding the error-free running time (frequency of failures) during various time 
periods. 

  
Table 1 

Modified paired comparisons scale developed by T. Saaty 
 

Preference degree 

ijb  Definition  Explanation 

1 States are equally 
likely 

Possibility of finding the (average or most probable)* component’s 
error-free running time in both time periods of the compared pair is 
similar 

2 Intermediate meaning 

3 Poor   
superiority 

The expert’s experience makes it possible to consider the possibility of 
finding the (average or most probable)* component’s error-free running 
time in the first time period of the pair somewhat higher than in the 
second one 

4 Intermediate meaning 

5 Strong 
superiority 

The expert considers that the possibility of finding the (average or most 
probable)* component’s error-free running time in the first time period 
of the pair is definitely higher than in the second one 

6 Intermediate meaning 

7 Apparent  
superiority 

The expert considers that the possibility of finding the (average or most 
probable)* component’s error-free running time in the first time period 
of the pair is apparently higher than in the second one, while the 
available statistics of failures of the analyzed components under the 
similar conditions, as well as the model calculations conform this fact 

8 Intermediate meaning 

9 Absolute  
superiority 

The expert has no doubts with respect to the fact that the possibility of 
finding the (average or most probable)* component’s error-free running 
time in the first time period of the pair is absolutely higher than in the 
second one 

 
 

* Here and hereinafter in Table 1 the text in brackets pertains to either second or third indistinct variable. 
 

 
As a result of processing matrix В we shall obtain function )(Z zμ  of the error-free running 

time’s membership in fuzzy set Z~ , the meaning of which is formalized by indistinct variable 
“Possible error-free running time”. The membership function is formed by the membership degrees, 
which can be represented by the components of the normalized maximum characteristic vector of 
matrix В. Let us interpret this function of this function as the bar chart of the observed random 
value of the component’s error-free running time, including the error of its expert evaluation. This 
bar chart can help determining the kind and parameters of the observed distribution of error-free 
running time and, in particular, giving an approximated estimate of observed average error-free 
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running time ∑
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By changing over to t according to (1), we shall respectively obtain 

∑
=

⋅=
n

z
zcp zftt

1

)(~'~                                                             (2)  

and 

( ) ( )∑
=

⋅−=
1

1

22 ~'~'
n

z
cpt (z)ftts                                                    (3) 

where zt  is the error-free running time meaning corresponding to the middle of the z-th time period. 
E x a m p l e  1 . The expert is asked to evaluate the component’s error-free running time in 

seven time periods, each 2 years long, beginning from the 6th year of its operation. Paired 
comparisons matrix В from the expert’s judgments pertinent to distribution of the possible 
component’s error-free running time is shown in Fig. 1 а. 
 

 
                              
                                    (a)                                                                                               (b) 

 
Fig. 1. Paired comparisons matrix of possible component’s error-free running time (a)  

and respective bar chart of observed error-free running time (b) 
 

Determine the type and parameters of the form of the expected error-free running time. 
Solution. As a result of processing matrix 1B we use the approximative method to obtain the 

components of normalized characteristic vector zq , having the meaning of relative weights 
(probabilities) of finding the component within certain time periods z on time axis t, i.e. bar chart 

)(~ zf of the component’s error-free running time in Fig. 1 (b). 
The average error-free running time is found from formula (2) and amounts to cpt '~ = 7·0.164 + 

9·0.475 + 11·0.140 + 13·0.112 + 15·0.052 + 17·0.032 + 19·0.025 = 10.22 years, while the root-mean-square 
deviation with allowance for (3) amounts to 'ts  = 3.99 years.  
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The type of a priori distribution of error-free running time corresponding to the bar chart 
obtained by the expert method can be determined by various methods: method of moments, with the 
aid of statistical criteria, etc.  However, the use of known goodness-of-fit tests (Pearson’s, 
Kolmogorov’s, Shapiro’s, Wilk’s, Bartlett's test, Mann’s, etc.) requires getting the answer to the 
question: to which number of statistic observations do the results of expert evaluation of the error-
free running time by the group of experts correspond? Therefore, let us use the method of moments. 
When balancing the “statistical” rows by this method, use is often made of the system of Pearson 
curves [12]. The values of the coordinates obtained in the form of distribution bar chart )(tfT  in 
the diagram (Fig. 2) make up 1β = 1.641  and 2β = 4.250. So, the distribution of error-free running 
time by the expert method obtained can be adjusted by distribution from the family of J-shaped beta 
distributions (Fig. 2). 

 
 

Fig. 2. Location of obtained distribution on diagram of distributions of family of Pearson curves 
 

 
Now let us consider the “Expected error-free running time” indistinct variable and indicate to 

the experts the range of its possible values 222 ,, ntt Δ  with the aid of information on cpt '~  and bar 

chart )(~ tfT . During the repeated evaluation the experts compare the pairs of possible time periods 
with respect to the possibility of finding the average error-free running time within them. As a 
result of processing paired comparisons matrix 2B formed in such a manner, we shall obtain bar 
chart )(~

2 zf  with discrete random value Z2 of the average error-free running time (Fig. 3 b). This bar 
chart is helpful in specifying the estimate of the average error-free running time:  

∑
=

⋅=
2

1
2 )(~~ n

z
zcp zftt                                                                (4) 
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and obtain the dispersion of its evaluation  

( )∑
=

⋅=
2

1
2

22 ~~n

z
cpzcp (z)ft-ts .                                                         (5) 

E x a m p l e  2 . Basing on the data of Example 1 for assessing the average error-free 
running time, let us choose 52 =n  time periods, beginning from the 9th year of the component’s 
operation, half a year long each. Obtained as a result of expert evaluation is paired comparisons 
matrix 2B  for a possibility of finding the average error-free running time within these time periods 
(Fig. 3 b).  

 
                                     (a)                                                                                                   (b) 

 
Fig. 3. Paired comparisons matrix (а) and bar chart of average error-free running time (b) obtained 

as a result of expert evaluation 
 

It is necessary to determine the component’s average error-free running time and accuracy of 
its evaluation by the expert. 

Solution. Let us obtain the bar chart of the average error-free running time (Fig. 3 b) by the 
approximative method.  Take estimation of expectation ][ 2ZMmcp = of discrete random variable 

2Z  as the average error-free running time. While changing over to variable t , we obtain the 
specified estimate of the average error-free running time 

∑
=

⋅=
2

1
2 )(~~ n

z
zcp zftt = 9.25·0.089 + 9.75·0.175 + 10.25·0.404 + 10.75·0.229 + 11.25·0.103 = 10.29 years. 

The root-mean-square deviation of this estimate with allowance for (5) will amount to 0.15 
year. 

The values of the coordinates for the system of Pearson curves determined from bar chart 
)(2 tf  make up 1β = 0.010 and 2β = 2.553 (see Fig. 2). Their position in the diagram shows that the   

distribution of the average error-free running time estimate obtained by the expert method is 
predictably close to the normal one.   
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So, as a result of expert evaluation with the aid of the first indistinct variable, when the experts 
compare the selected time periods with respect to the possibility of the component’s failure during 
it, bar chart )(~ tfT of the component’s error-free running time was obtained and, with its aid of the 
information on dispersion of the component’s error-free running time. However, the measurement 
errors are imposed on the results of expert evaluation of the error-free running time. The expert (by 
convention, a highly knowledgeable specialist) acts as a “measuring instrument” for expert 
evaluation. Therefore, bar chart )(~ tfT  describes observed component’s error-free running time 'T  
obtained with the aid of expert evaluation. Let us assume that the dispersion of the error-free running 
time with respect to the average value determined by the expert method includes two additive 
constituents: 

eΔ+Δ=Δ'                                                                    (5) 
where Δ  is the actual dispersion of the error-free running time, which should be taken into account 
in determining the component’s reliability indicators; Δe is the expert evaluation error. 

The problems of accuracy of the expert methods are discussed in [13]. However, to assess 
accuracy, use is made, as a rule, of indirect indicators not relying on the characteristics employed in 
the theory of accuracy. It is obvious that accuracy of expert evaluation  of the component’s 
error-free running time depends on the quality of experts, namely, their competence, objectivity, 
and information awareness. The a priori and a posteriori assessment of the expert [13] can be done 
with the aid of usually interrelated indicators:  

− “ w e i g h t ”  of the expert normalized with respect to other experts under a 
certain rule (the expert’s “weight” depends on his education, academic degree, knowledge of 
physics of the component’s failures, practical experience in determination of the reliability 
indicators) and set by the decision of the “absolutely competent” person – a priori estimate;  

− accuracy of the estimates made by the experts – a posteriori estimate.  
If we consider the expert to be the measuring instrument, to analyze accuracy of expert 

evaluation, generally accepted metrological performances serve turn. Of them the most universal 
one is root-mean-square deviation eσ  of the “measurement” result relative to the true (or average – 
in the absence of systematic errors) meaning. Accuracy of the estimates expressed in terms of value 

eσ can be determined by the following methods: 
− by deviations of the expert estimates from the true meaning. This method is implemented 

by testing the experts on the problems with the a priori known result or with the result 
instrumentally (statistically) determined after expert evaluation. The method advantage consists in 
exclusion of systematic errors, while the disadvantage, in considerable expenses; 

− by means of the dispersion characteristics (“concentration”) of the obtained expert 
estimates relative to the true (average) meaning. This method is also applicable in the situations, 
when the true state of the object being evaluated is unknown, but it does not take into account 
possible systematic errors. 

The disadvantage of both methods consists in the necessity of a certain sample for finding the 
dispersion. 

Let us assume that the characteristic of accuracy of expert evaluation of the error-free running 
time under the second method is represented by the root-mean-square deviation in determining a 
certain fixed state [14]. We shall consider the average error-free running time as such a state in the 
problem being solved. The method advantage consists in the fact that it is obtained in case of 
determining a single considered component. The more contradictory and inconsistent the expert’s 
judgment on the possible component’s state, the higher the value of eσ . As the dispersion meaning 
depends on the expert’s quality, therefore it can serve as the measure of this quality.  

Under the conditions of the considered example eσ = sav= 0.15 year. 
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If the expert evaluation error is known, in some cases it can be taken into account. On the 
condition of satisfying supposition (5)  

eΔ−Δ=Δ ' . 
Allowance for the errors introduced by the expert is possible by way of correcting the 

parameters of the shape of distribution often functionally bound with the value ofσ . Table 2 
contains certain distributions of the error-free running time with indication of correlations required 
to eliminate the measurement errors.  

 
Table 2 

Correlations for elimination of expert evaluation error for certain distribution laws of error-free 
running time  

 
Distribution law Kind of F(t) Correlation for correcting the 
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* The following designations are taken in Table 2: ( )⋅Φ  is the Laplace's function; m = M[T] is the expectation; a, b, and 
c are the scale, form, and shift of the Weibull distribution, respectively; v is the coefficient of variation, 

να 1
0 = ; ta, tb  

are the uniform distribution parameters; ty lg= ; ][lgTMmy = ; 21][lgTDy =σ ; 21]'[lg' TDy =σ ; 21][lg ээ
y D Δ=σ . 

 
5  CONCLUSION 

 
The suggested approach makes it possible to improve the extent of justification of setting the 

a priori distribution of the components’ error-free running time for provision of acceptable accuracy 
of determination of reliability indicators for high-reliability components. 
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ABSTRACT 
 

This paper reviews and discusses some key concept and principles of risk analysis and risk 
management, based on a set of statements, formulated as myths about risk. Examples of 
such myths are: risk is equal to the expected value, risk equals uncertainty, risk can be 
expressed by probabilities, risk is equal to an event,  risk acceptance criteria contribute to 
obtaining a high safety standard,  and ALARP can be verified by cost-benefit  analyses.  It is 
concluded that risk needs to address both the consequences and the uncertainties about the 
consequences, and that it is necessary to see beyond expected values and probabilities.   

 
 

 
 
 
1  INTRODUCTION  
 

There is an enormous drive and enthusiasm in various industries, services and society as a 
whole nowadays to implement risk management in the organizations. There are high expectations, 
that risk management is the proper framework for obtaining high levels of performance. We see a 
lot of initiatives to establish adequate concepts and tools. However, the risk management discipline 
is young, and there are many difficult issues and challenges. These relate in particular to the 
foundation and use of risk analyses; how to express risk, how to handle uncertainties, and how to 
use risk analysis in a decision-making context.  These issues are addressed in this paper. The 
purpose of the paper is to review and discuss some key concept and principles of risk analysis and 
risk management. We do this by formulating a set of statements, which can be seen as myths about 
risk. These myths are presented and discussed in the following section. Some conclusions are 
provided in Section 3.    Risk management is defined as all measures and activities carried out to 
manage risk. Risk management deals with balancing the conflicts inherent in exploring 
opportunities on the one hand, and avoiding losses, accidents, and disasters, on the other (Aven & 
Vinnem 2007).  

To support decision-making on design and operation, risk analyses are conducted. The 
analyses include identification of hazards and threats, cause analyses, consequence analyses and 
risk description. The results of the analyses are then evaluated. The totality of the analyses and the 
evaluations are referred to as risk assessment. Risk assessment is followed by risk treatment, which 
is a process involving the development and implementation of measures to modify risk, including 
measures designed to avoid, reduce (“optimize”), transfer or retain risk. Risk transfer means sharing 
with another party the benefit or loss associated with a risk. It is typically affected through 
insurance. The terminology is in line with the ISO standard on risk management terminology (ISO 
2002). 

By carrying out a risk analysis one can: 
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• Establish a risk picture 
• Compare different alternatives and solutions in terms of risk  
• Identify factors, conditions, activities, systems, components, etc. that are important (critical) 

with respect to risk 
• Demonstrate the effect of various measures on risk. 

 
This provides a basis for: 
 

• Choosing between various alternative solutions and activities while in the planning phase of a 
system 

• Choosing between alternative designs of a solution or a measure.  
• Drawing conclusions on whether specific  solutions and measures meet stated requirements 
• Setting requirements for various solutions and measures, for example related to the  

performance of the preparedness systems 
• Documenting an acceptable safety and risk level. 

 
 
2  MYTHS ABOUT RISK   
 
We will discuss the following myths about risk:  

 
1. Risk is equal to the expected value 
2. Risk equals uncertainty 
3. Risk is equal to an event  
4. Risk is a probability or a probability distribution 
5. Risk equals expected disutility 
6. Risk is restricted to the case of known probabilities    
7. Risk based on subjective probabilities is the same as risk perception 
8. Objective risk exists 
9. Risk is determined by the historical data 
10. Risk relates to negative consequences 
11. Risk and probability cannot be determined in case of large uncertainties 
12. There are large inherent uncertainties in risk analyses 
13. Risk acceptance criteria contribute to obtaining a high safety standard   
14. ALARP can be verified by cost-benefit analyses 
15. The cautionary/pre-cautionary principles and risk management cannot be meaningfully  

integrated.    
 
 
2.1 Risk is equal to the expected value  
 

It is common to refer to risk as probability multiplied by consequences (losses), i.e. what is 
called the expected value in probability calculus. If C is the quantity of interest, for example the 
number of future attacks, the number of fatalities, the costs etc.,  the expected value would be a 
good representation of risk  if this value is approximately equal to C, i.e. EC ≈ C.  But since C is 
unknown at the time of the assessment, how can we be sure that this approximation would be 
accurate?  Can the law of large numbers be applied, expressing that the empirical mean of 
independent identically distributed random variables converges to the expected value when the 
number of variables increases to infinity? Or the portfolio theory (Levy & Sarnat 1990) saying that 
the value of a portfolio of projects is approximately equal to the expected value, plus the systematic 
risk (uncertainties) caused by events affecting the whole market?  
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Yes, it is likely that if C is the sum of a number of projects, or some average number, our 
expected value could be a good prediction of C. Take for example the number of fatalities in traffic 
in a specific country. From previous years we have data that can be used to accurately predict the 
number of fatalities next year (C). In Norway about 250 people were killed last year, and using this 
number as EC and predictor for the coming year, we would be quite sure that this number is close to 
the actual C.  

However, in many cases the uncertainties are much larger. Looking at the number of fatalities 
in Norway caused by terrorist attacks the next year, the historical data would give a poor basis. We 
may assign an EC but obviously EC could be far away from C. The accuracy increases when we 
extend the population of interest. If we look at one unit (e.g. country) in isolation the C number is in 
general more uncertain than if we consider many units (e.g. countries). Yet, there will always be 
uncertainties, and in a world where the speed of change is increasing, relevant historical data are 
scarce and will not be sufficient to obtain accurate predictions.    

Even so, some researchers define risk by the expected value. Consider the terrorism case 
discussed in Willis (2007). Willis (2007) defines risk as follows:  

 
Terrorism risk: The expected consequences of an existent threat, which for a given target, 

attack mode, target vulnerability, and damage type, can be expressed as  
 
Risk = P(attack occurs) ·  P(attacks results in damage | attacks occurs) ·  

E[damage | attacks occurs and results in damage] 
 
Willis (2007) refers to Haimes (2004) who highlights that expected value decision-making is 

misleading for rare and extreme events. The expected value (the mean or the central tendency) does 
not adequately capture events with low probabilities and high consequences.   Nonetheless, Willis 
represents risk by the expected value as the basis for his analysis. The motivation seems to be that 
the expected value provides a suitable practical approach for comparing and aggregating terrorism 
risk, as it is based on just one number.  

For terrorism risk, where the possible consequences could be extreme and the uncertainties in 
underlying phenomena and processes are so large, it is however obvious that the expected value 
may hide important aspects of concern for risk management.  The expected value can be small, say 
0.01 fatalities, but extreme events with millions of fatalities may occur, and this needs special 
attention.  

Hence we need to see beyond the expected values. We have to take into account uncertainties 
and risks. Risk management is concerned about how to assess these uncertainties and risk, and how 
to handle them.  

  
 
2.2 Risk equals uncertainty  

 
Risk is sometimes associated with uncertainty, for example, in Cabinet Office (2002), risk 

refers to uncertainty of outcome, of actions and events. Often the uncertainty is seen in relation to 
the expected value, and the variance is used as a measure of risk.  

As an example, consider the problem of investing money in a stock market. Suppose the 
investor considers two alternatives, both with expectation 1, and variances 0.16 and 0.08, 
respectively. As alternative 2 has the lowest risk (uncertainty), expressed by the variance, this 
alternative would normally be chosen.  

As another example, consider the number of fatalities in traffic next year in a specific country. 
Then the variance is rather small, as the number of fatalities shows rather small variations from year 
to year. Hence according to this definition of risk,  we must conclude that the risk is small, even 
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though the number of fatalities are many  thousands each year. Clearly, this definition of risk fails 
to capture an essential aspect, the consequence dimension. Uncertainty cannot be isolated from the 
intensity, size, extension etc. of the consequences. Take an extreme case where only two outcomes 
are possible, 0 and 1, corresponding to 0 and 1 fatality, and the decision alternatives are A and B, 
having uncertainty (probability) distributions (0.5,0.5), and (0.0001, 0.9999), respectively. Hence 
for alternative A there is a higher degree of uncertainty than for alternative B, meaning that risk 
according to this definition is higher for alternative A than for B.  However, considering both 
dimensions, both uncertainty and the consequences, we would of course judge alternative B to have 
the highest risk as the negative outcome 1 is nearly certain to occur.  

                                                   
 

2.3 Risk is equal to an event   
 
Risk is also being defined as an event or as a consequence:  
 

1. Risk is a situation or event where something of human value (including humans 
themselves) is  at stake and where the outcome is uncertain (Rosa 1998, 2003) 

2. Risk is an uncertain consequence of an event or an activity with respect to something 
that human value (Renn 2005). 

 
We do not distinguish between the definitions 1) and 2). They are basically expressing the 

same: Risk is an event or a consequence of an event. See Figure 1. The activity considered could 
produce events and consequences and these are subject to uncertainties. Something of human  value 
is at stake.  

 
 
 
 
 
 
 
 
 
 
 
Figure 1. Risk defined as an event or a consequence  (Aven & Renn 2008)     
 
According to these definitions, risk expresses a state of the world independent of our 

knowledge and perceptions. Referring to risk as an event or a consequence,  we cannot conclude on 
risk being high or low, or compare options with respect to risk. Compared to standard terminology 
in risk research and risk management, they lead to conceptual difficulties that are incompatible with 
the everyday use of risk in most applications, as discussed in the following. 

An analogous definition to 1-2) is found in reliability theory. Here the term unavailability is 
normally used as the expected fraction of time the system being considered is unavailable, i.e. is not 
functioning (Aven & Jensen 1999),  but we also see unavailability defined in the sense 1 as a state 
of the world, expressed by the actual fraction of time the system is unavailable (ISO 2005).  Then 
we may consider failures in the system as the “events” according to the definition 1 and the 
fractional downtime as the consequences. The events and consequences are subject to uncertainties.  

