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ABSTRACT 

 

Many real systems are characterized by a hybrid dynamics of transitions among discrete 

modes of operation, each one giving rise to a specific continuous dynamics of evolution. The 

estimation of the state of these hybrid dynamic systems is difficult because it requires 

keeping track of the transitions among the multiple modes of system dynamics 

corresponding to the different modes of operation. A Monte Carlo-based estimation method 

is here illustrated through an application to a case study of literature.  

 

 

 

1  INTRODUCTION 

 

Diagnosis and prognosis of system faults rely on the knowledge or anticipation of the system 

state to provide advanced warning and lead time for preparing the necessary corrective actions to 

maintain the system in safe operation. 

The related state estimation task becomes quite challenging for systems with a hybrid dynamic 

behavior characterized by continuous states and discrete modes. Sudden transitions of the discrete 

modes, often autonomously triggered by the continuous dynamics, affect the system evolution and a 

large computational effort is required to keep track of the multiple models of the discrete system 

modes and the autonomous transitions between them (Koutsoukos et al. 2002). Since the dynamic 

states cannot be directly observed, the problem becomes that of inferring the system state from 

related measured parameters. 

The soundest model-based approaches to the estimation of the state of a dynamic system or 

component build a posterior probability distribution of the unknown states by combining the 

probability distribution assigned a priori to the possible states with the likelihood of the 

observations of the measurements actually collected (Doucet 1998, Doucet et al. 2001). In this 

Bayesian setting, the estimation method most frequently used in practice is the Kalman filter, which 

is optimal for linear state space models and independent, additive Gaussian noises. In practice, 

however, the dynamic evolution of many systems and components is non-linear and the associated 

noises are non-Gaussian (Kitagawa 1987). In these cases, one may resort to Monte Carlo sampling 

methods also known as particle filtering methods, which are capable of approximating the 

continuous distributions of interest by a discrete set of weighed ‘particles’ representing random 

trajectories of system evolution in the state space and whose weights are estimates of the 

probabilities of the trajectories (Doucet et al. 2000, Djuric et al. 2003, Cadini et al. 2009a, b). 

In this paper, particle filtering is applied for the estimation of the state of a hybrid system of 

literature often taken as a benchmark for dynamic reliability estimation and fault 

diagnosis/prognosis methods (Aldemir et al. 1994, Marseguerra et al. 1996, Labeau et al. 1998, 
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Wang et al. 2002). The system consists of a tank filled with a liquid whose level is autonomously 

maintained between two thresholds by actuators driving three filling and emptying flows triggered 

by the actual liquid level. The actuators discrete mode is estimated by the particle filter on the basis 

of noisy level and temperature measurements. 

 

2 PARTICLE FILTERING FOR OPERATION MODE ESTIMATION 

 

2.1 General model-based framework for state estimation 

 

Let us consider a continuous system whose evolution can be described by: 

 

  ωxf
x

,
dt

d
 (1) 

 

where x is the system state vector, xx nnn
RRR  :f is possibly non-linear and ω is an 

independent identically distributed (i.i.d.) state noise vector of known distribution. 

The state x cannot in general be directly observed; rather, information about x can be inferred 

from the observation of a related variable z whose relation to the state x is described in general 

terms by the equation: 

 

  υxhz ,  (2) 

 

where xx nnn
RRR  :h  is possibly non-linear and υ is an i.i.d. measurement noise vector 

sequence of known distribution. The measurements z are, thus, assumed to be conditionally 

independent given the state process x. 

The practical implementation of computational tools for state estimation requires that the 

continuous system dynamics be discretized appropriately. Regardless of the discretisation method 

adopted, the system state dynamics can be represented by an unobserved (hidden) Markov process 

of order one: 

 

  11  kkk ,ωxfx  (3) 

 

where xx nnn

k RRR  :f  is possibly non-linear and {ωk, kN} is an independent identically 

distributed (i.i.d.) state noise vector sequence of known distribution. 

The transition probability distribution p(xk|xk-1) is defined by the system Equation (3) and the 

known distribution of the noise vector ωk. The initial distribution of the system state p(x0) is 

assumed known. 

A sequence of measurements {zk, kN} is assumed to be collected at the successive time 

steps tk. The sequence of measurement values is described by the measurement (observation) 

equation: 

 

  kkkk υxhz ,  (4) 

 

where xx nnn

k RRR  :h  is possibly non-linear and { υk, kN} is an i.i.d. measurement noise 

vector sequence of known distribution. The measurements {zk, kN} are, thus, assumed to be 

conditionally independent given the state process {xk, kN}. 
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Within a Bayesian framework, the filtered posterior distribution p(xk|z0:k) can be recursively 

computed in two stages: prediction and update (Doucet 1998, Arulampalam et al. 2002). Given the 

probability distribution p(xk-1|z0:k-1) at time k–1, the prediction stage involves using the system 

model (3) to obtain the prior probability distribution of the system state xk at time k via the 

Chapman-Kolmogorov equation: 

 

           11:01111:011:011:0    kkkkkkkkkkkkk dppdppp xzxxxxzxzxxzx  (5) 

 

where the Markovian assumption underpinning the system model (3) has been used. 