The definitions 1-2) mean that risk and assessment of risk are separate domains of the world. 
The occurrence of a leakage in a process plant is a risk (according to 1). This event is subject to 

 

Activity
Events and 

consequences
(outcomes)

Uncertainty
Risk 

Values at stake Values at stake 
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uncertainties, but the risk concept is restricted to the event “leakage” – the uncertainties and how 
people judge the uncertainties is a different domain. Hence a risk assessment according to 1-2)  
cannot conclude for example that the risk is high or low, or that option A has a lower or higher risk 
than option B, as it makes no sense to speak about a  high or higher leakage. Instead the assessment 
needs to conclude on the uncertainty or the probability of the risk being high or higher.  

A similar comment can be made on risk perception.  
We conclude that any judgement about risk need to take into account uncertainties/ 

likelihoods, so why not include this dimension into the risk concept?    
We refer to Aven and Renn (2008) for further discussion of this risk perspective.   
 
  

2.4 Risk is a probability or a probability distribution   
 
We often see risk defined by probabilities. Here are some examples:  

 
• Risk is the probability of an undesirable event (Campbell 2005)  
• Risk is the probability of an adverse outcome (Graham & Weiner 1995)  
• Risk is a measure of the probability and severity of adverse effects (Lowrance 1976) 
• Risk is the combination of probability of an event and its consequences (ISO 2002) 
• Risk is defined as a set of scenarios si, each of which has a probability pi and a 

consequence ci (Kaplan & Garrick 1981, Kaplan 1991).    
 

Clearly, the first definition is inadequate as a description of risk, as the consequences and 
outcomes are not taken into account. If we consider the undesirable event “machine failure”,  the 
consequences can range from negligible to disaster depending on the availability and performance 
of a set of barriers, as well as the extent of exposure of human lives, and other objects that human 
values.   

However, also the other probability based definitions can be challenged. A probability is not 
capturing all aspects of concern. To explain this we need to first introduce the two common ways of 
interpreting a probability: the classical relative frequency interpretation and the subjective Bayesian 
interpretation.  

According to the classical relative frequency paradigm, a probability is interpreted as the 
relative fraction of times the events occur if the situation analyzed were hypothetically “repeated” 
an infinite number of times. The underlying probability is unknown, and is estimated in the risk 
analysis. Hence if this interpretation is adopted in the above definitions of risk, we have to take into 
account that the risk estimates could be more or less accurate relative to the underlying true risk. 
The uncertainties in the estimates could be very large, and difficult to express.   

The alternative (the Bayesian perspective) considers probability as a measure of uncertainty 
about events and outcomes (consequences), seen through the eyes of the assessor and based on the 
available background information and knowledge. Probability is a subjective measure of 
uncertainty, conditional on the background information. The reference is a certain standard such as 
drawing a ball from an urn. If we assign a probability of 0.4 for an event A, we compare our 
uncertainty of A to occur with drawing a red ball from an urn having 10 balls where 4 are red.  
Objective probabilities do not exist.  

Following this perspective, we assign a probability by performing uncertainty assessments, 
and there is no reference to a correct or true probability. A probability is always conditional on the 
background knowledge, and given this background knowledge there is no uncertainty related to the 
assigned probability, as it is an expression of uncertainty.  

However, a probability is not a perfect tool for this purpose. The assigned probabilities are 
conditional on a specific background knowledge, and they could produce poor predictions. 
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Surprises relative to the assigned probabilities may occur, and by just addressing probabilities such 
surprises may be overlooked (Aven 2007a, 2008).   

Let us look at two examples:  
 

Maintenance  
We consider an offshore petroleum installation where the operations management is concerned 
about the deterioration of some critical equipment. The maintenance discipline ensures that the 
deterioration will not cause safety problems. It refers to a special maintenance program that will be 
implemented, which will cope with the problem.  So what is the risk associated with hydrocarbon 
leakages caused by operational problems. Given the background information of the maintenance 
discipline, a leakage probability (for a defined size) of 10% is assigned.  This number is based on 
relevant historical data, and do not in any respect reflect the concern of the operations management.  
The assignment assumes that the maintenance program will be effective.  But surprises could occur. 
Production of oil over time lead to changes in operating conditions, such as increased production of 
water, H2S and CO2 content, scaling, bacteria growth, emulsions, etc.; problems that to large extent 
need to be solved by the addition of chemicals. These are all factors causing increased likelihood of 
corrosion, material brittleness and other conditions that may cause leakages.  

By the assignment of 10% we hide an important element of uncertainty. In a risk analysis a 
number of such probability assignments are performed, and the hidden uncertainties could create 
surprising outcomes someplace. You do not know where it will come, but it certainly could happen.   

 
Offshore diving activities   
Consider the risk, seen through the eyes of a risk analyst in the 1970s, related to future health 
problems for divers working on offshore petroleum projects. An assignment is to be made for the 
probability that a diver would experience health problems (properly defined) during the coming 30 
years due to the diving activities. Let us assume that an assignment of 1% is made.  This number is 
based on the available knowledge at that time. There are not strong indications that the divers will 
experience health problems. However, we know today, that these probabilities led to poor 
predictions. Many divers have experienced severe health problems (Aven & Vinnem 2007, p. 7). 
By restricting risk to the probability assignments alone, we see that aspects of uncertainty and risk 
are hidden.  There is a lack of understanding about the underlying phenomena, but the probability 
assignments alone are not able to fully describe this status.  

 
 
2.5 Risk equals expected disutility   

 
If X is the outcomes (consequences) and u(X) the utility function, risk defined by the 

expected disutility is given by -Eu(X) (Campbell 2005). Hence the preferences of the decision maker 
is a part of the risk concept. The result is a mixture of scientific assessments of uncertainties about 
X and the decision makers preferences concerning different values of X. We consider this to be an 
unfortunate mixture. There will be a strong degree of arbitrariness in the choice of the utility 
function, and some decision makers would also be reluctant to specify the utility function as it 
reduces their flexibility to weight different concerns in specific cases. Risk should be possible to 
describe also in case that the decision maker is not able or willing to define his/her utility function.  

 
 
2.6 Risk is restricted to the case of known probabilities    

 
In economic applications a distinction has traditionally been made between risk and 

uncertainty, based on the availability of information. Under risk the probability distribution of the 
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performance measures can be assigned objectively, whereas under uncertainty these probabilities 
must be assigned or estimated on a subjective basis (Douglas 1983). This definition goes back to 
Knight (1921).   

Although this definition is often referred to, it is not so often used in practice. The problem is 
of course that we seldom have known distributions, and then we cannot refer to the risk concept. 
The Knightian definition violates the intuitive interpretation of risk, which is related to situations of 
uncertainty and lack of predictability.  
 
2.7 Risk based on subjective probabilities is the same as risk perception  

 
In cultural theory and constructivism, risk is the same as risk perception (Rosa 1998). Risk 

coincides with the  perceptions of it (Douglas & Wildavsky 1982, Freudenburg 1989). Beck (1992) 
concludes that “because risks are risks in knowledge, perceptions of risks and risk are not different 
things, but one and the same”. Beck argues that the distinction between risk and risk perception is 
central to a scientific myth of expertise, according to which the population “perceives risks” but 
science determines (i.e., identifies and quantifies) risk (Campbell & Currie 2006, p. 152).   

This viewpoint of risk being the same as risk perception is, however, not confined to these 
paradigms and scientists (Rosa 1998). Rosa (1998) refers for example to the leading risk 
psychometrician Paul Slovic who has written: ‘Human beings have invented the concept of “risk” . 
. . there is no such thing as “real risk” or “objective risk” (Slovic 1992: 119).  

But rejecting the idea that there exists a “real risk” or an “objective risk”, does not mean that 
risk is the same as perceived risk.  If probability is a way of expressing uncertainties, seen through 
the eyes of the assigner (a subjective probability), there is no “real risk” or “objective risk”. 
However, subjective probabilities and related risk assignments are not the same as risk perception. 
You may assign a probability equal to 0.000000001 for an event to occur, but still find the risk to be 
intolerable. Our judgments about risk are as we know from many risk perception studies influenced 
by a number of factors outside the realm of the probabilistic world. The assigned probability and 
the risk perceptions are different dimensions, or separate domains of the world using Rosa’s words. 

In the case that the risk perspective is based on the idea that a true risk exists, it is obvious 
that the risk = risk perception thesis is wrong,  refer Campbell (2005, p. 230). The above analysis 
shows that this thesis is invalid also for other risk perspectives.  

We refer to Aven and Renn (2008).   
 

 
2.8 Objective risk exists    

 
The classical relative frequency approach to risk is based on the idea of an underlying true, 

objective  probability.  We understand the meaning of this perspective in gambling situations, but 
what does this idea of a true probability mean in a more complex context. Consider for example the 
probability of a terrorist attack, i.e. P(attack occurs). How can this probability be understood by 
reference to a thought-constructed repeated experiment?  

It does not work at all. It makes no sense to define a large set of “identical”, independent 
attack situations, where some aspects (for example related to the potential attackers and  the 
political context) are fixed and others (for example the attackers motivation) are subject to 
variation.  Say that the attack probability is 10%. Then in 1000 situations, with the attackers and the 
political context specified, the attackers will attack in about 100 cases. In these situations the 
attackers are motivated, but not in the remaining ones. Motivation for an attack in one situation 
does not affect the motivation in another. For independent random situations such “experiments” 
are meaningful, but not for deliberate actions as in the terrorism case.   
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As another example, consider the probability of at least one fatality during one year in a 
production facility. According to the relative frequency view, this probability is interpreted as the 
proportion of facilities with at least one fatality when considering an infinite number of similar 
facilities. This is of course a thought experiment - in real life we just have one such facility. 
Therefore, the probability is not a property of the unit itself, but the population it belongs to. How 
should we then understand the meaning of similar facilities? Does it mean the same type of 
buildings and equipment, the same operational procedures, the same type of personnel positions, the 
same type of training programmes, the same organizational philosophy, the same influence of 
exogenous factors, etc. As long as we speak about similarities on a macro level, the answer is yes. 
But something must be different, because otherwise we would get exactly the same output result for 
each facility, either the occurrence of at least one fatality or no such occurrence. There must be 
some variation on a micro level to produce the variation of the output result. So we should allow for 
variations in the equipment quality, human behaviour, etc. But the question is to what extent we 
should allow for such variation. For example, in human behaviour, do we specify the safety culture 
or the standard of the private lives of the personnel, or are these factors to be regarded as factors 
creating the variations from one facility to another, i.e. the stochastic (aleatory) uncertainty?   We 
see that we will have a hard time specifying what should be the framework conditions of the 
experiment and what should be stochastic uncertainty. In practice we seldom see such a 
specification carried out, because the framework conditions of the experiment are tacitly 
understood. As seen from the above example, it is not obvious how to make a proper definition of 
the population. 

 
 

2.9 Risk is determined by the historical data  
 

To many people, risk is closely related to accident statistics. Numerous reports and tables are 
produced showing the number of fatalities and injuries as a result of accidents. The statistics may 
cover the total number of accidents associated with an activity within different consequence 
categories (loss of lives, personal injuries, material losses, etc.) and they could be related to 
different types of accidents, such as industrial accidents and transport accidents.  

Often the statistics are related to time periods, and then time trends can be identified. More 
detailed information is also available in some cases, related to, for example, occupation, sex, age, 
operations, type of injury, etc. 

Do these data provide information about the future, about risk? Yes, although the data are 
historical data, they would usually provide a good picture of what to expect in the future. If the 
numbers of accidental deaths in traffic during the previous five years are 1000, 800, 700, 800, 750, 
we know a lot about risk, even though we have not explicitly expressed it by formulating 
predictions and uncertainties. This is risk related to the total activity, not to individuals. Depending 
on your driving habits, these records could be more or less representative for you. 

However, historical data may exclude extreme observations, but this does not preclude such 
observations to occur in the future. The historical figures can obviously lead to poor predictions. 

By attempting to understand the data, by looking for trends, we may be able to improve the 
predictions.  But we may also end up “over-interpreting” the data in the sense that we look for all 
sorts of explanations for why the historical figures are as they are.  The data may  indicate that the 
quantity of interest (for example the injury rate) is increasing, but perhaps the trend arrow will be 
reversed next month.  We can analyse possible underlying conditions that can affect the quantity, 
but it is not easy to reflect what the important factors are, and what is “noise” or arbitrariness. 

An analysis based on the historical numbers could easily become too narrow and imply that 
extreme outcomes are ignored. Surprises occur from time to time, and suddenly an event could 
occur that dramatically changes the development, with the consequence that the quantity of interest 
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jump up or down. In a risk analysis such events should be identified. However, the problem is that 
we do not always have the knowledge and insights to be able to identify such events, because they 
are extremely unexpected.  

 
 
2.10 Risk relates to negative consequences  

 
Most people associate the word risk with something undesirable and negative.  There are, 

however, good reasons for not restricting the risk concept to negative consequences, and many 
definitions of risk relate risk to both negative and positive consequences.  What is a negative 
consequence or outcome?  To some, an outcome can be negative, and for others a positive outcome. 
We wish to avoid a discussion on whether a consequence is classified in the correct category. In a 
risk assessment, the aim is to uncover all relevant consequences, then assess uncertainties and 
assign probabilities. 

 
 
2.11 Risk and probability cannot be determined in case of large uncertainties 

 
It is common to hear statements saying that risk and probability cannot be determined in case 

of large uncertainties. It is however a myth. Risk analyses can always be carried out.  Risk can 
always be expressed, regardless of access to input data.  Through the risk analysis the knowledge 
and lack of knowledge one has concerning various quantities are expressed. Of course, in a case of 
large uncertainties, it will be difficult to establish good predictions, but the purpose of the analysis 
is to describe the uncertainties.  See the following section.  

 
 
2.12 There are large inherent uncertainties in risk analyses 

 
The risk analysis systemizes available knowledge and uncertainties about phenomena, 

systems, and activities that are being studied.  What can go wrong, why, and what are the 
consequences? This knowledge and this uncertainty are described and discussed, and thereby we 
obtain a basis on which we can evaluate what is important and compare different solutions and 
measures. 

If one has a large and relevant data base, the probabilities derived from it could be precise in 
the sense that they may be able to provide accurate predictions of future events. For example, 
assume that one has observed 200 failures in a population of 10 000 units of type T over a one year 
period. The derived probability of failure for one arbitrary chosen unit is then 2%, and we will 
predict for example 20 failures per thousand units. We can express the uncertainty, for example, 
using a 95% prediction interval: [13, 31]. The number of failures will lie within this interval with a 
95% probability. To establish this interval, let X denote the number of failures among 1000 units. 
Then X has a binomial distribution, which can be approximated by a normal distribution with mean 
20 and standard deviation 4.4, and this gives P(11 ≤ X ≤  29) = 0.95.   

In a risk analysis  context, we often focus on rare events, for example, the occurrence of a 
fatal accident, an accident that causes impairment of a main safety function, etc.  We have only one 
unit or activity, and we are able to give a good prediction about the future:  no fatal accidents will 
occur the next year. Fortunately, such a prediction will normally provide correct results.  The risk 
analysis however, should also express the likelihood associated with whether the event will occur. 
This raises the question about precision in the probability assignment. 

Many risk analyses today are characterized either by silence on the subject, or by general 
statements such as: 
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The analyses are based on  the “best estimates” obtained by using the company’s standards for 
models and data. It is acknowledged that there are uncertainties associated with all elements in the 
analysis, from the hazard identification to the models and probability calculations.  It is concluded 
that the precision of the analysis is limited, and that one must take this into considerations when 
comparing the results with the risk acceptance criteria and tolerability limits. 

 
The above statement is not very convincing, and it is obvious that there is no clarity regarding 

what the analyses  express, and what uncertainty means in a risk analysis context. 
In any event, does this acknowledgment -- that a considerable amount of uncertainty exists  --  

affect the analyses and the conclusions?  Only very rarely! Our impression is that one writes such 
statements just to meet a requirement, and then they are put aside.  This says a lot about the quality 
of the analyses. 

If the goal of the risk analysis is to obtain reliable, i.e. accurate, estimates of some true risk, 
we can quickly conclude that risk analysis fails as a scientific method. Referring to Section 2.4, we 
can conclude that the classical approach to risk analysis does not work in situations of large 
uncertainties. The uncertainties of the risk estimates are too large.  

Alternatively, we may consider risk analysis as a tool for assessing uncertainties about risk 
and risk estimates. Since the assessment's aim then is to express uncertainties about the true risk, 
reliability is not related to the accuracy in the results but rather the “accuracy” of the transformation 
of uncertainties to probabilities. Risk analysis is then not about bounding and reducing 
uncertainties, but to describe uncertainties.  Two prevailing approaches for describing the 
uncertainties are: 

Traditional statistical methods such as confidence intervals   
The probability of frequency approach, i.e. assessing epistemic uncertainties about the  risk 

by means of subjective probabilities. In this approach there are two levels of probability introduced; 
i) the relative frequency interpreted probabilities reflecting variation within populations and ii) the 
subjective probabilities reflecting the analyst's uncertainty what the correct relative frequency 
probabilities are (see e.g. Kaplan & Garrick (1981) and Aven (2003)). In Garrick et al. (2004) the 
probability of frequency approach is suggested for risk analysis of attacks.  Garrick et al. (2004)  
refer to a probability distribution saying for example that there is a probability of 20% that the 
attackers would succeed in 10% of their attacks. 

However, confidence intervals would not work in this setting as we do not have sufficient 
amount of relevant data.  

The ambition of the probability of frequency approach is to express the epistemic 
uncertainties of the probability p of an attack, and take into account all relevant factors causing 
uncertainties. The analysis may produce a 90% credibility interval for p, [a, b], saying that the 
analyst is 90% confident that p lies in the interval [a, b]. In practice it is difficult to perform a 
complete uncertainty analysis following this approach. In theory an uncertainty distribution on the 
total model and parameter space should be established, which is impossible to do. So in 
applications only a few marginal distributions on some selected parameters are normally specified, 
and therefore the uncertainty distributions on the output probabilities are just reflecting some 
aspects of the uncertainty. This makes it difficult to interpret the produced uncertainties. 

If the risk perspective is based on probability being a measure of uncertainty seen through the 
eyes of the assessor, and based on a background knowledge, we  can argue along the same lines. As 
for the probability of frequency approach, we conclude that this approach in general meets the 
reliability requirement, if reliability is associated with subjective probability assignments and these 
follow the standards established for such assignments.  
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2.13 Risk acceptance criteria contribute to obtaining a high standard of safety   
   
To manage safety and security, it is common to use a hierarchy of goals, criteria and 

requirements, such as  
 

• overall ideal goals, for example “our goal is to have no accidents” 
• risk acceptance criteria (defined as upper limits of acceptable risk) or tolerability 

limits, controlling the accident risk, for example “the individual probability of being 
killed in an accident shall not exceed 0.1 %”  

• requirements related to the performance of safety systems and barriers, such as a 
reliability requirement for a safety system  

• requirements related to the specific design and operation of a component or 
subsystem, for example the gas detection system. 

 
According to the standard procedures for using such goals, criteria and requirements, they are 

to be specified before alternatives are generated and subsequently analysed. The point is to look for 
what to obtain before looking for possible ways of implementation. For example, the Norwegian 
offshore petroleum regulations state that risk acceptance criteria (expressed as upper limits of 
acceptable risk) should be developed, and before the risk analyses are carried out (PSA 2001, Aven 
2007b). Note that we in the following, when using the term “risk acceptance criteria”, always have 
in mind such upper limits. 

Are such criteria appropriate for managing investments in safety and security? With large 
uncertainties, it is not meaningful to use such limits as the precision level is poor. However, it is 
also questionable to use such criteria where there is no discussion about the risk picture as such.  

Consider the following criterion for an offshore installation:  
 

The probability of getting an oil spill during one year of operation causing an environmental 
damage having a restitution period of more than z years, should not exceed  1 · 10-x.  

 
At the political level it is obvious that it would not be possible to establish consensus about 

such a limit. Different parties, would have different preferences. But for the Government it should 
be possible to establish such a number? Say that it would make an attempt to do this. And suppose 
that it considers two options, a weak limit, say  1 · 10-3  and  a strong limit say 1 · 10-4.  What limit 
should it choose? The answer would be the weak limit, as the strong limit could mean lack of 
flexibility in choosing the overall best solution. If the benefits are sufficient large, the level  1 · 10-3  
could be acceptable. Following this line of arguments, the use of such limits leads to the 
formulation of weak limits, which are met in most situations. Risk assessments are then used to test 
whether risks are acceptable in relation to these weak limits. It is to large extent waste of money, 
the conclusions are obvious.  

At the operational level, the same type of arguments will apply. The oil company is to 
determine an acceptance criterion, and it faces the same type of dilemmas as above. Why should it 
specify strong limits?  It would restrict the company from obtaining the overall best solutions. The 
result is that weak limits are specified and risk assessments play the role of verification, a role that 
adds not much value.  

If a high level of safety or security is to be obtained, other mechanisms need to be 
implemented than risk acceptance criteria.  If such criteria are established, they give a focus on 
obtaining a minimum safety standard, instead of continuous improvement and risk reduction.   

The ALARP principle represents such a mechanism. The ALARP principle expresses that the 
risk should be reduced to a level that is as low as reasonably practicable. A risk reducing measure 
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should be implemented provided it cannot be demonstrated that the costs are grossly 
disproportionate relative to the gains obtained (HSE 2001).   

 
2.14 ALARP can be verified by cost-benefit analyses 

 
The ALARP principle implies what could be referred to as the principle of ‘reversed onus of 

proof‘. This implies that the base case is that all identified risk reduction measures should be 
implemented, unless it can be demonstrated that there is gross disproportion between costs and 
benefits. To verify ALARP, procedures mainly based on engineering judgments and codes are used, 
but also traditional cost-benefit analyses and cost effectiveness analyses.  When using such 
analyses, guidance values are often used, to specify what values that define ‘gross disproportion’.   

The practice of using traditional cost-benefit analyses and cost effectiveness analyses to 
verify ALARP has been questioned (Aven & Abrahamsen 2007). The ALARP principle is an example 
of application of the cautionary principle (see Section 2.15).  Uncertainty should be given strong 
weight, and the grossly disproportionate criterion is a way of making the principle operational.  
However, cost-benefit analyses calculating expected net present values to large extent ignore the 
risks (uncertainties) and the use of this approach to weight the risk and uncertainties is therefore 
problematic. The same applies to the cost-effectiveness indices such as the expected cost per 
expected number of saved lives (referred to as the implied cost of averting a statistical fatality, 
ICAF) which are often used instead of full cost-benefit analyses. If a measure costs 2 million euros 
and the risk analysis shows that the measure will bring about a reduction in the number of expected 
fatalities by 0.1, then the ICAF is equal to 2/0.1 = 20 million euros. By comparing this number with 
reference values, we can express  the effectiveness of the measure.  

Modifications of the traditional cost-benefit analysis are suggested to cope for this problem, 
see e.g. Aven & Flage (2008). In these methods, adjustments are made on either the discount rate or 
the contribution from the cash flows. This latter case could be based on the use of certainty 
equivalents for the uncertain cash flows. Although arguments are provided to support these 
methods, their rationale can be questioned. There is a significant element of arbitrariness associated 
with the methods, in particular when seen in relation to the standard given by the expected utility 
theory.   

 
 

2.15 The cautionary/pre-cautionary principles and risk management cannot be meaningfully  
integrated     
 
It is common among engineers, economist and others to consider a rational decision in face of 

uncertainties to be based on risk and decision analysis, including cost-benefit analysis. It is 
irrational to give weight to the cautionary and pre-cautionary principles. However, a further look 
into this view shows that is cannot be justified.  

The cautionary principle is a basic principle in risk management, expressing that in the face of 
uncertainty, caution should be a ruling principle, for example by not starting an activity, or by 
implementing measures to reduce risks and uncertainties (HSE 2001, Aven & Vinnem 2007). The 
level of caution adopted will of course have to be balanced against other concerns such as costs. 
However, all industries would introduce some minimum requirements to protect people and the 
environment, and these requirements can be considered justified by the reference to the cautionary 
principle. 

For example, in the Norwegian petroleum industry it is a regulatory requirement that the 
living quarters on an installation should be protected by fireproof panels of a certain quality, for 
walls facing process and drilling areas. This is a standard adopted to obtain a minimum safety level. 
It is based on established practice of many years of operation of process plants. A fire may occur  
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which represents a hazard for the personnel, and in the case of such an event, the personnel in the 
living quarters should be protected. The assigned probability for the living quarter on a specific 
installation being exposed to fire may be judged as low, but we know that fires occur from time to 
time in such plants. It does not matter whether we calculate a fire probability of x or y, as long as 
we consider the risks to be significant; and this type of risk has been judged to be significant by the 
authorities. The justification is experience from similar plants and sound judgments. A fire may 
occur, since it is not an unlikely event, and we should then be prepared. We need no references to 
cost-benefit analysis. The requirement is based on a cautionary thinking. 

Risk analyses, cost-benefit analyses and similar types of analyses are tools providing insights 
into risks and the trade-offs involved. But they are just tools - with strong limitations. Their results 
are conditioned on a number of assumptions and suppositions. The analyses do not express 
objective results. Being cautious also means reflecting this fact. We should not put more emphasis 
on the predictions and assessments of the analyses than what can be justified by the methods being 
used. 

In the face of uncertainties related to the possible occurrences of failures, hazardous situations 
and accidents, we are cautious and adopt principles of risk management, such as  
 

• robust design solutions, such that deviations from normal conditions are not leading to 
hazardous situations and accidents,  

• design for flexibility, meaning that it is possible to utilise a new situation and adapt to 
changes in the frame conditions,  

• implementation of safety barriers, to reduce the negative consequences of hazardous 
situations if they should occur, for example a fire,  

• improvement of the performance of barriers by using redundancy, maintenance/ 
testing, etc.  

• quality control/ quality assurance,  
• the precautionary principle, saying that in the case of lack of scientific certainty on the 

possible consequences of an activity, we should not carry out the activity.  
• the ALARP-principle, saying that the risk should be reduced to a level which is as low 

as reasonably practicable. 
 
Thus the precautionary principle may be considered a special case of the cautionary principle, 

as it is applicable in cases of scientific uncertainties (Sandin 1999, Löfstedt 2003, Aven 2006). There 
are however many definitions of the precautionary principle. The well-known 1992 Rio Declaration 
use the following definition: 

In order to protect the environment, the precautionary approach shall be widely applied by 
States according to their capabilities. Where there are threats of serious or irreversible damage, lack 
of full scientific certainty shall not be used as a reason for postponing cost-effective measures to 
prevent environmental degradation. 

Seeing beyond environmental protection, a definition such as the following reflects what is a 
typical way of understanding this principle:  

The precautionary principle is the ethical principle that if the consequences of an action, 
especially the use of technology, are subject to scientific uncertainty, then it is better not to carry 
out the action rather than risk the uncertain, but possibly very negative, consequences. 

In the following we will refer to the cautionary and precautionary principles, and in this way 
avoid a discussion about whether we refer to the cautionary principle or the precautionary principle. 
The distinction is not essential for the purpose of this paper.    

We have to acknowledge that there exists no simple and mechanistic method or procedure for 
dealing with uncertainties and balancing different concerns. This is also recognised by many others 
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analysts, see e.g. the approach adopted by the risk governance framework (Renn 2005) and the risk 
framework used by the UK Cabinet Office (2002). 

Uncertainty is an important aspect of risk, and hence the cautionary and precautionary 
principles constitute  important aspect of risk management.    

 
 
3. CONCLUSIONS 

We suggest the following definition of risk (Avenn 2007a):   
 

By risk we understand the two-dimensional combination of i) events A and the consequences 
of these events C, and ii) the associated uncertainties U (wil A occurs and what value will C 
take)    (I) 
 
We refer to this definition as the (C,U) risk definition.  For simplicity, we write only C, 
instead of A and C. 

 
We may rephrase this definition by saying that risk associated with an activity is to be 

understood as (Aven & Renn 2008): 
 
Uncertainty about and severity of the consequences of an activity (I’),  
 
where severity refers to intensity, size, extension, and so on, and is with respect to something 

that humans value (lives, the environment, money, etc).  Losses and gains, for example expressed 
by money or the number of fatalities, are ways of defining the severity of the consequences. 

The main features of the definition are illustrated in Figure 2.     
 
 
 
 
 
 
 
 
 
 
Figure 2. Illustration of the risk definition (I, I’) 
 
The uncertainty relates to both the event and the consequences given that this event occurs.  
We see that the definition is based on the combined dimensions Consequences (outcome 

stakes) and Uncertainties. It is essential that the second dimension is uncertainties and not 
probabilities. The concept of risk should cover uncertainties beyond probabilities. Probabilities and 
expected values are not perfect tools for expressing uncertainties, as discussed in Section 2.4.  

Note that following our definition of risk (I), a low degree of uncertainty does not necessarily 
mean a low risk, or a high degree of uncertainty does not necessarily mean a high level of risk. As 
risk is defined as the two-dimensional combination of consequences and uncertainties, any 
judgment about the level of risk, needs to consider both dimensions. See example in Section 2.2.  

The risk concept is supporting a broad perspective on risk, as for example shown by the way 
risk assessment are conducted. In stead of a traditional quantitative risk assessment approach, we 

Activity
Events and 

consequences
(outcomes)

Uncertainty
Risk 

Values at stake Values at stake 

Severity
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recommend a more qualitative approach or semi-quantitative approach (Aven 2008).  The basic 
features of the approach can be summarised as follows:  
 

A broad qualitative risk picture is established highlighting  
 

• Potential hazards/threats and accident scenarios  
• Barriers and the effectiveness of these barriers  
• Risk influencing factors and possible risk reducing measures 
• Uncertainties in phenomena and processes 
• Vulnerabilities  
• Special features of the consequences  
• Manageability factors 
 
Crude risk categorisations are defined based on this risk picture, reflecting  

 
• Probabilities/frequencies of hazards/threats 
• Expected losses given the occurrence of such a hazard/threat 
• Factors that could create large deviations between expected outcomes and the actual 

outcomes (uncertainties, vulnerabilities)  
 

Evaluations of the risk picture and categorisations to compare alternatives and make 
judgments about risk acceptance. 

 
Quantifying risk using risk indices such as expected number of fatalities gives an impression 

that risk can  be  expressed in a very precise way.  However, in most cases, the arbitrariness is 
large, and the semi-quantitative approach acknowledges this by providing crude risk numbers, 
including assessments of the factors that can cause “surprises” relative to the probabilities and 
expected values. We are not opposed to detailed risk quantification as such, but quantification often 
requires strong simplifications and assumptions and as result, important factors could be ignored or 
given too little (or much) weight. In a qualitative or semi-quantitative analysis a more 
comprehensive risk picture can be established, taking into account underlying factors influencing 
risks. In contrast to the prevailing use of quantitative risk assessments, the precision level of the risk 
description is in line with the accuracy of the risk assessment tool. In addition, risk quantification is 
very resource demanding. We need to ask whether the resources are used in the best way. We 
conclude that in many cases more is gained by pursuing a broader more qualitative approach, which 
allows for considerations beyond the probabilities and expected values.  

For problems with large uncertainties, risk assessments could support decision making, but 
other principles, measures and instruments are required, such as the cautionary principle.  
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ABSTRACT 
 

In reliability, quality control and risk analysis, fuzzy methodologies are more and more 
involved and inevitably introduced difficulties in seeking fuzzy functional relationship 
between factors. In this paper, we propose a scalar variable formation of fuzzy regression 
model based on the credibility measure theoretical foundation. It is expecting our scalar 
variable treatments on fuzzy regression models will greatly simplify the efforts to seeking 
fuzzy functional relationship between fuzzy factors. An M-estimator for the regression 
coefficients is obtained and accordingly the properties and the variance-covariance for the 
coefficient M-estimators are also investigated in terms of weighted least-squares arguments. 
Finally, we explore the asymptotic membership function for the coefficient M-estimators.   

 
 
 
1 INTRODUCTION 
 

In statistical theory, regression is an important topic for modeling the functional relationship 
between response variable(s) and exploratory variable(s) under random uncertainty assumptions. 
When data is fuzzy, fuzzy regression models were also developed although mostly on the ground of 
Zadeh’s fuzzy mathematics (1965, 1978). We noticed that more and more system dynamics 
researchers in reliability, quality and risk analysis engage into fuzzy approach. However, whenever 
we use fuzzy set theory for practical modeling, we will face a sequence of fundamental issues: 

The first one is the self-duality in its theoretical foundation. Fuzzy mathematics initiated by 
Zadeh (1965) facilitated a foundation dealing with vague phenomena in fuzzy modeling. 
Nevertheless, the fuzzy mathematical foundation initiated by Zadeh (1965, 1978) is membership 
function and possibility measure based and widely used. The possibility measure was originally 
expected to play the role of probability measure in probability theory, but could not because it does 
not possess self-duality property as that in probability theory. 

The second issue is the variable-orientation issue. In standard probability theory, random 
variable and the distribution function play important roles for converting set-based arguments into 
variable-based arguments, which result in great conveniences in applications. Kaufmann (1975) first 
proposed the concept of fuzzy variable with the intention of creating its counterpart in probability 
theory. Unfortunately, Kaufmann’s fuzzy variable is in fact another name for a fuzzy subset, and 
the mathematical operations are difficult to handle. 

The third one is the membership specification issue. During almost four decades, fuzzy 
researchers have to specify membership function and set up the parameter values in terms of their 
own working experiences. Compared to the probabilistic counterpart, for random variable and its 
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distribution, very rich (data-oriented) statistical estimation and hypothesis testing theory have been 
developed. The fuzzy statistical theory developed very slowly, and its applications are difficult due 
to the set-oriented foundation. 

To resolve the three dilemmas, Liu (2004, 2007) proposed an axiomatic foundation for 
modelling fuzzy phenomena, credibility measure theory.  The credibility measure possesses self-
duality property and is able to play the role of that in probability theory. Furthermore, fuzzy 
variable concept and its (credibility) distribution, which are parallel to these in probability theory, 
are developed. 

Many set variable oriented fuzzy regression models were proposed: Tanaka et al. (1980, 
1982) initiated an approach of fuzzy regression which minimizes the fuzziness as an optimal 
criterion; Diamond (1987, 1988) used least-squared errors as a decision criterion; Interval 
regression oriented fuzzy regression model was also presented ( Dubois and Prade, 1980),(Kacprzyk 
and Fedrizzi, 1992). It is also noticed that there is variable treatment in fuzzy regression in terms of 
numerical valued approaches in terms of the usage of representative values, say, the fuzzy mode, 
the fuzzy average, the fuzzy median, or the mid-range of α -cut set of fuzzy membership function to 
specify the fuzzy subset. However the fundamental weakness of these numerical valued treatments 
on fuzzy subsets lies on the utilization of the partial information of the fuzzy subsets under study.  

In this paper, based on Liu’s (2004, 2007) classical credibility measure theory, i.e., ( , )Ъ Щ -
credibility measure theory, we develop a scalar variable oriented treatment in terms of an M-
estimation for the fuzzy regression coefficients, which leads to weighted least-squares formation.  

The structure of this paper is as follows. Section two is used for reviewing Liu’s credibility 
measure theory, defining the scalar fuzzy variable and further comparing Liu’s and Zadeh’s fuzzy 
theories. In Section 3, the M-function utilizing maximum membership grades is introduced and 
therefore, the M-estimators for regression coefficients are derived. In Section 4, the properties of 
regression coefficient M-estimators are investigated and in Section five, we propose asymptotic 
membership function under the assumptions of fuzzy errors being taken normal membership 
function, which will lead to asymptotic credibility distribution. In section 6, we explore the fuzzy 
regression formation when the sample data are taken from different memberships. Section 7 offers 
an extension to multiple regression treatment. Finally a few concluding remarks are offered in 
Section 8. 
 
2 A REVIEW ON CREDIBILITY MEASURE THEORY 
 

Let Θ  be a nonempty set, and 2Θ  the power set on Θ . A power set is the set class containing 
all the possible subsets of nonempty set Θ , i.e., { }2 :A AΘ = ⊂ Θ . It is obvious that a power set  2Θ  is 
the largest σ -algebra on Θ . Each element of a power set, say, A ⊂ Θ , 2A Θ∈  is called an event. A 
number denoted as { }Cr A , { }0 Cr 1A≤ ≤ , is assigned to an arbitrary event 2A Θ∈ , which indicates the 
credibility grade with which event 2A Θ∈  occurs. For any 2A Θ∈ , set function { }Cr A  satisfies 
following axioms (Liu, 2004, 2007): 

Axiom 1: { }Cr 1Θ = . 
Axiom 2: {}Cr ⋅ is non-decreasing, i.e., whenever A B⊂ , { } { }Cr CrA B≤ . 
Axiom 3: {}Cr ⋅  is self-dual, i.e., for any 2A Θ∈ , { } { }Cr Cr 1cA A+ = .  
Axiom 4: { } { }Cr 0.5 sup Cri i i

i
A A∧ = ⎡ ⎤⎣ ⎦U  for any { }iA  with { }Cr   0.5iA ≤ . 

Axiom 5: Let set functions {} [ ]Cr : 2 0,1k
k

QЧ ® satisfy Axioms 1-4, and 1 2 pΘ = Θ × Θ × × ΘL , then:  
{ }

{ } { } { }
1 2

1 1 2 2

Cr , , ,

Cr Cr Cr

p

p p= Щ Щ Щ

L

L

q q q

q q q
                                                          (1) 
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where { }1 2, , , 2p
QОLq q q . 

Definition 2.1: (Liu, 2004, 2007) Any set function [ ]Cr : 2 0,1Q ®  satisfies Axioms 1-4 is called 
a ( ),Ъ Щ -credibility measure (or simply a credibility measure). The triple ( ), 2 ,CrQQ  is called the 
credibility measure space. 

A credibility measure satisfies all the properties of uncertainty measure and also many of its 
own. For space limitation reason, we can only review minimal materials, but more technical details 
can be found in Liu (2007). 

Definition 2.2: (Liu, 2004, 2007) A fuzzy variable ξ  is a mapping from credibility space 
( ),2 ,CrQQ  to the set of real numbers, i.e., ( ): , 2 ,Crξ ΘΘ → R . 

We should be fully aware that on the credibility measure platform, a fuzzy variable is 
recorded as a real-valued number similar to that of a random variable. Definitely, similar to random 
variable, a real number as a realized value of a fuzzy variable has a distributional grade associated 
with it. 

Definition 2.3: (Liu, 2004, 2007) The credibility distribution [ ]: 0,1Λ →R  of a fuzzy variable 

ξ  on ( ),2 ,CrQQ  is: 

( ) ( ){ }Crx xθ ξ θΛ = ∈ Θ ≤                                                           (2) 
The credibility distribution ( )xΛ  is the accumulated credibility grade that the fuzzy variable 

ξ  takes a value less than or equal to a real-number x ∈ R . Generally speaking, the credibility 
distribution ( )Λ ⋅ is neither left-continuous nor right-continuous. What we will deal with is absolutely 
continuous fuzzy variables with continuous credibility density functions and thus poses no further 
restrictions on our developments. 

Definition 2.4: (Liu, 2004, 2007) Let ( )Λ ⋅  be the credibility distribution of the fuzzy variable 
ξ . Then function  : [0, )λ → +∞R  of a fuzzy variable ξ  is called a credibility density function such 
that, 

( ) ( )d ,
x

x y y xλ
−∞

Λ = ∀ ∈∫ R                                                           (3) 
The axiomatic credibility measure foundation is the starting point of Liu’s fuzzy theory, while 

the definition of a membership function is the fundamental starting point of Zadeh’s fuzzy set 
theory. Zadeh (1978) further proposed possibility measure based theoretical framework and 
expected the possibility measure could be a counterpart of probability measure, nevertheless, Zadeh 
failed his own mission. Table 1 offers comparisons between the two fuzzy theories: 
 

Table 1. Comparison between Zadeh’s and Liu’s Fuzzy Theories 
 
Item Zadeh’s Liu’s 
Cornerstone concept Possibility measure {}Poss ⋅  Credibility measure {}Cr ⋅  
Axiomatic Foundation No Yes, four axioms 
Membership Initial concept [ ]: 0,1Aμ Θ →  Induced ( ) { }( )2Cr 1x xμ ξ= = ∧  
Measure space ( ), ,PossHQ %  ( ), 2 ,CrQQ  

Self-duality No, { } { }Poss Poss 1cA A+ ≠  Yes, { } { }Cr Cr 1cA A+ =  

Identical transmogrification No. For any fuzzy sets  
, ,A B C% %% , A B C= +% %% ; Does not 

imply B A C= −% %%  

Yes. For any fuzzy variables , ,η γ ζ%% % ,
η γ ζ= + %% % ; Does imply γ η ζ= − %% %  
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Item Zadeh’s Liu’s 
Link between two fuzzy theories ( ) { }( )2Cr 1x xμ ξ= = ∧  { } { } { }( )1Cr Poss Nec

2
B B B= −  

Membership Initially defined concept  
[ ]: 0,1Aμ Θ →  

Secondarily defined concept 
( ) { }( )2Cr 1x xμ ξ= = ∧  

 
The next definition describes membership in terms of Liu’s credibility measure, together with 

related theorems, a link between Zadeh’s membership-initiated fuzzy mathematics and Liu’s 
credibility measure-oriented fuzzy mathematics has been established in nature. The linkage 
definitely gives an intuitive understanding of Liu’s credibility measure concept and also paves the 
way of applying credibility measure in practices, particularly, for those who are familiar with 
membership function concept. 