At time k, a new measurement zk is collected and used to update the prior distribution via 

Bayes rule, so as to obtain the required posterior distribution of the current state xk (Arulampalam et 

al. 2002): 
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where the normalizing constant is 

 

         kkkkkkk dppp xxzzxzz 1:01:0  (7) 

 

The recurrence relations (5) and (6) form the basis for the exact Bayesian solution. 

Unfortunately, except for a few cases, including linear Gaussian state space models (Kalman filter) 

and hidden finite-state space Markov chains (Wohnam filter), it is not possible to evaluate 

analytically these distributions, since they require the evaluation of complex high-dimensional 

integrals. 

One way to overcome this problem is to resort to Monte Carlo sampling or PF methods 

(Pulkkinen 1991, Doucet et al. 2000, Doucet et al. 2001, Seong et al. 2002). Assuming that a set of 

random samples (particles) x
i
0:k, i = 1, 2,…, Ns, of the system state at the time k-1 is available as a 

realization of the posterior probability p(xk-1|z0:k-1), the predicting step at time k is accomplished by 

sampling from the probability distribution of the system noise ωk-1 and simulating the system 

dynamics (3) to generate a new set of samples x
i
k which are realizations of the predicted probability 

distribution p(xk|z0:k-1). 

In the update step, based on the likelihoods of the observations zk collected at time k, each 

sampled particle x
i
k-1 is assigned a weight: 
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An approximation of the posterior distribution p(xk|z0:k) can be obtained in terms of the weighted 

samples (x
i
k, w

i
k), i = 1, 2,…, Ns (Doucet et al. 2001). 

One difficulty that arises in the implementation of PF is the degeneracy problem: as the 

algorithm evolves in time, the weight variance increases (Doucet 1998) and the importance weight 

distribution becomes progressively skewed, until (after a few iterations) all but one particle have 

negligible weights (Arulampalam et al. 2000, Doucet et al. 2000, Andrieu et al. 2001). As a result, 

the approximation of the target distribution p(xk|z0:k) becomes very poor and significant 

computational resources are spent trying to update particles with minimum relevance. A possible 
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solution to this problem is to proceed to a resampling of a new swarm of realizations x
i
k from the 

approximate posterior distribution, constructed on the weighted samples previously drawn; all 

particles thereby generated are assigned equal weights, w
i
k = 1/Ns (Doucet et al. 2001). 

As the final step, one has to resample from the posterior distribution a new swarm of points 

x
i
k. The prediction, update and resample steps form a single iteration, recursively applied at each 

time k. 

 

2.2 Hybrid system model 

 

Let us consider a hybrid system whose dynamic evolution can be described by: 

 

 
 
 












11

11

,

,

kkkk

kkk k

xg

ωxfx




 (9) 

 

βk = {1,2,3,…,M} is the discrete state which indicates the mode in which the system is evolving at 

time k, fβk is the non-linear function describing the (discretized) continuous evolution of system state 

x when the system is in mode βk at time k, gk is the discrete mode transition function. In what 

follows, we shall consider only autonomous transitions between the system modes, i.e. those 

triggered by the control of the continuous state x which demands transitions among the system 

modes when reaching specified thresholds. 

Let s
i
k = (β

i
k,x

i
k) indicate the i

th
 sample of the extended hybrid system state, where x

i
k is the 

random sample drawn from the importance function p(xk|x
i
k-1) and β

i
k is the corresponding discrete 

mode of system behavior. Then, the posterior probability density of the continuous and discrete 

states can be represented by the random measure {s
i
k,wk

i
,i=1...Ns}, where wk

i
 is the particle weight 

of the i
th

 sample of the hybrid state at time k after resampling. 

The estimation of system mode of operation as the most likely one is given by: 
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where  jiG i

kj
 ˆ . Whereas, the posterior estimate mean of the continuous state xk and its 

variance 2ˆ
k  are given by: 
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where only the particles belonging to the most likely mode i

k
̂  are considered  i

k

i

kj
iG  ˆˆ  . 

 

3 APPLICATION TO A TANK CONTROL SYSTEM 

 

The particle filter estimation algorithm is applied to a hybrid system of literature (Aldemir et 

al. 1994, Marseguerra et al. 1996, Labeau et al. 1998, Wang et al. 2002). The system consists of a 

tank containing a fluid whose level is controlled by three control units which open or close 
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depending on the fluid level crossing of predefined thresholds (HLV and HLP) (Figure 1). The fluid 

in the tank is uniformly heated, under adiabatic conditions, by a thermal power source W. 