Definition 2.5: (Liu, 2004, 2007) The (induced) membership function of a fuzzy variable ξ  
on ( ),2 ,CrQQ  is: 

( ) { }( )2Cr 1,x x xμ ξ= = ∧ ∈ R                                                           (4) 
Conversely, for given membership function the credibility measure is determined by the 

credibility inversion theorem.  
Theorem 2.6: (Liu, 2004, 2007) Let ξ be a fuzzy variable with membership function m , then 

for B R" М , 

{ } ( ) ( )1Cr sup 1 sup ,
2 cx B x B

B x x Bξ μ μ
∈ ∈

⎛ ⎞∈ = + − ⊂⎜ ⎟
⎝ ⎠

R                                                           (5) 

As an example, if the set B is degenerated into a point x, then: 
{ } ( ) ( )1Cr 1 sup ,

2 y x
x x y xξ μ μ

≠

⎛ ⎞= = + − ∀ ∈⎜ ⎟
⎝ ⎠

R                                                           (6) 

Theorem 2.7: (Liu, 2004, 2007) Let ξ  be a fuzzy variable on ( ),2 ,CrQQ  with membership 
function μ. Then its credibility distribution, 

( ) ( ) ( )1 sup 1 sup ,
2 y x y x

x y y xμ μ
≤ >

⎛ ⎞Λ = + − ∀ ∈⎜ ⎟
⎝ ⎠

R                                                           (7) 

It is necessary to emphasize here that with or without membership function fuzzy phenomena 
in real world can be accurately described by the credibility measure models. Linking between 
credibility measure and membership plays role of bridging Zadeh’s fuzzy mathematics and the new 
axiomatic fuzzy theory and thus provides a conversion channel. 

It is critical to emphasize again at the end of this section that different from Zehad’s fuzzy set 
theory, the fuzzy variable on the Liu’s credibility measure foundation is scalar real-valued function 
characterized by its credibility distribution. Therefore, the mathematical treatment of fuzzy 
variables on the platform is easier than that based on fuzzy sets as variable in Zadeh’s fuzzy set 
theory.  
  
3 AN M-ESTIMATOR FOR REGRESSION COEFFICIENTS 
 

A fuzzy linear model describes a functional relationship containing fuzzy uncertainty. For 
simplicity, let us start with the simple fuzzy regression model: 

Y xα β ε= + +                                                           (8) 
where x  is exploratory (or independent or controllable) variable, Y is the fuzzy response (or 
dependent variable), ε  is a fuzzy error term with [ ]E 0ε = and [ ] 2V ε σ= .  Note that the expectation is 
taken with respect to the credibility distribution. Denote the empirical (or fitted) fuzzy linear 
regression of Y with respect to x  by 
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€Y a bx= +                                                           (9) 
where vector ( ),a b  is the estimate of regression coefficient vector ( ),α β . 

Let ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x YL  be a simple random sample. 1 2, , , nY Y YL denote the n observed 
response corresponding to 1 2, , , nx x xL . In (probabilistic) linear model theory, 2(0, )Nε σ  and iε and 

jε  are uncorrelated. Thus, ( )2,i i iY N xα β σ+  and iY and jY  are uncorrelated too.    
From the credibilistic point of view, the universe should facilitate the error events. 

Mathematically 
( ){ }| , 1, 2, ,i i i iY x i nε ε α βΘ = = − + = L                                                           (10) 

Let R%  be a fuzzy event defined on Θ , which connects to a fuzzy concept, {error is close to 
zero}, denoted by k=. A membership, denoted by ( )iRμ ε% , represents the degree of belongingness to 
the fuzzy concept k . Then the regression model fitting problem now becomes one of finding an 
empirical linear regression equation €Y a bx= +  based on the observations ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x YL  
such that the membership ( )iRμ ε%  is maximized. 

Now, it is ready to investigate the forms of M-functions for regression coefficients estimation. 
Let the residual take a membership function of form 

( )( ) ( )( )( )2
i i i iY a bx g Y a bxεμ − + = − − +                                                           (11) 

where ()g Ч is a differentiable function with ( )g 0 1= , and ( )lim 0x g x® - Ґ = . 
The basic idea underlying the searching the coefficients is to maximize the membership grade 

for any individual observation pair ( ),i ix Y . Then for all n pairs of observations 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x YL , The sum of the membership grades should be maximized. In 

mathematical language, the object function 

( )( )
1

n

i i
i

Y a bxεμ
=

= − +∑J=                                                           (12) 

It is obvious that for any individual observation iY  the contribution to model goodness-of-fit 
is measured by the membership grade ( )εμ ⋅ . The closer the observed value iY  to the fitted 
value ( )€

i iY a bx= + , the nearer to membership grade of the difference, i.e., the error, ( )i i iY a bxε = − +%  
to 1, which implies that the degree of  fuzzy event iε%  belonging to concept k  is high. Therefore, it 
is reasonable to use the sum of all the membership grades of the n observations 1 2, , , nY Y YL , for 
measuring the overall degree of belongingness of observations 1 2, , , nY Y YL  . A typical membership 
function satisfying Equation (11) takes a normal form:  

( ) ( )( )( )2
expi i ig w Y a bx= - - +e                                                           (13) 

Now, we can define the M-functional equation system for fuzzy regression coefficients ( ),a b . 

Definition 3.1:  Given the differentiable membership function ( )( )( )2
i ig Y a bx− − + , which 

measures the degree of belongingness to empirical linear regression line €Y a bx= +  at observation 
pair ( ),i iY x , then the normal formed M-functional system based on the n observations 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x YL  takes the form 

( )( )( ) ( )( )

( )( )( ) ( )( )

2

1

2

1

0

0

n

i i i i
i

n

i i i i i
i

h Y a bx Y a bx

h Y a bx Y a bx x

=

=

⎧
− − + − + =⎪⎪

⎨
⎪ − − + − + =
⎪⎩

∑

∑
                                                          (14) 

where ( ) ( )'h x g x dg dx= = . 
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Theorem 3.2: Let a simple regression model Y xα β ε= + +  assumes a fuzzy error ε  

[ ] [ ] 2E 0  & Vε ε σ= = and membership function ( )( )( )2
i ig Y a bx− − + . For given n-pair independent 

observations ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x YL , a general M-estimator of the coefficients for fitted regression 
€Y a bx= + , ( ),a b  is the solution to the general M-function equation system Equation (14). 

Furthermore, the M-estimator ( ),a b  takes a weighted least-square estimator form as 

( )( )( )( )( )

( )( )( )( )

2

1

2 2

1

                                         

n

i i i h i h
i

n

i i i h
i

h h

h Y a bx x x Y Y
b

h Y a bx x x

a Y bx

=

=

⎧ − − + − −⎪
⎪ =⎪
⎨ − − + −⎪
⎪

= −⎪⎩

∑

∑                                                           (15) 

where 
( )( )( )

( )( )( )
( )( )( )

( )( )( )

2

21

1

2

21

1

n i i

h in
i

i i
i

n i i

h in
i

i i
i

h Y a bx
x x

h Y a bx

h Y a bx
Y Y

h Y a bx

=

=

=

=

− − +
=

− − +

− − +
=

− − +

∑
∑

∑
∑

                                                          (16) 

Theorem 3.2 is easy to prove by expanding the left side terms of Equation (14), re-arrange 
them, utilizing Equation (16) for obtaining Equation (15). 
Let 

1 1 1

2 2 2

1 0 0
1 0 0

,  ,  

1 0 0n n n

Y x d
Y x d

Y X D

Y x d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

L

M M M M M O M

L

                                                          (17) 

where  ( )( )( )2
,  1, ,i i id h Y a bx i n= - - + = L . Further, let 

1

21

1 0 0
0 1 0

,  

0 0 1 n

d
da

W D
b

d

−

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥Γ = = =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

L

L

M M O M

L

                                                          (18) 

Then, the M-functional equation system Equation (14) can be re-written in a matrix form: 
1 1T TX W X X W Y− −Γ =                                                           (19) 

Equation (19) takes the weighted least-squares normal equation form in statistical linear 
model theory. However, the weighted least-squares formation of the M-functional equation system 
of Equation (14) will help further mathematical treatments. For example, Equation (15) can be re-
expressed in matrix form: 

( ) 11 1T TX W X X W Y
−− −Γ =                                                           (20) 

as long as the inverse matrix exists. 
Example 3.3: Let then membership function g  take a normal form: 

( )( )( )
( )( )( )

2

2
exp

g Y a bx

w Y a bx

− − +

= − − +
                                                          (21) 

Then the derivative of membership function 
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( )( )( )
( )( )( )

2

2
exp

h w Y a bx

w Y a bx

− − +

= − − +
                                                          (22) 

The factor w is sample-dependent and can be defined by 

max min

2w
d d

=
−

                                                          (23) 

where 

{ }
( )( ){ }

{ }
( )( ){ }

2
max 1,2, ,

2
min 1,2, ,

max

min

i ii n

i ii n

d Y a bx

d Y a bx

∈

∈

= − +

= − +

L

L

                                                          (24) 

Then the M-estimators for regression coefficients are 

( )( )( )( )( )

( )( )( ) ( )

2

1

2 2

1

exp

exp

                                          

n

i i i i
i

n

i i i
i

w Y a bx x x Y Y
b

w Y a bx x x

a Y bx

∞ ∞
=

∞
=

∞ ∞

⎧ − − + − −⎪
⎪ =⎪
⎨ − − + −⎪
⎪

= −⎪⎩

∑

∑                                                           (25) 

where 
( )( )( )

( )( )( )
( )( )( )

( )( )( )

2

21

1

2

21

1

exp

exp

exp

exp

n i i

in
i

i i
i

n i i

in
i

i i
i

w Y a bx
x x

w Y a bx

w Y a bx
Y Y

w Y a bx

∞
=

=

∞
=

=

− − +
=

− − +

− − +
=

− − +

∑
∑

∑
∑

                                                          (26) 

 
4 PROPERTIES OF THE M-ESTIMATORS 
 

It should be emphasized at the beginning of this section that the issue of properties of 
estimator of fuzzy regression coefficients was not really deeply explored. Furthermore, it should be 
also fully aware that the issue of variance-covariance structure of regression coefficient estimators 
in statistical linear model is a standard exercise, however, in fuzzy regression developed so far, 
most of the modeling exercises stopped at obtaining the estimators of regression coefficients. These 
difficulties rooted in the set-level variable treatments in Zadeh’s fuzzy set theory.  

Lemma 4.1: M-Estimator b  is a linear function of observations { }, , , nY Y Y1 2 L . In other words, 

1

n

i i
i

b Yκ
=

= ∑                                                           (27) 

where 
( )( )( )( )

( )( )( )( )

2

2 2

1

,   1,2, ,
i i i h

i n

i i i h
i

h Y a bx x x
i n

h Y a bx x x
κ

=

− − + −
= =

− − + −∑
L                                                           (28) 

The proof of Lemma 4.1 is a straightforward manipulation of Equation (18). 
Theorem 4.2: M-Estimator for the regression coefficients ( ),α β , denoted as ( ),a b , are 

(conditionally) unbiased. In other words, 
[ ] [ ]E ,   Ea bα β= =                                                           (29) 
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The proof is a straightforward task by noticing that 
1

0
n

i
i

k
=

=е and 
1

1
n

i
i

k
=

=е . Furthermore, we should 

notice that ik  is conditionally on the roots of M-function equation system. 
Theorem 4.3: The estimated variance-covariance matrix of the regression coefficient M-

estimators is given by 
[ ] ( ) [ ] ( )€

T
T T TV s X W X X V Y W X X W X

− −− − −⎡ ⎤Γ = ⎢ ⎥⎣ ⎦
1 12 1 1 1

0
                                                          (30) 

where 

( )( )( ) ( )( )2 22

1

1
2

n

i i i i
i

s h Y a bx Y a bx
n =

= − − + − +
− ∑                                                           (31) 

The proof is a matrix manipulation. 
Let 

[ ]
( ) ( )

( ) ( )
€€ €€ € ,

€
€ €€€ €,

V
σ α σ α β

σ α β σ β

⎡ ⎤
⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥⎣ ⎦

2

0
2

                                                          (32) 

Corollary 4.4: The estimated variances for the regression coefficient M-estimators a  and b  
respectively are 

( ) ( )( )( )

( )( )( )
( )( )( )
( )( )( )

( )( )( ) ( )

2
22 2

1

2
2 2

22 1

21

1

2 2

1

€
n

i i
i

n

i i in
i

i i in
i

i i i
i

n

i i i h
i

a s h Y a bx

h Y a bx x
h Y a bx x

h Y a bx x

h Y a bx x x

σ
=

=

=

=

=

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦

⎛ ⎞− − +⎜ ⎟
⎜ ⎟− − + −
⎜ ⎟− − +⎜ ⎟
⎝ ⎠×

− − + −

∑

∑
∑

∑

∑

                                                          (33) 

and 

( )
( )( )( )( )

( )( )( )( )
€

n

i i i h
i

n

i i i h
i

h Y a bx x x
b s

h Y a bx x x
σ =

=

− − + −
=

− − + −

∑

∑

2 22

2 2 1

2 2

1

                                                          (34) 

Furthermore, the correlation between the regression coefficient M-estimators a  and b  is 

( )
( )( )( ) ( )( )( )( )

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( )

€ ,
n n

i i i i i g
i i

n n n

i i i i i i i i
i i i

n n

i i i i i i
i i

i i i
i

sa b
h Y a bx h Y a bx x x

h Y a bx x h Y a bx h Y a bx x

h Y a bx x h Y a bx x

h Y a bx x

σ

= =

= = =

= =

= ×
⎡ ⎤

− − + − − + −⎢ ⎥
⎣ ⎦

⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − − + × − − + × − − +⎢ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣

⎛ ⎞ ⎛ ⎞
+ − − + × − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ − − +

∑ ∑

∑ ∑ ∑

∑ ∑

2

2
22 2

1 1

2 2 22 2

1 1 1

2
2 22

1 1

2 2 ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

n n n

i i i i i
i i

n n n

i i i i i i i i
i i i

h Y a bx x h Y a bx

h Y a bx x h Y a bx x h Y a bx

= = =

= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× − − + × − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − − + × − − + × − − + ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦

∑ ∑ ∑

∑ ∑ ∑

2 22

1 1 1

2 2 22 2

1 1 1

                                      (35) 

Theorem 4.5: The estimated correlation coefficient for regression model Y xα β ε= + + is 

( )( )( )( )( )

( )( )( )( ) ( )( )( )( )

n

i i i h i h
i

n n

i i i h i i i h
i i

h Y a bx x x Y Y
r

h Y a bx x x h Y a bx Y Y

=

= =

− − + − −
=

⎛ ⎞ ⎛ ⎞
− − + − × − − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑ ∑

2

1

22 22

1 1

                                          (36) 

Note here that accurately, we should say the correlation coefficient between X  and Y . 
However, in the fuzzy regression model assumptions ix  are clearly assumed to be certain real-
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valued number. Therefore, in Theorem 4.5, which gives the formula for r , r  reveals the 
association between random variateY  and exploratory variable x  and thus is regarded as an 
inherent index to the regression. 
 
5 ASYMPTOTIC MEMBERSHIP FOR M-ESTIMATOR 
 

It would be difficult task to discuss the asymptotic membership for coefficient estimators if 
we assume the membership function ( )( )( )2

g Y a bx- - +  takes very general form. Nevertheless, if the 

normal membership function is assumed, then the discussions will be slightly simplified. 
Theorem 5.1: Let membership function for residual error takes normal form 

( ) ( )( )( )2
exp w Y a bxm e = - - +                                                           (37) 

Then the asymptotic membership function for ( )a a-  is 

( )( )
( )

2

2
exp

€
a

vv w
a

am
s

-

ж цж цчз чз ччз з ччз® - з ччз з ччз з ччз чз и ши ш
                                                          (38) 

and the asymptotic membership function for ( )b b-  is  

( )( )
( )

2

2
exp

€
b

uu w
b

bm
s

-

ж цж цчз чз ччз з ччз® - з ччз з ччз з ччз чз и ши ш
                                                          (39) 

where ( )2€ as  and ( )2€ bs  are given in Theorem 4.4 respectively.  
Theorem 5.2: The asymptotic joint membership function for vector 

a
b

a
b

ж ц- чз чз чз чз -и ш
                                                          (40) 

is 

( )
1

€, exp
T

a
b

u a u
u v w V

v b va
b

m
-

ж ц- чз чз чз ччз -и ш

ж цй щж ц ж ц ж цчз ч ч ччз з зз к ъч ч чч® - з з зз ч ч ччк ъз з зз ч ч чз з з чи ш и ш и шчз л ыи ш
                                                          (41) 

Due to the feature that a normal form membership function only requires first two moments 
(mean and variance), therefore, utilizing the mean-variance information from Section 4 it is 
reasonable to establish the asymptotic membership function for a a- , b b- , and their bivariate 
joint asymptotic membership function. Once an asymptotic membership function is found the 
asymptotic credibility distribution can be easily derived in terms of Equation (7). 
 
6 AN EXTENSION TO MULTI-MEMBERSHIP ERRORS 
 

The M-estimation to the simple fuzzy regression lies on assuming that the errors have the 
same credibility distribution, or equivalently, the same membership function. However, we can 
extend our treatments into the case that error terms comes from multiple credibility distributions. 
Let a sample be ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x YL , which is assumed from multiple membership functions, 
i.e., 

( ) ( )( )( )2
i i i i ig w Y a bxm e = - - +                                                           (42) 

Then, the optimization criterion is still to maximize the total membership grades: 

( )( )( )2

1

n

i i i
i

g w Y a bx
=

= - - +еJ=                                                           (43) 
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and the M-functional equation system 

( )( )( ) ( )( )

( )( )( ) ( )( )

2

1

2

1

0

0

n

i i i i
i

n

i i i i i
i

w h w Y a bx Y a bx

w h w Y a bx Y a bx x

=

=

мпп - - + - + =пппнпп - - + - + =пппо

е

е
                                                          (44) 

Theorem 6.1: A general M-estimator of the coefficients for fitted regression €Y a bx= + , ( ),a b  
is the solution to the general M-function equation system Equation (43). Furthermore, the M-
estimator ( ),a b  takes a weighted least-square estimator form as 

( )( )( )( )( )

( )( )( )( )

2

1

2 2

1

                                          

n

i i i i h i h
i

n

i i i i h
i

h h

h w Y a bx x x Y Y
b

h w Y a bx x x

a Y bx

=

=

⎧ − − + − −⎪
⎪ =⎪
⎨ − − + −⎪
⎪

= −⎪⎩

∑

∑                                                           (45) 

where 
( )( )( )

( )( )( )
( )( )( )

( )( )( )

2

21

1

2

21

1

n i i i

h in
i

i i i
i

n i i i

h in
i

i i i
i

h w Y a bx
x x

h w Y a bx

h w Y a bx
Y Y

h w Y a bx

=

=

=

=

− − +
=

− − +

− − +
=

− − +

∑
∑

∑
∑

                                                          (46) 

However, we should notice that the matrix form of M-functional equation system, i.e., the 
weighted least-squares formed normal equation will be similar but we need take care of the 
variance-covariance matrix since the model assumption is changed to, 

( ) ( ) ( )2E 0 & ,  E 0i i i i jVe e s e e= = =                                                           (47) 
The remaining investigations can be carried on in a similar way but the error variance-covariance 
matrix needs care. 
  