 

 
Figure 1. Tank control system  (Aldemir et al. 1994, Marseguerra et al. 1996, Labeau et al. 1998, Wang et al. 

2002). 

 

 

The control aims at maintaining the fluid level x1 in the range (x1,min = HLV, x1,max = HLP), 

while also monitoring the fluid temperature x2 which may become relevant from a safety point of 

view.  

The operational states of the control units at time k are described by the Boolean indicator αl,k, 

l = 1,2,3, where αl,k assumes the value 1 or 0 according to whether the unit is on (αl,k = 1) or off (αl,k 

= 0). The autonomous control actions modify the states αl,k of the units according to the following 

rules: 
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Thus, the following four modes of system dynamic evolution may be identified: 
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With the additional simplifying physical assumptions that the fluid input in the tank by units 1 

and 3 mixes instantaneously and the flow rate through the outlet unit 2 is independent of the fluid 

level, and the discretisation of the system dynamics, the time evolution of the state x1,k and x2,k can 

be described by two first-order, decoupled, non-linear difference equations determined by the mass 

and energy conservation laws  (Wang et al. 2002). 

The aim of the analysis is that of estimating the discrete mode of the system, i.e. the 

operational states of the three control units on the basis of Ns trajectories drawn from the system 

model and a sequence of noisy measurements of the level x1,k and the temperature x2,k: 

 

 
kkk

kkk

xz

xz

,2,2,2

,1,1,1








 (15) 

 

where υ1,k and υ2,k are the measurement noises. Knowledge of the system mode of operation allows 

the proper control and maintenance of its components. 

Let us suppose that the control system starts from x1,0 =6m and x2,0 =10m. The time horizon 

considered for the evolution of the system dynamics is Nt = 40h, with level and temperature 

observations at discrete time steps of Δt = 30min (Nk = 80). As in the application of reference 

(Wang et al. 2002), the inlet fluid temperature is m  = 15ºC, the level thresholds are set at HLV = 

4m and HLP = 10m and the fluid flow rates are Q1 = 1m/h, Q2 = 4m/h and Q3 = 4.5m/h. A zero – 

mean Gaussian noise with variance σ
2

Q = 0.0025 is added to the flow rates, for closer adherence to 

reality. The process and the measurement noises are assumed Gaussian with zero mean and 

variances σ
2
ω = [0.02 0.01] and σ

2
υ = [0.16 0.05] respectively. 

Assuming independence of the level and temperature measurements, the observation 

likelihood in (8) can be written as: 
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First, a crude, measurement-based, empirical algorithm is proposed for the estimation of the 

mode βk at time k: 
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where z1,k is the level measurement at time k.  

Figure 2 shows the estimated mode ̂  (dot-dashed line) and the model simulated one β 

(solid line). The performance is not satisfactory because the noise υ1 generates spurious oscillations 

in the level measurement z1 with respect to the model-simulated x1 actually driving the mode 

transitions. 
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Figure 2. Measurement-based estimated system modes (dotted line) and model-based simulated system modes 

(solid line). 

 

 

To overcome this problem, the particle filter method is implemented with a number of 

particles Ns = 1000 (Figure 3). Figure 4 shows the particle filter-estimated mode ̂  (dot-dashed 

line) and the model simulated one β (solid line). The agreement is satisfactory, with the only 

exception in correspondence of the first time when the system enters mode β = 4, i.e. the fluid level 

is higher than HLP. This is due to the fact that the first few observations of the fluid level higher 

than HLP do not provide the filter with enough information for properly performing the mode 

estimation. This is confirmed in Figure 5, where the estimated level 1x̂  (dotted) is affected by a 

larger uncertainty k,1̂  when approaching the threshold HLP for the first time. 

 

 

Figure 3. Fluid level measurements (dotted line), with measurement noise uncertainty ±
1

1   bands (solid line); 

model-simulated fluid level (dots). 
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Figure 4. Particle filter-estimated (dotted line) and model-simulated (solid line) modes. 

 

 

 

Figure 5. Particle filter-estimated mean fluid level (dotted line), with ±
1

1   uncertainty bands (solid line) and 

model-simulated fluid level (dots). 

 

 

Figure 6. Particle filter-estimated mean of the fluid temperature (dotted line), with ±
1

1   uncertainty bands 

(solid line) and simulated fluid temperature (dots). 

 

 

Similar satisfactory results (not reported for brevity’s sake) have been obtained in the 

estimation of the temperature state variable, x2.  
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4 CONCLUSIONS 

 

In this paper, a Monte Carlo-based filter has been devised for estimating both the continuous 

states and the discrete modes of a controlled system, whose transitions between the discrete modes 

are autonomously triggered by the continuous states. Comparison with a crude algorithm which 

bases its estimates directly on the observed measurements, shows the higher performance of the 

particle filter on a wider range of measurements noises, thus counterbalancing the larger 

computational effort required. 
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