7 AN EXTENSION TO MULTIPLE FUZZY REGRESSION 
 

 Let us assume that the response variable Y  functionally related to p exploratory variables, 
1 2, , , px x xL . Let ( ){ }1, , , ,  1, ,i i piY x x i n=L L  be the sample observations have model assumptions: 

0

2

0

0 0

E 0 

E 0

p

i ik
k

p

i ik i
k

p p

i ik j jk
k k

Y x

V Y x

Y x Y x

b

b s

b b

=

=

= =

ж цчз ч- =з чз чзи ш
ж цчз ч- =з чз чзи ш
ж цж цж цчз ч чз з чч чз - - =з з чч чзз з чч чз з чзи ши ши ш

е

е

е е

                                                          (48) 

Then the optimization criterion is 
2

1 1

pn

i i k ki
i k

g w Y xb
= =

ж цж ц чз чз чз ч= - - чзз ч чзз чз чи шчзи ш
е еJ=                                                           (49) 
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Let ( )0 1, , ,
T

pb b bG= L , then ( )0 1
€ € € €, , ,

T

pb b bG= L denotes the M-estimator of regression 
coefficients. The M-functional equation system is thus 

2

1 1 1

2

1
1 1 1

2

1

0

0

p pn

i i i k ki i k ki
i k k

p pn

i i i k ki i k ki i
i k k
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i i i i k ki
k

w h w Y x Y x
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= = =
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1 1

0
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i k ki pi
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Y x xb
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                                                     (50) 

Notice that the error variance-covariance matrix 
2
1

2
1

2

0 0
0 0

0 0 n

V

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

L

M M O M

L

                                                          (51) 

The matrix form – weighted least-squares normal equation is 
1 1T TX W X X W Y− −Γ =                                                           (52) 

where 
11 11 1

12 22 2

1

1 0 0
1 0 0

,  ,  

1 0 0

p

p

n pnn n

x xY d
x xY d

Y X D

x xY d

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

L L

L L

M M O MM M M O M

L L

                                                          (53) 

and 
2

1 2

1

diag
p

i i i k ki
k

W h w Y xσ β−

=

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑                                                           (54) 

Then the M-estimator for the multiple regression coefficients are 
( ) 11 1€ T TX W X X W Y

−− −Γ =                                                           (55) 
as long as the inverse matrix exists. 

The properties and the variance-covariance structure of €Gcould be investigated as that of 
weighted least-squares regression formality. 
 
8 CONCLUSION 
 

The major advantage of this paper is its scalar variable treatments of fuzzy observations 
because fuzzy variable concept is established on the credibility measure foundation. Therefore, we 
are able to propose an M-estimation approach for simple fuzzy regression model. The optimization 
criterion is minimizing the fuzzy uncertainty by seeking the fitted errors with the membership 
grades as large as possible. In this sense, our simple fuzzy regression has the similar optimization 
criterion as Tanaka et al. (1980, 1982). We notice that the M-functional equation system can be re-
written in weighted least-squares normal equation formation, which enables heavily to borrow 
arguments similar to statistical linear model theory. Finally, it is necessary to point out that in 
similar manner, the M-functional equation system could be defined for fuzzy multivariate 
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regression model.   
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ABSTRACT 
 

Applications of multi-state approach to the reliability evaluation of systems composed of 
independent components are considered. The main emphasis is on multi-state systems with 
degrading components because of the importance of such an approach in safety analysis, 
assessment and prediction, and analysing the effectiveness of operation processes of real 
technical systems. The results concerned with multi-state series systems are applied to the 
reliability evaluation and risk function determination of a homogeneous bus transportation 
system. Results on homogeneous multi-state “m out of n” systems are applied to durability 
evaluation of a steel rope. A non-homogeneous series-parallel pipeline system composed of 
several lines of multi-state pipe segments is estimated as well. Moreover, the reliability 
evaluation of the model homogeneous multi-state parallel-series electrical energy 
distribution system is performed. 

 
 
 
1  INTRODUCTION 
 

Many technical systems belong to the class of complex systems as a result of the progressive 
ageing of components they are built of and their complicated operating processes. Taking into 
account the importance of the safety and operating process effectiveness of such systems it seems 
reasonable to expand the two-state approach to multi-state approach in their reliability analysis. 
These more general and practically important complex systems composed of multi-state 
components are considered among others in (Abouammoh & Al-Kadi 1991; Amari & Misra 1997; 
Aven 1985, 1993; Barlow & Wu 1978; Bausch 1987; Boedigheimer & Kapur 1994; Brunelle & 
Kapur 1999; Butler 1982; El-Neweihi, Proschan & Setchuraman 1978; Fardis & Cornel 1981; 
Griffith 1980; Huang, Zuo & Wu 2000; Hudson & Kapur 1982, 1983a, b, 1985, Kolowrocki 2004; 
Levitin Lisnianski, Haim & Elmakis 1998; Levitin & Lisnianski 1998, 1999, 2000a, b, 2001, 2003; 
Meng 1993; Natvig 1982, 1984; Ohio & Nishida 1984; Piasecki 1995; Polish Norm; Pourret, Collet 
& Bon 1999; Xue 1985; Xue & Yang 1995a, b; Yu, Koren & Guo 1994). An especially important 
role they play in the evaluation of technical systems reliability and safety and their operating 
process effectiveness is defined in the paper for systems with and degrading (ageing) in time 
components (Barlow & Wu 1978; Kolowrocki 2004; Xue 1985; Xue & Yang 1995a, b; Yu). The 
assumption that the systems are composed of multi-state components with reliability states 
degrading in time without repair gives the possibility for more precise analysis of their reliability, 
safety and operational processes’ effectiveness. This assumption allows us to distinguish a system 
reliability critical state to exceed which is either dangerous for the environment or does not assure 
the necessary level of its operational process effectiveness. Then, an important system reliability 
characteristic is the time to the moment of exceeding the system reliability critical state and its 
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distribution, which is called the system risk function. This distribution is strictly related to the 
system multi-state reliability function that is a basic characteristic of the multi-state system.  
 
2 MULTI-STATE RELIABILITY ANALYSIS 
 

In the multi-state reliability analysis to define systems with degrading components we assume 
that:  
–Ei, i = 1,2,...,n, are components of a system,  
– all components and a system under consideration have the state set {0,1,...,z}, ,1≥z  
– the state indexes are ordered, the state 0 is the worst and the state z is the best,  
– Ti(u),  i = 1,2,...,n,  are independent random variables representing the lifetimes of components Ei 

in the state subset {u,u+1,...,z}, while they were in the state z at the  moment t = 0,   
– T(u) is a random variable representing the lifetime of a system in the state subset {u,u+1,...,z} 

while it was in the state z at the moment t = 0, 
– the system state degrades with time t without repair, 
– ei(t) is a component Ei state at the moment t, ),,0 ∞∈<t     
– s(t) is a system state at the moment t, ).,0 ∞∈<t   
The above assumptions mean that the states of the system with degrading components may be 
changed in time only from better to worse. The way in which the components and the system states 
change is illustrated in Figure 1.  
 
                                                                        transitions 

 
 
 
 

  
 
                         worst state                                                 best state 

               Figure 1. Illustration of states changing in system with ageing components. 
 
Definition 1. A vector   
 

Ri(t ⋅, ) = [Ri(t,0), Ri(t,1),..., Ri(t,z)], ),,0 ∞∈<t  
 
where   
 

Ri(t,u) = P(ei(t) ≥ u | ei(0) = z) = P(Ti(u) > t) 
 
for ),,,0 ∞∈<t  u = 0,1,...,z, i = 1,2,...,n, is the probability that the component Ei is in the state subset 

},...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  while it was in the state z at the moment t = 0, is called 
the multi-state reliability function of a component Ei.  
 
Definition 2. A vector     
 

Rn(t ⋅, ) = [Rn(t,0), Rn(t,1),..., Rn(t,z)], ),,0 ∞∈<t  
 
where  

 
 
 

 
                                              u-1    0    1    u    z-1    z

     . . .     . . .
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                                            Rn(t,u) = P(s(t) ≥ u | s(0) = z) = P(T(u) > t)                                       (1) 
 
for ),,0 ∞∈<t  u = 0,1,...,z, is the probability that the system is in the state subset },...,1,{ zuu +  at 
the moment t, ),,0 ∞∈<t  while it was in the state z at the moment t = 0, is called the multi-state 
reliability function of a system.  
 
Under this definition we have    
 

Rn(t,0) ≥ Rn(t,1) ≥ . . . ≥ Rn(t,z), ),,0 ∞∈<t  
 

and if    
 

p(t,u) = P(s(t) = u | s(0) = z), ),,0 ∞∈<t  
 
for u = 0,1,...,z, is the probability that the system is in the state u at the moment t, ),,0 ∞∈<t  while it 
was in the state z at the moment t = 0, then   
 
                                                 Rn(t,0) = 1, Rn(t,z) = p(t,z), ),,0 ∞∈<t                                          (2) 
 
and  
 
                                    p(t,u) = Rn(t,u) – Rn ),1,( +ut  ),,0 ∞∈<t  for .,...,1,0 zu =                            (3) 
 
                                                      
Moreover, if  
 

Rn(t,u) = 1 for t ≤ 0, u = 1,2,...,z, 
 
then      
 
                                                      M(u) = ∫

∞

0
Rn(t,u)dt, u = 1,2,...,z,                                             (4) 

 
is the mean lifetime of the system in the state subset },,...,1,{ zuu +    
 

                                                     
2)]([)()( uMuNu −=σ , u = 1,2,...,z,                                        (5) 

 
where   
 

                                                        
∫=
∞

0
2)( tuN Rn(t,u)dt, u = 1,2,...,z,                                           (6) 

 
is the standard deviation of the system sojourn time in the state subset },...,1,{ zuu +  and moreover    
 
                                                      )(uM = ∫

∞

0
,),( dtutp  u = 1,2,...,z,                                                (7) 
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is the mean lifetime of the system in the state u while the integrals (4), (6) and (7) are convergent.  
Additionally, according to (3), (4) and (7), we get the following relationship  
 
                                  ),1()()( +−= uMuMuM  ,1,...,1,0 −= zu  ).()( zMzM =                                  (8) 
 
Definition 3. A probability  
 

r(t) = P(s(t) < r | s(0) = z) = P(T(r) ≤ t), ),,0 ∞∈<t  
 

that the system is in the subset of states worse than the critical state r, r ∈{1,...,z} while it was in the 
state z at the moment t = 0 is called a risk function of the multi-state system or, in short, a risk.   
 
Under this definition, from (1), for ),,0 ∞∈<t  we have     
 
                                               r(t) = −1  P(s(t) ≥ r | s(0) = z) = −1  Rn(t,r),                                     (9) 
 
and if τ is the moment when the risk exceeds a permitted level δ, then   
 
                                                                         =τ r ),(1 δ−                                                           (10) 
 
where r )(1 t− , if it exists, is the inverse function of the risk function r(t).  
 
3 BASIC MULTI-STATE RELIABILITY STRUCTURES 
 
3.1 Multi-state series system 
 

Definition 4. A multi-state system is called series if its lifetime T(u) in the state subset 
},...,1,{ zuu +  is given by  

 
T(u) = )}({min

1
uTini≤≤

, u = 1,2,...,z. 

 
The above definition means that a multi-state series system is in the state subset },...,1,{ zuu +  if 
and only if all its components are in this subset of states.  
It is easy to work out the following results.  
 
Corollary 1. The reliability function of the multi-state series system is given by    
 

),( ⋅tnR  = [1, )1,(tnR ,..., ),( ztnR ], 
 
where   
 

),( utnR  = ∏
=

n

i
i utR

1
),( , ),,0 ∞∈<t  u = 1,2,...,z. 

 
Corollary 2. If the multi-state series system is homogeneous, i.e. if  
 

),(),( utRutRi =  for  ),,0 ∞∈<t  u = 1,2,...,z, ,,...,2,1 ni =  
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then its reliability function is given by    
 

),( ⋅tnR  = [1, )1,(tnR ,..., ),( ztnR ], 
 
where   

),( utnR  = nutR )],([  for ),,0 ∞∈<t  u = 1,2,...,z. 
 
Example 1 (a bus transportation system). The city transportation system is composed of n, 

,1≥n buses necessary to perform its communication tasks. We assume that the bus lifetimes are 
independent random variables and that the system is operating in successive cycles (days) c = 1,2,... 
. In each of the cycles the following three operating phases of all components are distinguished:  
f1 – components waiting for inclusion in the operation process, lasting from the moment t0 up to the 

moment t1,  
f2 – components’ activation for the operation process, lasting from t1 up to t2,  
f3 – components operating, lasting from t2 up to  t3 = t0.  
Each of the system components during the waiting phase may be damaged because of the 
circumstances at the stoppage place. We assume that the probability that at the end moment t1 of the 
first phase the ith component is not failed is equal to )1(

ip , where 10 )1( ≤≤ ip , ni ,...,2,1= . Since 
component lifetimes are independent then the system availability at the end moment t1 of phase f1 is 
given by  
 

                                                                           
.

1

)1()1( ∏=
=

n

i
ipp                                                       (11) 

 
In the activation phase f2 system components are prepared for the operation process by the service. 
They are checked and small flaws are removed. Sometimes the flaws cannot be removed and 
particular components are not prepared to fulfill their tasks. We assume that the probability that at 
the end moment t2 of the first phase the ith component is not failed is equal to )2(

ip , where 
10 )2( ≤≤ ip , .,...,2,1 ni =  Since component lifetimes are independent then the system availability at 

the end moment t2 of the phase f2 is given by   
 

                                                                            
.

1

)2()2( ∏=
=

n

i
ipp

   
                                                (12) 

 
Thus, finally, the system availability after two phases is given by   
 

                                                                       ,)2()1()2,1( ppp ⋅=                                                    (13) 
 
where p(1) and  p(2) are defined respectively by (11) and (12).  
In the operating phase f3, during the time 234 ttt −= , each of the system components is performing 
one of two tasks:  

1z − a first task  (working at normal communication conditions),  

2z − a second task (working at a communication peak),  
with probabilities respectively equal to 1r and 2r , where 10 1 ≤≤ r , r2 

 = 1 – r1. 
Let  
 

R )1( (t ⋅, ) = [1,R )1( (t,1),R )1( (t,2)], 
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where  
 

1),()1( =utR  for t < 0, 
 

]
515

1exp[),()1( t
u

utR
−

−=  for t ≥ 0, u = 1,2, 

 
be the reliability function of the ith component during performance of task 1z  and         
 

R )2( (t ⋅, ) = [1,R )2( (t,1),R )2( (t,2)], 
 
where  
 

1),()2( =utR  for t < 0, 
 

]
210

1exp[),()2( t
u

utR
−

−=  for t ≥ 0, u = 1,2, 

 
be the reliability function of the ith component during performance of task .2z   
Thus, by Definition 4, the considered transportation system is a homogeneous three-state series 
system and according to the formula for total probability, after applying Corollary 2, we conclude 
that     
 

),( ⋅tnR  = [1, )1,(tnR , )2,(tnR ], 
 
where 
 

1)1,( =tnR  for t < 0, 
 

                                      )1,(tnR ]
210

exp[]
515

exp[ 21 t
u

nrt
u

nr
−

−+
−

−=  for t ≥ 0, u = 1,2,             (14) 

 
is the reliability function of the system performing two tasks.  
The mean values of the system lifetimes T(u) in the state subsets, according to (4), are:  
 

M(u) = E[T(u)] =
n

urur )210()515( 21 −+−  for u = 1,2. 

 
If we assume that  
 

n = 30, r1 = 0.8, r2 = 0.2, 
 
then from (14), we get   
 
                            =⋅),(30 tR [1, 0.8exp[−3t]+0.2exp[-3.75t]+0.8exp[−6t]+0.2exp[-5t]] for t ≥ 0   (15) 
 
and  
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M(1) ≅ 0.32, M(2) ≅ 0.17. 

 
Thus, considering (8), the expected values of the sojourn times in the particular states are:  
 

)1(M  ≅ 0.15, )2(M  ≅ 0.17. 
 
If a critical state is r = 1, then according to (9), the system risk function is given by      
 

r(t) = 1 − 0.8exp[−3t]+0.2exp[-3.75t] for t ≥ 0. 
 
The moment when the system risk exceeds a permitted level δ  = 0.05, according to (10), is  
 

τ = r−1(δ) ≅ 0.016 years ≅ 6 days. 
 

At the end moment of the system activation phase, which is simultaneously the starting moment of 
the system operating phase t2 the system is able to perform its tasks with the probability )2,1(p  
defined by (13). Therefore, after applying the formula (15), we conclude that the system reliability 
in c cycles, c = 1,2,…, is given by the following formula   
 

G(c,⋅) = [1, )2,1(p 0.8exp[−3ct4]+0.2exp[-3.75 ct4], )2,1(p 0.8exp[−6 ct4]+0.2exp[-5 ct4]], 
 
where t4 = t3 – t2 is the time duration of the system operating phase f3. Further, assuming for 
instance   
 

)2,1(p = =⋅= 99.099.0)2()1( pp 0.98, 
 

t4 = 18 hours = 0.002055 years 
 
for the number of cycles c = 7 days = 1 week, we get  

 
G(7,⋅) ≅ [1, 0.966, 0.902]. 

 
This result means that during 7 days the considered transportation system will be able to perform its 
tasks in state not worse than the first state with probability 0.966, whereas it will be able to perform 
its tasks in the second state with probability 0.902.  
 
3.2. Multi-state parallel system 
 
Definition 5. A multi-state system is called parallel if its lifetime T(u) in the state subset 

},...,1,{ zuu +  is given by  
 

T(u) = )}({max
1

uTini≤≤
, u = 1,2,...,z. 

 
The above definition means that the multi-state parallel system is in the state subset },...,1,{ zuu +  if 
and only if at least one of its components is in this subset of states.  
 
Corollary 3. The reliability function of the multi-state parallel system is given by  
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Rn(t ⋅, ) = [1, Rn(t,1),..., Rn(t,z)], 

 
where   
 

Rn(t,u) = −1  ∏
=

n

i
i utF

1
),( , ),,0 ∞∈<t  u = 1,2,...,z. 

 
Corollary 4. If the multi-state parallel system is homogeneous, i.e. if  
 

),(),( utRutRi =  for  ),,0 ∞∈<t  u = 1,2,...,z, ,,...,2,1 ni =  
 
then its reliability function is given by    
 

Rn(t ⋅, ) = [1, Rn(t,1),..., Rn(t,z)], 
 
where   
 

Rn(t,u) = −1  nutF )],([  for ),,0 ∞∈<t  u = 1,2,...,z. 
 

3.3. Multi-state “m out of n” system 
 

Definition 6. A multi-state system is called an “m out of n” system if its lifetime T(u) in the 
state subset },...,1,{ zuu +  is given by    
 

T(u) = ),()1( uT mn +− m = 1,2,...,n, u = 1,2,...,z, 
 
where )()1( uT mn +−  is the mth maximal order statistic in the sequence of the component lifetimes   
 

1T (u), 2T (u),..., nT (u). 
 
The above definition means that the multi-state „m out of n” system is in the state subset 

},...,1,{ zuu +  if and only if at least m  out of its n  components are in this state subset; and it is a 
multi-state parallel system if m = 1 and it is a multi-state series system if m = n.  
 
Corollary 5. The reliability function of the multi-state “m out of n” system is given either by    
 

R )(m
n (t ⋅, ) = [1, R )(m

n (t,1),..., R )(m
n (t,z)], 

 
where   
 

R ∑−=
−≤+++

=

−1

1...21
0,...,2,1

1)( )],([)],([1),(
mnrrr

nrrr

ir
i

ir
i

m
n utFutRut for ),,0 ∞∈<t  u = 1,2,...,z, or by 

 
),()( ⋅tm

nR  = [1, ),1,()( tm
nR ..., ),()( ztm

nR ], 
 
where  
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∑=

≤+++
=

−1

...21
0,...,2,1

1)( )],([)],([),(
mnrrr

nrrr

ir
i

ir
i

m
n utRutFutR for ),,0 ∞∈<t  ,mnm −=  u = 1,2,...,z.

 
 

Corollary 6. If the multi-state “m out of n” system is homogeneous, i.e. if  
 

),(),( utRutRi =  for  ),,0 ∞∈<t  u = 1,2,...,z, ,,...,2,1 ni =  
 

then its reliability function is given by    
 

R )(m
n (t ⋅, ) = [1, R )(m

n (t,1),..., R )(m
n (t,z)], 

 
where   
 

R ∑−=
−

=

−
1

0

)( )],([],([1),(
m

k

knkm
n utFutRut  for ),,0 ∞∈<t  u = 1,2,...,z, or by 

 
),()( ⋅tm

nR  = [1, ),1,()( tm
nR ..., ),()( ztm

nR ], 
 
where  
 

∑=
=

−
m

k

knkm
n utRutFut

0

)( )],([)],([),(R for ),,0 ∞∈<t  ,mnm −=  u = 1,2,...,z. 

 
Example 2 (a three-stratum rope, durability). Let us consider the steel rope of type M-80-200-10 
described in [36]. It is a three-stratum rope composed of 36 strands: 18 outer strands, 12 inner 
strands and 6 more inner strands. All strands consist of seven still wires. The rope cross-section is 
presented in Figure 2.  
 

 
 
 
 
 
 
 

 
 

 
                             Figure 2. The steel rope M-80-200-10 cross-section 

 
Considering the strands as basic components we conclude that the rope is a system composed of 

36=n  components (strands). Due to [38] concerned with the evaluation of wear level, the 
following reliability states of the strands are distinguished: 
state 3 – a strand is new, without any defects,   
state 2 – the number of broken wires in the strand is greater than 0% and less than 25% of all its 
wires, or corrosion of wires is greater than 0% and less than 25%, abrasion is up to 25% and strain 
is up to 50%, 
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state 1 – the number of broken wires in the strand is greater than or equal to 25% and less than 50% 
of all its wires, or corrosion of wires is greater than or equal to 25% and less than 50%, abrasion is 
up to 50% and strain is up to 50%, 
state 0 – otherwise (a strand is failed).  
Thus, the considered steel rope composed of n = 36 four-state, i.e. z = 3. Let us assume that the rope 
strands have identical exponential reliability functions with transitions rates between the state 
subsets        

 
)(uλ = 0.2u/year, u = 1,2,3. 

 
Assuming that the rope is in the state subset },...,1,{ zuu +  if at least m = 10 of its wires are in this 
state subset, according to Definition 6, we conclude the rope is a homogeneous four-state “10 out of 
36” system. Thus, by Corollary 6, its reliability function is given by    
 
                                             R ),()10(

36 ⋅t  = [1, R ),1,()10(
36 t  R ),2,()10(

36 t  R )3,()10(
36 t ],                                (16) 

 
where    
 

R )1,()10(
36 t  = 1 for t < 0, 

 
R )1,()10(

36 t = ( ) i

i
i tti −

=
−−−∑− 369

0

36 ]]2.0exp[1][2.0exp[1   for ,0≥t  

 
R )2,()10(

36 t  = 1 for t < 0, 
 

R )2,()10(
36 t = ( ) i

i
i tti −

=
−−−∑− 369

0

36 ]]4.0exp[1][4.0exp[1  for ,0≥t  

 
R )3,()10(

36 t  = 1 for t < 0, 
 

R )3,()10(
36 t = ( ) i

i
i tti −

=
−−−∑− 369

0

36 ]]6.0exp[1][6.0exp[1  for .0≥t  

 
By (16), the approximate mean values of the rope lifetimes T(u) in the state subsets and their 
standard deviations in years are:  
 

M(1) ≅ 6.66, M(2) ≅ 3.33, M(3) ≅ 2.22, 
 

σ(1) ≅ 1.62, σ(2) ≅ 0.81, σ(3) ≅ 0.54, 
 
whereas, the approximate mean values of the rope lifetimes in the particular reliability states are:  

 
)1(M  ≅ 3.33, )2(M  ≅ 1.11, )3(M  ≅ 2.22. 

 
If the critical state is r = 2, then the rope risk function is approximately given by  
 

r(t) = ( ) i

i
i tti −

=
−−−∑ 369

0

36 ]]4.0exp[1][4.0exp[  for .0≥t  
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The moment when the risk exceeds an admissible level δ  = 0.05, after applying (10), is    
 

τ ≅ 2.074 years. 
 
The behaviour of the rope system reliability function and its risk function are illustrated in Table 1.   
 

Table 1. The values of the still rope multi-state reliability function and risk function   

t  R )1,()10(
36 t R )2,()10(

36 t R )3,()10(
36 t r(t) 

0.2 1.00000 1.00000 1.00000 0.00000
0.6 1.00000 0.99998 0.99979 0.00002
1.0 0.99999 0.99961 0.99425 0.00039
1.4 0.99995 0.99641 0.94590 0.00359
1.8 0.99979 0.98014 0.77675 0.01986
2.2 0.99928 0.92792 0.49332 0.07208
2.6 0.99783 0.81520 0.23107 0.18480
3.0 0.99425 0.64221 0.08058 0.35779
3.4 0.98649 0.44415 0.02168 0.55585
3.8 0.97157 0.26782 0.00469 0.73218
4.2 0.94590 0.14130 0.00085 0.85870
4.6 0.90602 0.06584 0.00013 0.93416
5.0 0.84969 0.02742 0.00002 0.97258
5.4 0.77675 0.01034 0.00000 0.98966
5.8 0.68965 0.00357 0.00000 0.99643
6.2 0.59314 0.00114 0.00000 0.99886
6.6 0.49332 0.00034 0.00000 0.99966
7.0 0.39645 0.00010 0.00000 0.99990
7.4 0.30784 0.00003 0.00000 0.99997
7.8 0.23107 0.00001 0.00000 0.99999

 
3.4. Multi-state series-parallel system  
 

Other basic multi-state reliability structures with components degrading in time are series-
parallel and parallel-series systems. To define them, we assume that:  
– Eij, i = 1,2,...,k, j = 1,2,...,li, k, l1, l2,..., kl  ∈ N, are components of a system,  
– all components Eij have the same state set as before {0,1,...,z}, 
– Tij(u), i = 1,2,...,k, j = 1,2,...,li, k, l1, l2,..., kl  ∈ N, are independent random variables  representing 

the lifetimes of components  Eij  in  the state subset },,...,1,{ zuu +  while they  were  in the state z at 
the moment t = 0,  

– eij(t) is a component Eij state at the moment t, ),,0 ∞∈<t  while they were in the state z  at the 
moment t = 0. 

 
Definition 7. A vector    
 
                     Rij(t ⋅, ) = [Rij(t,0),Rij(t,1),...,Rij(t,z)] for ),,0 ∞∈<t  i = 1,2,...,k, j = 1,2,...,li,,  
 
where     
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Rij(t,u) = P(eij(t) ≥ u | eij(0) = z) = P(Tij(u) > t) 

 
for ),,0 ∞∈<t  u = 0,1,...,z, is the probability that the component Eij is in the state subset },...,1,{ zuu +  
at the moment t, ),,0 ∞∈<t  while it was in the state z at the moment t = 0, is called the multi-state 
reliability function of a component Eij.  
 
Definition 8. A multi-state system is called series-parallel if its lifetime T(u) in the state subset 

},...,1,{ zuu +  is given by    
 

T(u) = )}({min{max
11

uTij
iljki ≤≤≤≤

, u = 1,2,...,z. 

 
Corollary 7. The reliability function of the multi-state series-parallel system is given by   
 

R ),(,...,2,1, ⋅t
klllk  = [1,R )1,(,...,2,1, t

klllk ,...,R ),(,...,2,1, zt
klllk ], 

 
and    
 

R ),(,...,2,1, ut
klllk  = ∏∏ −−

==

il

j
ij

k

i
utR

11
)],(1[1  for ),,0 ∞∈<t  u = 1,2,...,z, 

 
where k is the number of series subsystems linked in parallel and li are the numbers of components 
in the series subsystems.     
 
Corollary 8. If the multi-state series-parallel system is homogeneous, i.e.  
 

),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z, i = 1,2,...,k, j = 1,2,...,li,, 
 
then its reliability function is given by    
 

R ),(,...,2,1, ⋅t
klllk  = [1,R )1,(,...,2,1, t

klllk ,...,R ),(,...,2,1, zt
klllk ], 

 
and    
 

R ),(,...,2,1, ut
klllk  = ])],([1[1

1

il
k

i
utR∏ −−

=
 for ),,0 ∞∈<t u = 1,2,...,z, 

 
where k is the number of series subsystems linked in parallel and li are the numbers of components 
in the series subsystems.     
Corollary 9. If the multi-state series-parallel system is homogeneous, i.e.  
 

),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z, i = 1,2,...,k, j = 1,2,...,li, 
 
and regular, i.e.  
 

l1 = l2 = . . . = kl = l, l ∈ N. 
 



Kolowrocki Krzysztof –  RELIABILITY AND RISK ANALYSIS OF MULTI‐STATE SYSTEMS WITH DEGRADING COMPONENTS 

 
R&RATA # 1 (12)  

(Vol.2) 2009, March 
 

 

- 98 - 

then its reliability function is given by    
 

R ),(, ⋅tlk  = [1,R )1,(, tlk ,...,R ),(, ztlk ], 
 
and    
 

R ),(, utlk  = klutR ])],([1[1 −−  for ),,0 ∞∈<t  u = 1,2,...,z, 
 
where k is the number of series subsystems linked in parallel and l is the number of components in 
the series subsystems.     
 
Example 3 (a pipeline system). Let us consider the pipeline system composed of k = 3 lines of pipe 
segments linked in parallel, each of them composed of l = 100 five-state identical segments linked 
in series. The scheme of the considered system is shown in Figure 3.  
 
 
 
         
 
 
 
 
Figure 3.  The model of a regular series-parallel pipeline system 
 
Considering pipe segments as basic components of the pipeline system, according to Definition 8, 
we conclude that it is a homogeneous regular five-state series-parallel system. Therefore, by 
Corollary 9, the pipeline system reliability function is given by     

 
R 100,3 (t,⋅) = [1,R ),1,(1000.3 t R ),2,(100,3 t R ),3,(100,3 t R )4,(100,3 t ], 

 
where    
 

R ),(100,3 ut  = 1 − [1 − [R(t,u) 3100 ]]  for t ∈ (−∞,∞),    u = 1,2,3,4. 
 

Taking into account pipe segment reliability data given in their technical certificates and expert 
opinions we assume that they have Weibull reliability functions    
 

R(t,⋅) = [1, ),1,(tR ),2,(tR ),3,(tR )4,(tR ], 
 

where   
 

R(t,u) = 1 for t < 0, 
 

R(t,u) = exp[ )()( utu αβ− ] for t ≥ 0, u = 1,2,3, 4, 
 
with the following parameters:   
 

,3)1( =α  ,00001.0)1( =β  
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,5.2)2( =α  ,0001.0)2( =β  

 
,2)3( =α  ,0016.0)3( =β  

 
,1)4( =α  .05.0)4( =β  

 
Hence it follows that the pipeline system exact reliability function is given by  
 

R3,100(t,⋅) = [1,1 − [1 − exp[−0.001t3]]3, 1 − [1 − exp[−0.01t5/2]]3, 1 − [1 − exp[−0.16t2]]3, 
 

                            1 − [1 − exp[−5t]]3] for t ≥ 0.                                                                           (17) 
 
By (17), the expected values M(u), u = 1,2,3,4, of the system sojourn times in the state subsets in 
years, calculated on the basis of the approximate formula are:   
 

M(1) = ])003.0()002.0(3)001.0(3)[3/4( 3/13/13/1 −−− +−Γ ≅ 11.72, 
 

M(2) = ])03.0()02.0(3)01.0(3)[5/7( 5/25/25/2 −−− +−Γ  ≅ 7.67, 
 

M(3) = ])48.0()32.0(3)16.0(3)[2/3( 2/12/12/1 −−− +−Γ  ≅ 3.23, 
 

M(4) = ])15()10(3)5(3)[2( 111 −−− +−Γ  ≅ 0.37. 
 
Hence, the system mean lifetimes )(uM  in particular states are: 
 

)1(M  ≅ 4.05, )2(M  ≅ 4.44, )3(M  ≅ 2.86, )4(M  ≅ 0.37. 
 

If the critical state is r = 2, then the system risk function, according (9), is given by    
 

r(t) = [1 − exp[−0.01t5/2]]3. 
 
The moment when the system risk exceeds an admissible level δ = 0.05, from (10), is   
 

τ  = r−1(δ) = 5/23 )]1log(100[ δ−−  ≅ 4.62. 
 
The behaviour of the system risk function is presented in Table 2 and Figure 4.   
                              Table 2. The values of the piping system risk function 

t r(t)
0.0 0.000 
1.5 0.000 
3.0 0.003 
4.5 0.043 
6.0 0.201 
7.5 0.485 
9.0 0.758 
10.5 0.918 
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12.0 0.980 
13.5 0.996 
15.0 1.000 

 

0

0,2

0,4

0,6

0,8

1

0 5 10 15 t

r (t )

 
Figure 4. The graph of the piping system risk function 
 
3.5. Multi-state parallel-series system 
 

Definition 9. A multi-state system is called parallel-series if its lifetime T(u) in the state subset  
},...,1,{ zuu +  is given by    

 
T(u) = )}({max{min

11
uTij

iljki ≤≤≤≤
, u = 1,2,...,z. 

 
Corollary 10. The reliability function of the multi-state parallel-series system is given by   
 

),(,...,2,1, ⋅t
klllkR =[1, )1,(,...,2,1, t

klllkR ,..., ),(,...,2,1, zt
klllkR ], 

 
and   
 

),(,...,2,1, ut
klllkR = ∏∏ −

==

il

j
ij

k

i
utF

11
)],(1[  for ),,0 ∞∈<t  u = 1,2,...,z, 

 
where k is the number of its parallel subsystems linked in series and li are the numbers of 
components in the parallel subsystems.      
 
Corollary 11. If the multi-state parallel-series system is homogeneous, i.e.  

 
),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z, i = 1,2,...,k, j = 1,2,...,li, 

 
then its reliability function is given by    
 

),(,...,2,1, ⋅t
klllkR =[1, )1,(,...,2,1, t

klllkR ,..., ),(,...,2,1, zt
klllkR ], 

 
and   
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),(,...,2,1, ut
klllkR = ∏ −

=

k

i

ilutF
1

])],([1[  for ),,0 ∞∈<t  u = 1,2,...,z, 

 
where k is the number of its parallel subsystems linked in series and li are the numbers of 
components in the parallel subsystems.      
 
Corollary 12. If the multi-state parallel-series system is homogeneous, i.e.  
 

),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z, i = 1,2,...,k, j = 1,2,...,li,, 
 

and regular, i.e.  
 

l1 = l2 = . . . = kl = l, l ∈ N. 
 
then its reliability function is given by    
 

),(, ⋅tlkR =[1, )1,(, tlkR ,..., ),(, ztlkR ], 
 
and   
 

),(, utlkR = klutF ]],([1[ −  for ),,0 ∞∈<t u = 1,2,...,z, 
 
where k is the number of its parallel subsystems linked in series and l is the number of components 
in the parallel subsystems.      
 
Example 4 (an electrical energy distribution system). Let us consider a model energetic network 
stretched between two poles and composed of three energetic cables, six insulators and two bearers 
and analyze the reliability of all cables only. Each cable consists of 36 identical wires. Assuming 
that the cable is able to conduct the current if at least one of its wires is not failed we conclude that 
it is a homogeneous parallel-series system composed of k = 3 parallel subsystems linked in series, 
each of them consisting of l = 36 basic components. Further, assuming that the wires are four-state 
components, i.e. z = 3, having Weibull reliability functions with parameters   
 

α(u) = 2, β(u) = (7.07)2u − 8, u = 1,2,3. 
 
According to Corollary 12, we obtain the following form of the system multi-state reliability 
function    
 

),(36,3 ⋅tR  ≅ [1, [1 −[1- 362 ]]000008007.0exp[ t− ]3, [1 −[1- 362 ]]000400242.0exp[ t− ]3, 
 
                                  [1 − [1- 362 ]]20006042.0exp[ t− ]3] for t ∈ <0,∞).                                         (18) 
 
By (18), the values of the system sojourn times T(u) in the state subsystems in months, after 
applying (4), are given by    
 

E[T(u)] ≅ ∫ −−−
∞

−

0

336282 ]]])07.7(exp[1[1[ dttu  
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for u = 1,2,3, and particularly    
 

M(1) ≅ 650,  M(2) ≅ 100, M(3) ≅ 15. 
 
Hence, from (8), the system mean lifetimes in particular states are:   

 
)1(M  ≅ 550, )2(M  ≅ 85, )3(M  ≅ 15. 

 
If the critical reliability state of the system is r = 2, then its risk function, according to (9), is given 
by    
 

r(t) ≅ 1− [1 −[1- 362 ]]000400242.0exp[ t− ]3. 
 
The moment when the system risk exceeds an admissible level δ  = 0.05, calculated due to (10), is   
 

τ = r−1(δ) ≅ 76 months. 
 
 
4 CONCLUSION  
 

In the paper the multi-state approach to the reliability evaluation of systems with degrading 
components have been considered. Theoretical results presented in have been illustrated by 
examples of their application in reliability evaluation of technical systems. These evaluations, 
despite not being precise may be a very useful, simple and quick tool in approximate reliability 
evaluation, especially during the design of large systems, and when planning and improving their 
safety and effectiveness operation processes.  
The results presented in the paper suggest that it seems reasonable to continue the investigations 
focusing on:  

– methods of improving reliability for multi-state systems, 
– methods of reliability optimisation for multi-state systems related to costs and safety of the 

system operation processes, 
– availability and maintenance of multi-state systems.  
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ABSTRACT 
 

 A non-stationary approach to reliability analysis of two-state series and consecutive “m 
out of k: F” systems is presented. Further, the consecutive “m out of k: F”-series system is 
defined and the recurrent formulae for its reliability function evaluation are proposed.  

 
 
 
1  INTRODUCTION 
 

The basic analysis and diagnosis of systems reliability are often performed under the assumption 
that they are composed of two-state components. It allows us to consider two states of the system 
reliability. If the system works its reliability state is equal to 1 and if it is failed its reliability state is 
equal to 0. Reliability analysis of two-state consecutive “k out of n: F” systems can be done for 
stationary and non-stationary case. In the first case the system reliability is the independent of time 
probability that the system is in the reliability state 1. For this case the main results on the reliability 
evaluation and the algorithms for numerical approach to consecutive “k out of n: F” systems are 
given for instance in Antonopoulou & Papstavridis (1987), Barlow & Proschan (1975), Hwang (1982), 
Malinowski & Preuss (1995), Malinowski (2005). Transmitting stationary results to non-stationary time 
dependent case and the algorithms for numerical approach to evaluation of this reliability are 
presented in Guze (2007a, b). Other more complex two-state systems are discussed in Kołowrocki 
(2004). The paper is devoted to the combining the results on reliability of the two-state series and 
consecutive “m out of n: F” system into the formulae for the reliability function of the consecutive 
“m out of l: F”-series systems with dependent of time reliability functions of system components 
(Guze 2007a, b, c).  
 
2 RELIABILITY OF A SERIES AND CONSECUTIVE “M OUT OF N: F” SYSTEMS 
 

In the case of two-state reliability analysis of series systems and consecutive “m out of n: F” 
systems we assume that (Guze 2007b):  
− n is the number of  system components, 
− ,iE ,,...,2,1 ni =  are components of a system,  
− iT  are independent random variables representing the lifetimes of a components ,iE  ,,...,2,1 ni =  
− ),,0 ),()( ∞∈<>= ttTPtR ii  is a reliability function of a component ,iE  ,,...,2,1 ni =  
− ),,0 ),()(1)( ∞∈<≤=−= ttTPtRtF iii  is the distribution function of a component iE  lifetime 

iT , ,,...,2,1 ni =  also called an unreliability function of a component ,iE  .,...,2,1 ni =  

In further analysis we will use one of the simplest system structure, namely a series system. 
 
Definition 1 A two-state system is called series if its lifetime T is given by  
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   T = }.{min
1 ini

T
≤≤

 

 
The scheme of a series system is given in Figure 1. 

 
Figure 1. The scheme of a series system 
 
The above definition means that the series system is not failed if and only if all its components are 
not failed or equivalently the system is failed if at least one of its components is failed. It is easy to 
motivate that the series system reliability function is given by    
 

   )(tnR = ∏
=

n

i
i tR

1

)( , ).,0 ∞∈<t                                    (1) 

 
Definition 2. A two-state series system is called homogeneous if its component lifetimes Ti have an 
identical distribution function    

 
   F(t) = P(Ti  ≤ t), ),,0 ∞∈<t  i = 1,2,...,n, 
 
i.e. if its components Ei have the same reliability function    

 
   ),(1)( tFtR −=  ).,0 ∞∈<t  
 
The above definition results in the following simplified formula     
 

)(tnR  = [R(t)]n, ),,0 ∞∈<t                                                    (2) 
 
for the reliability function of the homogeneous two-state series system. 
 
Definition 3. A two-state system is called a two-state consecutive “m out of n: F” system if it is 
failed if and only if at least its m neighbouring components out of n  its components arranged in a 
sequence of E1, E2, …, En, are failed. 
 
After assumption that: 
− T  is a random variable representing the lifetime of the consecutive “m out of n: F” system,  
− ),,0 ),()()( ∞∈<>= ttTPtm

nCR  is the reliability function of a non-homogeneous consecutive “m 
out of n: F” system, 

− ),,0 ),()(1)( )()( ∞∈<≤=−= ttTPtt m
n

m
n CRCF  is the distribution function of a consecutive “m 

out of n: F” system lifetime T , 
we can formulate the following auxiliary theorem (Guze 2007c). 

 
Lemma 1. The reliability function of the two-state consecutive “m out of n: F” system is given by 
the following recurrent formula 

E1 E2 En .    .    . 
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).,0for ∞∈<t  
 
Definition 4. The consecutive “m out of n: F“ system is called homogeneous if its components 
lifetimes Ti have an identical distribution function 
 
   F(t) = P(Ti  ≤ t), i = 1,2,… , n, ),,0 ∞∈<t  
 
i.e. if its components Ei have the same reliability function 
 
   R(t) = 1 - F(t), ).,0 ∞∈<t  
 
Lemma 1 simplified form for homogeneous systems takes the following form. 
 
Lemma 2. The reliability of the homogeneous two-state consecutive “m out of n: F” system is given 
by the following recurrent formula  
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).,0for ∞∈<t  

 
3 RELIABILITY OF TWO-STATE CONSECUTIVE “M OUT OF L: F”-SERIES 
SYSTEM  
 
To define a two-state consecutive “m out of l: F”-series systems, we assume that  
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   Eij, i = 1,2,...,k, j = 1,2,...,li,  
 
are two-state components of the system having reliability functions    

 
   Rij(t) = P(Tij  > t), ),,0 ∞∈<t   
 
where  
 
    Tij, i = 1,2,...,k, j = 1,2,...,li,  
 
are independent random variables representing the lifetimes of components Eij with distribution 
functions   

 
   Fij(t) = P(Tij  ≤ t), ).,0 ∞∈<t   
 
Moreover, we assume that components ,1iE  ,2iE …, ,

iilE  i=1, 2,… , k, create a consecutive “mi out 
of li: F” subsystem ,iS  i=1, 2,… , k and that these subsystems create a series system.  
 
Definition 5. A two-state system is called a consecutive “mi out of li: F”-series system if it is failed 
if and only if at least one of its consecutive “mi out of li: F” subsystems ,iS  i = 1, 2,… , k, is failed.  
 
According to the above definition and formula (4) the reliability function of the subsystem iS is 
given by 
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and its lifetime distribution function is given by 
 
   ),(1)( )()( tt i

i

i

i

m
l

m
l CRCF −=  i = 1,2,... , k. 

 
Hence and by (1), denoting by )(,...,2,1

21,
t)kmm(m

k,...,l,llk
CR ),( tTP >=  ),,0 ∞∈<t  the reliability function of the 

consecutive “m out of l: F”-series system, we get the next result. 
 
Lemma 3. The reliability function of the two-state consecutive “mi out of li: F”-series system is 
given by the following recurrent formula 
 



Guze S. – RELIABILITY ANALYSIS OF TWO‐STATE CONSECUTIVE “M OUT OF L: F”‐SERIES  SYSTEMS 

 
R&RATA # 1 (12)  

(Vol.2) 2009, March 
 

 

- 109 - 

   ∏
=

=
k

i

)(m
li tt i

i

)kmm(m

k,...,l,llk
1

, )()(,...,2,1

21,
CRCR                                       (6) 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

>⋅

+

<−

=

=

∏

∑

∏

∏ ∏

+−=

−

=
−

=
−

= =

,for  ])(

)()(

)()([

, for  ])(1[

,for   1

1

1

1

)(
1,

1
1,

1 1

ii

l

jl
i

m

j

m
-j-lijil

k

i

)(m
liil

ii

k

i

l

j
ij

ii

m ltF

ttR

ttR

mltF

ml

i

i

i
i

ii

i

ii

i

ν
ν

CR

CR
                                        (7) 

 
).,0for ∞∈<t  

 
Motivation. Assuming in (1) that ),()( )( ttR i

i

m
ili CR=  we get (6) and next considering (5), we get the 

formula (7). 
 
Definition 6. The consecutive “m out of l: F”-series systems is called regular if 
  
   llll k ==== K21  and m1 = m2 = . . . = km = m,  
 
where  
 
   l , m∈ N,   m ≤ l. 
 
Definition 7. The consecutive “mi out of li: F“-series system is called homogeneous if its 
components lifetimes Tij have an identical distribution function 
 
   F(t) = P(Tij  ≤ t), i = 1,2,… , k, j = 1,2,…, li, ),,0 ∞∈<t  
 
i.e. if its components Eij have the same reliability function 
 
   R(t) = 1 – F(t), i = 1,2,… , k, j = 1,2,… ,li, ).,0 ∞∈<t  
 
Under Definition 6 and Definition 7 and formula (7), denoting by )(, t(m)

lkCR ),( tTP >=  ),,0 ∞∈<t  the 
reliability function of a homogeneous and regular consecutive “m out of l: F”-series  system, we get 
following result. 
 
Lemma 4. The reliability function of the homogeneous and regular two-state consecutive “mi out of 
li: F”-series system is given by 
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   ).,0 ∞∈<t  
 
4 CONCLUSIONS 
 
The paper is devoted to a non-stationary approach to reliability analysis of two-state systems. Two 
recurrent formulae for two-state reliability functions, a general one for non-homogeneous and its 
simplified form for  regular and  homogeneous two-state consecutive “m out of l: F”-series system 
have been proposed.  
The proposed methods and solutions may be applied to any two-state consecutive “m out of l: F”-
series systems. 
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Abstract 

  
Generalization of extended family of weakest-link distributions with application to the composite 

specimen strength analysis is presented. Composite (specifically, monolayer) specimen for tensile 
strength is modeled as series system but every “link” of this system is modeled as parallel system. Results 
of successful attempts of using some specific distribution from this family for fitting of experimental 
dataset of strength of some carbon fiber reinforced specimens are presented. 
 
 
 

1. Introduction 
 
We consider a composite specimen for test of tensile strength as a bundle of Cn  longitudinal items 
(fibers or bundles) immersed into composite matrix (CM), which is a composition of the matrix 
itself and all the layers with stackings different from the longitudinal one. We make very simplified 
assumption that only longitudinal items (LI) carry the longitudinal load but matrix only 
redistributes the loads after the failure of some longitudinal items. In fact, therefore, our model is a 
model of unidirectional (more specifically, monolayer) composite.  We divide the composite into 

Ln  parts of the same length 1l (approximately, this length can be interpreted as the interval in which 
the load of failed LI is fully transmitted to the adjacent intact LI; the stronger the CM the 
smaller 1l ). The total length of the composite specimens is equal to l = Ln 1l . We suppose that 
development of the process of fracture of a specimen takes place in one or in several of these parts 
(“links”). For simplicity, we call these links as ”cross sections” (CS). So using this term we 
describe the composite as a series system of CS. For description of the development of fracture 
process of the series system it is appropriate to use the ideas on which the extended weakest link 
distribution family, described in the authors’ papers [1-7], is based. Let the process of monotonous 
tensile loading (i.e. the process of increase of the nominal stress (or mean load of one LI) in the 
specimen cross section) be described by an ascending (up to infinity) sequence ,...},...,,{ 21 txxx , and  
let ( )CiK t ,  0 Ci CK n≤ ≤ , be the number of failures of LI  in i-th CS with Cn initial number of LI at 
the  load tx  . Then the strength of  i-th CS  

* max( : ( ) 0)i t C CiX x n K t= − ≥ ,                                                      (1) 
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but  the ultimate strength of the specimen (which is the sequence of Ln CS) is  
*

1 1
min min max( : ( ) 0)

L L
i t C Cii n i n

X X x n K t
≤ ≤ ≤ ≤

= = − ≥ .                                    (2) 

We consider different versions of cumulative distribution function (cdf) calculation methods and 
their  applications to processing results of test of fiber strands (threads) and strip of them 
(monolayer) [8]. 
 
2. Models of failure of a parallel system with redistribution of load after failure of some LI 

Statistical description of the development of the process of fracture of one CS (as loose bundle of 
LI (fibers or strands)) was initially studied by  Daniels [9]. The respective model can be described 
in a following way. Let 1( ,..., )nX X  be random strengths of intact LI  in some CS and jX the j-th 
order statistics in this CS. If there is a uniform distribution of load between n  LI, and load 
increases uninterruptedly, then the ultimate strength of this CS 

*X =
1
max ( 1) /jj n

X n j n
≤ ≤

− + .                                               (3) 

We consider the case when C Cn n K= − . Daniels studied the case CK =0. In the general case for 
random value of CK , (technological) failure number, there is a priori distribution 

1 2 1( , ,..., )
CC nπ π π π +=  (here ( 1)k CP K kπ = = − ) . Then 

* ( ) ( )CX
F x F xπ

→

= ,                                                      (4) 

where vector column 
11( ) ( ( ),..., ( )) '

CnF x F x F x
+

=
r

, ( )kF x , 1,..., Ck n= , is cdf  of *X  if 
1Cn n k= + − , 1( )

CnF x+  is identical  with unity (there are no intact LI).  
Much broader spectrum of models of the considered process can be developed using the theory of 
Markov chains. We consider the process of accumulation of failures as an inhomogeneous finite 
Markov chain (MC) with finite state space 1 2 1{ , ,..., }

CnI i i i += . We say that MC is in state i  if ( 1)i −  
LI have failed, 1,..., 1Ci n= + . State 1Cni +  is an absorbing state corresponding to the fracture of CS 
(fracture of all LI in this CS). The process of MC state change and the corresponding process 

( )CiK t  are described by transition probabilities matrix P.  

11 12 13 23 1( 1)

22 23 24 2( 1)

33 34 3( 1)

( 1)

...

0 ...

0 0 ...

... ... ... ... ... ...
0 0 0 0 ...

0 0 0 0 ... 1

C

C

C

C C

n

n

n

n n

p p p p p

p p p p

p p p
P

p

+

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                         (5.1) 

 
 At the  t-thstep of MC matrix  P is a function of t,  t=1,2,... 
The cdf of strength of CS is defined on the sequence ,...},...,,{ 21 txxx by equation 

*

1

( ) ( ( ))
t

t CX
j

F x P j uπ
=

= ∏  ,                                            (5.2) 

where )( jP is the transition matrix for t=j, column vector )'1,0,...,0(=u .  
We consider three main versions (hypotheses) of the structure of matrix P, denoted as aP , bP and cP . 
In the simplest version we assume that in one step of MC only failure of one LI can take place. And 
for the corresponding matrix  aP  we define 1 ( )ii C tp F x= − , where  
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0 0 1 0 1( ) ( ( ) ( )) / (1 ( ))C t t t tF x F x F x F x− −= − −  is conditional cdf of strength of a LI, the failure of which 
did not take place under load 1tx − , 0 ( )F x  is the initial cdf of strength of a LI ; ( 1) 1i i iip p+ = −  ,  

1,..., Ci n= ,   ( 1)( 1) 1
C Cn np + + = , but all the other ijp  are equal to zero. 

It can be assumed also that the number of failures  in one step of MC has binomial distribution. 
Then for the corresponding matrix  bP  we have ( ) ( ; , )i i rp b r p k+ = = (1 ) !/ !( )!r k rp p k r k r−− − , 

( )C tp F x= , 1ck n i= + − , 0,...,r k= , 1,..., Ci n= ; and again   ( 1)( 1) 1
C Cn np + + = , but all the other ijp  

are equal to zero. 
For both versions of  P  described by aP  and bP  we suppose a uniform load distribution between 
intact LI. The third version corresponds to a transverse crack growth in the monolayer. We suppose 
that the first failure appears in the boundary of CS and all the following failures can appear only in 
the adjacent LI. The difference between the second and the third version is illustrated in Fig.1. Let 
now j  be ordernumber of LI in a CS  (j=1 for the boundary LI). In this case it is easy enough to take 
into account the stress concentration next to the tip of the crack. Let the redistribution of CS load 

( )x t  between intact LI be defined by a “stress concentration” function ( ; , )Ch j i n . Then in the 

corresponding cP  matrix 1

1 1
( ( )) (1 ( ( ))Cj n

ij C ij C iji j
p F x t F x t+

+ +
= −∏ ∏  for 1,..., Cj i n= + ; 

1
( 1) 1

( ( ))C

C

n
i n C iji

p F x t+

+ +
= ∏  for Cj n= ; 1

1
1 Cn

ii iji
p p+

+
= − ∑  , 0ijp =  for j i< , 1,..., Ci n= ;  

where ( ) ( ; , ) ( ) / ( 1 )ij C C Cx t h j i n x t n n i= + − describes stress in j-th order LI after failure of i-th order 
LI. 
 
1 0 1 1    0 1 1 1 
0 1 0 1    0 0 1 1 
1 1 1 0    0 1 1 1 
0 0 0 1    0 0 0 1 
1 1 0 1    0 1 1 1 
1 1 1 1    1 1 1 1 

 
                  a                                                                b  
           
Fig.1. Failed (0) and surviing (1) longitudinal items (LI) in specimens (under longitudinal load) 
with six cross sections and four LI; for uniform stress distribution (a)  and for the case of   
transverse crack growth. 
 
 
3. Models of failure of a series system (chain of links) with damaged items 

In the framework of considered problem, there is a special case of Cn =1 (i.e. there is only one fiber, 
strand or thread). This case was studied in [6].  Below, we remind the main ideas, make the 
necessary corrections (appropriate for notation of this paper), and provide some generalization. We 
consider a specimen as a straight binary series system with Ln  links of two types. There is a random 
number of “damaged” links , LK , 0 L LK n≤ ≤ , with strength cdf  ( )YF x  (we say that they are Y-
type links), and there are ( L Ln K− ) links with strength cdf  ( )ZF x  (we say they are Z-type links). 
“Damaged” links appear if stress in LI exceeds defect initiation stress.  The probability of this event 
at the load (stress) x  is defined by cdf of defect initiation stress ( )KF x .  
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We suppose (see [6]) that the failure process of considered system has two-stages. In the first stage, 
the process develops along the specimen and damage appear in LK , 0 L LK n≤ ≤ , links ( LK  links of 
Y-type appear).  Then the second stage takes place: the process of accumulation of elementary 
damages in crosswise direction up to specimen failure. We consider three levels of accuracy of 
description of the second stage and three corresponding probability models (probability structure). 
Level A: the development of fracture process takes place in every link (containing or not some 
initial defects) and the strength of the weakest link defines the strength of the specimen. Level AB: 
the strength of the link without defects can be (relatively) so high and probability of its fracture 
before fracture of the damaged link so small that independence of failure probability of any Z-type 
CS on Ln  can be assumed (only the probability that 0LK >  depends on the  number of links, Ln ). 
And finally, level B: in addition to the assumption of the level AB it is assumed that the cdf of 
strength of the critical link does not depend on this number also. Correspondingly we have three 
probability structures. 
 
A : 1 1min( ,..., , ,..., )

L L LK n KX Y Y Z Z −= ;  
                     

AB: 1min( ,..., ,Z),    0,

,    0;
LK L

L

Y Y K
X

Z K

>⎧⎪= ⎨
=⎪⎩

      B :  
,  0,
,  0.

L

L

Y K
X

Z K
>⎧

= ⎨ =⎩
.  

                                                          
Two different versions of the first stage can be considered also. First version: (technological) 
defects appear before the loading and their number does not depend on the subsequent loading. 
Second version: defects appear during loading (instantly or gradually) and their number depends on 
the load. 
 
3.1. For “instant fracture” version for structures A, AB, B we have correspondingly 

0
( ) 1 (1 ( )) ( )

L
L

n
n k

Z k
k

F x F x p xδ
=

= − − ∑ ,  ))(1/())(1()( xFxFx ZY −−=δ  ,                                  (6 ) 

( )( ) ( ) ( )( )
0 0

( ) 1 1 1 ( ) 1 (1 ( )) 1
L Ln n

k k
k Y Z Z k Y

k k
F x p F x F x F x p F x

= =

= − − − = − − −∑ ∑ ,         (7 )   

( ) ( ) (1 ) ( )Y Y Y ZF x p F x p F x= + − ,                                                     (8) 
where (in equations  (6, 7)) binomial probability mass function 
(pmf) ( ; , )k L Lp b k p n= = (1 ) !/ !( )!Ln kk

L L L Lp p n k n k−− −  is   probability that there is k  links of Y-type; 

01 1 (1 ) Ln
Y Lp p p= − = − −  is the probability that there is at least one link of Y-type (in this case, 

actually, it is enough to know only Yp ; we should not know two parameters Ln  and 0p  separately). 
 Binomial or Poisson pmf can be used for random number of links of Y-type , LK . In the latter case 
equations  (6, 7)  (approximately, if Ln  is sufficiently large) can be written in the following way 

( ) 1 (1 ( )) exp( (1 ( ))Ln
ZF x F x xλ δ= − − − −  ,                              (9) 

( ) 1 (1 ( )) exp( ( ))Z YF x F x F xλ= − − − ,                                     (10 ) 
where L Ln pλ = or it is just independent  parameter of Poisson pmf. If initiation of the defects 
depends on the applied load, then it can be assumed that ( )L Kp F x= ,  where ( )KF x  is the cdf of  
defect initiation load.  
 
In the numerical example considered in this paper it was assumed that the strength of defected link 
S has Weibull distribution; then )log(SY = has the smallest extreme value (sev) distribution  
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))/)exp((exp(1)( 10 YYY xxF θθ−−−= .                                        (11) 
And it was assumed also that for link without defects 

))/)exp((exp(1)( 10 ZZZ xxF θθ−−−=                                    (12) 
but for the logarithm of defect initiation stress  

))/)exp((exp(1)( 10 KKK xxF θθ−−−= .                                    (13) 
In some numerical examples it was considered that if  CZ =0θ , but 01 →Zθ , then 

⎩
⎨
⎧

≥
<

=
.  ,1
,  ,0

)(
Cx
Cx

xFZ                                                               (14) 

 
3.2. The process of gradual (during loading) accumulation of defects along the chain of Ln links 
again can be considered as a Markov chain (MC). In this case MC is in state i  if there are ( 1)i −  of 
Y-type links, i=1,...,nL+1. State 2Lni +  is an absorbing state corresponding to the fracture of 
specimen. The matrix of transition probabilities has the same form as in (5.1) .  The initial 
distribution of LK  is represented now by some row vector 1 2 , 1, , 2( , ,..., )L L L L n L nπ π π π π+ += . In the 
new approach the number of CS of Y-type and the strength of specimens are random functions of 
time, ( )LK t  and ( )X t . Now the three main structures we denote by MA, MAB and MB. They have 
the same description but instead of  LK  we should write ( )LK t . For example, for the MA we have 

1 2 ( ) 1 2 ( )( ) min( , ,..., , , ,..., )
L L LK t n K tX t Y Y Y Z Z Z −= . In similar way ( )X t is defined for the other 

structures.  
Now the ultimate strength of specimen is defined again by equations (2) but it is more convenient to 
write it in new form: 

*T
xX = ,                                                           (15) 

where  
))(:max(*

txtXtT >= .                                         (16) 
 The cdf of ultimate strength , X, is defined again by an equation similar to equation (5.2): 

1

( ) ( ( ))
t

X t L
j

F x P j uπ
=

= ∏ . 

Specifying the matrix P for probability structures A and AB. The probability that in some 
element a defect appears at the stress tx  under the condition that it has not appeared at the stress  

1−tx  is 

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))K t K t K tb t F x F x F x− −= − − . 
Consider the case of s defects present. The probability that r new defects appear, snkr −=≤≤0 , 
and the total number of defects is equal to m=s+r 

)!(!/!))(1())(()(~ rkrktbtbtp rkr
sm −−= −  

Conditional probability of Y-type link  fracture at the nominal stress tx   

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))Y Y t Y t Y tq t F x F x F x− −= − − . 
Conditional probability of Z-type link  fracture at the nominal stress tx   

( 1) ( 1)( ) ( ( ) ( )) / (1 ( ))Z Z t Z t Z tq t F x F x F x− −= − − . 
 

Corresponding probability that none of the links (of both types)  fails  when  there are  defects in m 
links  for probability structure MA is 
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( ) (1 ( )) (1 ( )) Ln mm
m Y Zu t q t q t −= − − , 

and for probability structure MAB 
( ) (1 ( )) (1 ( ))m

m Y Zu t q t q t= − − . 
The probability of coincidence of these events, which we consider as independent,  and the  
probability  of transition from state i=s+1 to state j=i+r 

)()(~)( 1)1)(1( tutptp jjiij −−−= , 
where  )1( +≤≤ nji . 
It is worth to note that if equation (14) is used and C is large enough (this means that only damaged 
CS define the strength)  then it can be assumed that ( )Zq t =0. 
 Conditional fracture probability (for both probability structure MA and MAB) at state i 

)(1)(
1

)2( tptp
n

ij
ijni ∑

+

=
+ −= . 

Of course, 0)( =tpij , if ij < , and 1)()2)(2( =++ tp nn . 
Specifying the matrix P for probability structures MB . The corresponding Markov chain has 
only three states. The first state corresponds to the absence of defective links, the second one means 
the presence of at least one defective link, and the third, absorbing one, means failure of the 
specimen. The corresponding probabilities at a t-th step are determined by the formulae 

11( ) [1 ( )] ,Lnp t b t= −   12 11( ) (1 ( ))(1 ( ))(1 )Y Zp t p t q t q= − − − ,  13 11 12( ) 1 ( ) ( )p t p t p t= − − , 
0)(21 =tp ,  22 ( ) (1 ( ))(1 ( ))Y Zp t q t q t= − − , 23 22( ) 1 ( )p t p t= − , 0)()( 3231 == tptp ,  1)(33 =tp . 

 

4. MinMaxDM distribution family 

Clearly,   all the ideas considered in the previous section can be used also for the series system of 
CS if instead of the word “link” now we use the word CS. Instead of cdf )(xFY  and )(xFZ  , which 
were defined by   (11-12) now we should use cdf of CS strength of Y-type or Z-type 
correspondingly. For building these cdf  in the following numerical examples we again suppose that 
logarithm of strength of one LI (in one CS) without defect has the smallest extreme value (sev) 
distribution: 0 0 1 1 1( ) 1 exp( exp(( ) / ))Z ZF x x θ θ= − − − . We use the logarithm scale and in this case the 
cdf of specimen strength also has location and scale parameters 0θ  and 1θ :   

0 0 1( ) (( ) / ))X
X

F x F x θ θ= − . Of course it is not the only possible assumption. Different assumptions 

about the distribution of strength of bundles within the frame of one CS (one “link”) , a priori 
distribution of initial (technological) defects, the influence of length and width of specimens 
compose a family of the distributions of ultimate composite tensile strength. Taking into account 
(2) and (3) we denote this family by abbreviation MinMaxD (in  memory of Daniels) if the strength 

* ( )
X

F x is defined by equation (4) and by abbreviation MinMaxM (because of connection with 
Markov chain theory), if  it is defined by equation (5), and for unified family we suggest an 
abbreviation MinMaxDM. 
 
5. Processing  of test data 
In this paper we consider only the application of B-structure to the test data set processing. In [5] 
there are the test results of both 64 carbon fiber strands with length 20 mm (data_1) and the same 
number of strips of 10 strands of the same length (data_2) considered. We attempt to obtain 
statistical description of data_2 using results of processing of data_1. Let ix   be i-th order statistic, 

1, 2,...,i n= , n  is the sample size; ( )iE X    is the expected value of ith order statistic,  
0

( )iE X  is the 
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same but for 0θ =0 and 1θ =1. Then for estimation of 0θ  and 1θ , if all the other parameters are 

fixed,  we have the following linear regression model: ( )iE X = 0θ + 1θ
0

( )iE X . We perform fitting of 

the data_1 and get linear regression parameter estimates 0θ
)

=6.554 and 1θ
)

=0.1243 assuming that 
sev distribution holds (here x is logarithm of strength).Then we perform fitting (expected value of 

“standard” order statistics 
0

( )iE X versus order statistics) of the data_2 (+) assuming the same type 

of distribution (see Fig. 2a). In   Fig. 2b we see the fitting of the same data_2   using 
0

( )iE X of cdf 
corresponding to MinMaxMa-Bsev model (for Pa type of matrix P, 0 ( )F x  is sev distribution, 
structure B (see equation (8) where Cn =5; Cπ is a binomial a priori distribution of CK  with 

Cp =0.01 , n = Cn =5; 0.9048Yp = ).  “Regression prediction”(*), 0 1
€ €€ ( )

o
iix E Xθ θ= + ,  using 

estimates 0θ
)

 and 1θ
)

 obtained processing  data_1 is shown also. But here we take into account 
variation of Young’s modulus also: Var(E)= 0.03). 
 Let us make additional explanations. For “fitting” of data_2  we have used  parameters, found by 
processing of the same data. For  “Regression prediction” we have used estimates 0θ

)
 and 1θ

)
 

obtained processing  data_1, which are parameters of component of monolayer  ( as if  we did not 
get the parameter estimates of data_2 while fitting these data).  However it is not PREDICTION  
but “PREDICTION”, because in fact we have used  also the estimates of “structure parameters” 

Cp , Cn  and Yp which was found processing data_2. It would be real prediction  if Cn  and Yp  are 
parameters of technology and they are nearly the same for different specimens with the same 
type of technology and are known in advance . 
Unfortunately, it is only hope, but it is not the fact. 
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                                                    a                                                         b 

Fig. 2.  Fitting (expected value of “standard” order statistics 
0

( )iE X versus order statistics)  and 
“prediction” of results  of tensile strength test of carbon fiber strip of 10 strands using sev 
distribution (a) and MinMaxMa-Bsev model (b) (see explanation in text). 

The statistic 2 2 1/2

1 1

€( ( ) / ( ) )
n n

i i i
i i

OSPPt x x x x
= =

= − −∑ ∑ , where 
1

/
n

i
i

x x n
=

= ∑  [4] , as the measure of 

fitting for Fig.1a is equal to 0.267 (for sev  distribution) and as the measure of fitting  and 
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prediction quality for Fig. 1b (for MinMaxMa.sev-B structure model)  is equal to 0.161 and 0.192 
correspondingly. 
Examples of processing data of strength of fibers of different type are given in [6]. 
Here we consider processing of the test results of carbon reinforced composite specimens 
(( 6 4 30 / 45 / 90o o o+ − )s , length : 250 mm, width : 38 mm, thickness : 1.7 mm) which are given in [8]. 
In Fig. 3a we see fitting of these data (+) using sev distribution (statistics OSPPt=0.2504). In Fig. 
3b we see fitting of the same data using MinMaxMa-Bsev model (statistics OSPPt=0.1548). 
“Prediction”  of these data using MinMaxMa-Bsev model (*) and linear regression parameter 
estimates 0θ

)
=6.554 and 1θ

)
=0.1243 of data_1 (statistics OSPPt=0.1879) is shown also . This time 

Cn =50 was used; Cπ is a binomial priori distribution of CK  with Cp =0.325 , n = Cn =50; 1Yp = . 
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Fig. 3.  Fitting (expected value of “standard” order statistics 

0
( )iE X versus order statistics)  and 

“prediction” of the tensile strength of carbon reinforced composite specimens test results (+) using 
sev distribution (a) and MinMaxMa-Bsev model (b) (see explanation in text). 
 
 
Conclusions 
We see that MinMaxMa-Bsev model provides better (than sev distribution)  fitting of results  of 
tensile strength test of carbon fiber strip of 10 strands (but only if we assume that in CS there are 
only 5 strands instead of 10 and taking into account variation of Young’s modulus!). It is not 
surprising, of course, because for MinMaxMa-Bsev we have much more parameters. Nearly the 
same can be said about processing the specimen data. This time  50Cn =  appears much more 
appropriate. The values 5Cn =  and 50Cn =  can be interpreted as the numbers  
of failures of LI which are sufficient to provoke the catastrophic failure of the specimens. Very 
large value of Cp =0.325 for specimen data set can be explained by the small relative value of ratio 
of longitudinal layer number to the total number of layers (6/(6+4+3)= 0.4615). There is a 
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temptation to use the coefficient of filling. However there is a large ambiguity of calculation of this 
value.  
 As a whole, it seems that MinMaxDM distribution family deserves to be studied much more 
thoroughly using much more test data. Interpretation of parameters of a corresponding model 
allows comparison of different composite structures and explanation of some specific features of 
failure process of composite . For example, the value Cp =0.325 indicates that at least 32.5% of the 
critical cross section does not carry the longitudinal load. 
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Abstract 
 

In this work we make a detailed analysis of the concept of risk, the stress being focused then 
on various kinds of statistical risks: producer and consumer risks, technical risk, Taguchi`s risk 
(making a connection with Cpm capability index) and a risk arising  in SPC practice. 
  
Key words: statistical risk, error, hazard rate, Taguchi`s loss function, Taguchi`s risk, SPC - 
Statistical Process Control. 
 
 
 1. Preliminaries: a discussion on the concept of risk 
 

The notion of risk covers a broad area of interpretations. As in many cases, there is a man-
in-the street approach and a scientific one which tries to offer quantitative measures of the 
underlying term. 

Let us visit first some usual dictionaries. For instance, BBC English - Romanian Dictionary 
(Editura CORESI, Bucureşti, 1998, page 966(, risk is assimilated to a danger: if there is a risk of 
something, it might have unpleasant or even dangerous consequences (results). 

We seize here the potentiality of such kind of results, which may or may not occur. 
Therefore, it is a suggestion that risk is associated with uncertainty: it might happen, but we do not 
know for sure if it will indeed happen. 

Merriam - Webster`s Collegiate Dictionary (Tenth Edition M. W. Incorporated, Springfield, 
Mass, U.S.A., 1996, page 1011) is more generous and specific: possibility of loss or injury, a peril 
but also the degree of probability of such loss (this is a new element in the usual definitions). 

The very recent „Illustrated Oxford Dictionary of English Language” (2008, Dorling/Oxford 
Univ. Press, Litera International, Bucureşti - Chişinău, page 709) defines it as a chance or 
possibility of danger, loss, injury etc. 

The term „chance” is straightforwardly linked with that of uncertainty. Some authors 
consider that risk is characterized by possibility to be described by the aid of probability laws (see 
Bârsan-Pipu and Popescu, 2003 [2, page 2]). Uncertainty can be described also by quantitative 
measures - if we regard it from the metrological point of view (see Petrescu et al., 2006 [12]). 

Webster`s Unabridged Dictionary of English Language (edited 2002) advances the concept 
risk management (RM) and also that of risk manager. This RM is viewed as a technique of 
estimation, prevention and minimization the accidental losses which could appear in a business by 
taking some safety measures (insurances - for instance). 

Risk appears therefore as an uncertain event which may take place if some risk factors 
actually act. 

On the other hand, the risk is always associated with the anthropical element - that human 
factor which finally will suffer eventual bosses of its „risky decisions”. 
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2. Kinds of risks 
 

Generally speaking, there are several types of risk - depending on the domain we consider to 
be of interest. Isaic-Maniu et al (1999, page 492) [7] believe that the so-called economic risk is of 
great importance. This risk is defined as the incapacity (or just impossibility!) of a given 
organization to survive in a business environment: this means that its managers have no the skills 
(and knowledge) to adapt the economical policy of the company to variations (sometimes 
unexpected and unfriendly) of the social-economical reality at a specified moment. 

This economic risk (quite general) has some components such as „bankruptcy subrisk” 
which seems to be essential: if an organization cannot pay its bills for current utilities, cannot 
reimburse its loans, cannot pay its subcontractors, suppliers etc. - all these are the signs that the 
above risk has already implemented its destructive effects. 

Since the risk is regarded as a probability, therefore it is worth to investigate the nature of 
what is called the statistical risk. It plays an important role in the framework of statistical 
inference. One problem which has been not very deeply investigated is the following: how to 
manipulate (or to manage) this in order to minimize it, in the sense that the decision taken in an 
uncertain/risky situation, to be „the best” one? 
 
 3. Various types of statistical risks 
 

Usually, in the theory of statistical hypotheses, founded mainly by the British School of 
Statistics (see Stoichiţoiu - Vodă, 2002 [15]) we deal with the so-called errors we make as regards 
the decisions about the underlying hypotheses. 

As it is well-known, a hypothesis (in general) is simply defined as a 
statement/assumption/supposition about a certain phenomenon, process, situation etc. This 
assumption may be true (that is in accordance with the real status of the entity considered) or may 
be not. For a scientific hypothesis it is sufficient to provide a counterexample, in order to reject as 
false the proposed hypothesis. 

Since in statistical analysis we work with samples (assumed to be obtained randomly), the 
conclusions will depend entirely on the sample (or samples) we have at hand. The sample could 
support the advanced hypothesis (called null-hypothesis, H0) or it could sustain the alternative one 
(H1). Therefore, we say that the couple (H0, H1) is accompanied by two kinds of errors, namely 

 { }trueisHif|HrejectProbα 00=     (1) 
and 

 { }trueisHif|HacceptProb 10=β     (2) 
They are called respectively: error of the first Type (α) and error of the second Type (β) - 

see for details Blischke and Murthy, 2000 [3] page 157 - 162. 
These authors draw the attention that Type I and Type II errors rates are the probabilities 

of making these kind of „mistakes” - namely  „do reject H0” (when H0 is true) and „do not reject 
H0” (when H1 - the alternative is true). 

In fact, ( ) ( )tt θ:nββandθn;αα ==  - that is they depend on the size of the sample we 
employ and on the true value of the parameter ( )θ  on which the hypothesis is made. 

In SQC - Statistical Quality Control - especially in sampling inspection of batches, where 
practical procedures have been standardized (see American Standards MIL STD 105 D and MIL 
STD 414 - or their ISO equivalents, ISO 2859 and ISO 3951, βandα  are called „producer risk” (α) 
and „consumer risk” (β) - respectively. In the above documents α and β are taken at fixed levels (α 
= 5% and β = 10%) and hence there is no possibility to modify these values if in practice we use 
these standards. 
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What we can do is diminish the risk of non-acceptance of a given lot/batch. This risk is 
expressed as ( )pP1 a− , where ( )pPa  is the probability of acceptance of the lot which depends on its 
defective (or nonconforming) fraction (p). If p is larger then the accepted value (AQL - Acceptable 
Quality Level), then the risk of non-acceptance is higher. 

Other important element of the above mentioned documents is the so-called LQ - Limiting 
Quality - that is that value of p which we are ready to accept with a small probability (in 10% of the 
case at most). 

If p = p0 > AQL, the risk of non-acceptance increases as long as (p) approaches the LQ 
value. 

It follows that the management of this risk has to be directed to those measures which can 
lead to a decline of the fraction defective (see Isaic-Maniu and Vodă, 1997, [6]). 
 
 3.1. Error of the Third Type? 
 

In [14] has been discussed an argumentation of Maliţa and Zidăroiu (1980, [10]) in favor of 
a Raiffa`s idea (1970, [13]) regarding the existence of a Type III error. This last author claims that 
if an experimenter (or an analyst) tries to solve a false problem, then he commits an error of the 
third kind! Raiffa did not establish clearly what he understands by a „false” problem: is it an ill - 
posed problem (improperly/wrongly formulated) or the falsity refers to the goal/purpose stated by 
the responsible authority?  

Maliţa and Zidăroiu tried to justify Raiffa`s proposal by linking it to the Type I and Type II 
errors, claiming that this Type III error „is expected to weight in a specific manner, the previous 
two classical type errors”. They say also that the main source of Type III error is the lack of 
communication between the analyst and the decisional factor. This communication must act in both 
directions: from the decision unit to the experimenter/analyst and conversely, in order to 
check/verify that indeed we detected the right problem! 

Such an argumentation seems to be at most at a metaphoric level: nobody will ask himself or 
someone else if the problem he solves is false … 

We shall mention the Cambridge Dictionary of Statistics, Cambridge University Press, 1998 
(author B. S. Everitt) where he draws the attention to not confound this risk with Type III error – 
term used for identifying the poorer of two treatments as the better (pages 116 and 338). 
 
 3.2. Technical risk 
 

Irina Isaic-Maniu (see [8  , page 51 - 65], 2003) gives a „risk interpretations” for the main 
indicators used in reliability theory; in fact, the distribution function F(t) of a continuous and 
positive random variable (T) which describes the failure behavior of a given entity may be viewed 
as a „technical risk” - that is the complement of the reliability function: 
 

 { } ( ) ( ) { }0000 tTProb1tR1tFtTProb ≥−=−==<     (3) 
  

Here F(t0) is hence the probability that the system operates less than a desired time t0. If the 
reliability R(t0) is low, consequently this technical risk is high. 

More adequate to define this technical risk seems to be the hazard rate (or failure rate) 
function which may be called also „the danger of failure”: 
 

 
)(
)(

)(
)(

)(1
)()(

tR
tRd

tR
tFd

tF
tfth −==

−
=      (4) 
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A high value of h(t) means a low level of reliability (h(t) is expressed usually in 
failures/hour). 
 
 4. Taguchi`s risk 
 

Genichi Taguchi (see Alexis, 1999, [1]) revitalized Gauss` quadratic function 
( ) ( ) 0,0, 0

2
0 ≥≥>−= xxaxxaf x  and associated it to the so-called quality loss 

 
 ( ) ( ) RT,,0,TT;L 0

2
00 ∈>−= xkxkx     (5) 

 
where x0 is the measured value of the quality characteristic (X) and (T) is it target value (k is a 
constant depending on the specific case at hand). 

If ( )θ;xf  is the density of X ( )Rθ   R, ofpart  a being D   D, ∈∈x  then the average value  
 

 ( )[ ] ( ) ( )∫=
D

θ;T;LT;LE dxxfxx      (6) 

is called Taguchi type risk (see Kackar, 1986, [9]). 
Taking into account (5), we may write (6) as 

 

 ( )[ ] ( ) ( )( )[ ]2TxExVarT;LE −+= kx      (7) 

and if X is normally distributed ( )2δμ;N , we have. 
 

 ( )[ ] ( )[ ]22 TμδT;LE −+= kx      (8) 

The empirical risk (denoted ( )xTR
)

) is therefore 
  

 ( ) ( )[ ]22
T TsR −+= xkx

)
     (9) 

where x and s are the well-known sample statistics. 
There is a straightforward link between Taguchi`s risk and his own process capability index 

pmC
)

 (see Chan et al, 1988, [4]): 
 

 
( )22pm

Ts6

LSLUSLC
−+⋅

−
=

x

)
     (10) 

 
where USL = Upper Specified Limit and LSL = Lower Specified Limit of the given quality 
characteristic ( )2δμ,N~X  with T as its target value. 

We may write hence immediately 
 

 ( )
2

pm
T C

1
6

LSLUSLR ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

−
= )

)
kx     (11) 

If USL - LSL = 6s - that is the minimal level for admissible process capability, we get: 
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 ( )
2

pm
T C

sT;R ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= )

)
kx       (12) 

and we draw the conclusion that the Taguchi`s risk can be regarded as a function of the length of 
the specified interval USL - LSL measured in standard deviations units. 

The theoretical Taguchi risk corresponding to (12) is 
 

( ) 2

pm

2
2

pm

T C
kδ

C
δkR =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=x  

 
Denoting Mkδ2 =  and XCpm = , we shall have a hyperbolic dependence of the type 

2M/XR = . If in Cpm, the true mean-value μ  is just the target T, then Cpm becomes the classical 
potential index of a process namely ( )/6δLSLUSLCpm −=  (see figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The relationship between Taguchi`s risk and Cpm 
 
  

R 

3 M 

2 M 

1 M 

(1/4) M 

0 1/2 1 3/2 2 X 

4 M 



Viorel Gh. Vodă – SOME COMMENTS ON STATISTICAL RISKS 

 
R&RATA # 1 (12)  

(Vol.2) 2009, March 
 

 

- 126 - 

5. Risk in SPC practice 
 

SPC - or Statistical Process Control is mainly based on the theory and practice of Shewhart 
control charts (see ISO document ISO 8258 „Shewhart control charts”, 1991 or Petrescu-Vodă, 
2002 [11]). 

From a statistical point of view, Shewhart control charts can be viewed as a continuously 
testing of by hypothesis μMean:H0 =  versus the alternative μMean:H1 ≠  at the significance 
level { } 0.00273ZProbα =>=  (see Derman and Ross, [5]). 

From a practical perspective, this means that even when a certain process is in the state of 
statistical stability (remains in control) there is a chance - a risk (0.0027) - that a subgroup average 
will fall outside the control limits n/δ3μLCL,n/δ3μUCL +=+=  and the experimenter 
would incorrectly take the „risky decision” to correct the process that is to dig for an illusory cause 
of trouble. 
 

Numerical example: Consider a measurable characteristic for which two specified limits 
are fixed, namely LSL = 263.48 c.u. (c. u. = conventional units) and USL = 263.68 c. u. The target 
value is T = 263.58 c. u. If we ask a performance level for Cp to be 2 and if from data we get the 
mean value x = 263.58 c. u. and standard deviation s = 0.011 c. u., we shall get C€p approximately 
0.40 – that is a very weak potential index of the process. The estimated Taguchi risk is therefore 
R€T (x) ≈ 0.007 k and this risk is expressed in monetary units. This values shows that if the 
defective unit is cheap, then the risk is small. For such low production cost items it is not necessary 
to impose a performance at the level of SIX SIGMA (see the excellent monograph of Praveen 
Gupta “The Six Sigma Performance Handbook. A Statistical Guide to Optimizing Results”, 
McGraw-Hill Book Co., 2005, New York 
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