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ABSTRACT

Bootstrap and resampling methods are the computer methods used in applied statistics. They are types of
the Monte Carlo method based on the observed data. Bradley Efron described the bootstrap method in 1979
and he has written a lot about it and its generalizations since then. Here we apply these methods in an empirical
Bayes estimation using bootstrap copies of the censored data to obtain an empirical prior distribution.

1 INTRODUCTION

The bootstrap is a computer-based method used in applied statistics. It is a databased method
of simulation for assessing statistical accuracy. The term bootstrap derives from the phrase ‘to pull
oneself up by one’s bootstrap’ which can be found in the eighteenth century Adventures of Baron
Munchausen by Rudolf Erich Raspe. The method was proposed by Bradley Efron in 1979 as a
method to estimate the standard error of a parameter. The main goal of the bootstrap method is a
computer-based fulfilling of basic statistical ideas. The recent environment applications of bootstrap
can be found in toxicology, fisheries survey, ground water and air pollution modeling, hydrology
etc. Bootstrapping is a methodology whose implementation involves a powerful principle: creating
many repeated data samples from a single one we have and making inference from those samples.
We apply bootstrap in empirical estimation using the so-called bootstrap copies of the censored data
to obtain an empirical distribution.

2 BOOTSTRAP AND RESAMPLING COPIES OF THE CENSORED

 The random variable X  denotes time to failure of an element. The probability distribution of
the time to failure is defined by the cumulative distribution function (cdf)

)()( xXPxF                                                         (1)
where   is true but unknown parameter. To assess this distribution we test n identical
elements neee ,...,, 21 through the times nyyy ,...,, 21  correspondingly. Suppose, that the numbers

nxxx ,...,, 21  are the times to failures of the elements mentioned above.  A vector ),...,,( 21 nn xxxx
of the data is assumed to be the value of the random vector ),...,,( 21 nn XXXX , where random
variables nXXX ,...,, 21  are mutually independent and identically distributed (i.i.d.). That random
vector is a sample from the distribution )(F . A vector ),...,,( 21 nn yyyy  of the testing times of
elements (times of the observations, censoring points) we can treat as the value of the random vector

),...,,( 21 nn YYYY . We assume that nYYY ,...,, 21  are mutually independent random variables and they
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are also independent of X’s.  Probability distributions of the random variables nYYY ,...,, 21  are
defined by cdf

niyYPyG iii ,...,2,1),()(                                                     (2)
Those functions do not depend on the parameter  . In many cases those functions are

defined as
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It means that the quantities of nYYY ,...,, 21  are determined.
The observations are described by the random variables
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The sufficient statistic describing observations can be written as the vector
),(),...,,(( 11 nnn UU Z . The value of that random vector is )),(),...,,(( 11 nnn uu z , which

allows to obtain the vector ),...,,,..,( )()1()()2()1()( nkkn zzzzz z , where )()2()1( ,...,, kzzz  are the instants
of the elements failure and )()2()1( ,...,, nkk zzz   are the times observations of the working elements.

Suppose that we are able to estimate a parameter   by using estimator )( nn T Zθ  (or
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)(nn T Zθ  ).  The numbers )( nn T z    (or )(~

)(nn T z ) are their values. After that we can use
the distribution )(
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F  to simulate so-called bootstrap copies
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of data ),...,,( )()2()1()( nn zzzz . The bootstrap copies of data   are the values of the random vectors
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that are called the bootstrap samples. The function )(b
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If we have a vector of observation ),...,,( )()2()1()( nn zzzz  of size n , we can define the empirical

cumulative distribution function F  as
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that is equivalent to the discrete distribution
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where }:{# ))()( kik zzin  .
This distribution can be expressed as a vector of frequencies ),...,,( 21 lpppp .
Vectors of the data
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coming from distribution );( )(nzF z  are said to be resampling copies of the data
),...,,( )()2()1()( nn zzzz .
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In other words a resampling copy of the data ),...,,( )()(
2

)(
1

)( r
n

rrr
n zzz  z  is generated by randomly

sampling n times with replacement from the original data points ),...,,( )()2()1()( nn zzzz . The
randomly sampling means the random choice of an element from among )()2()1( ,...,, nzzz  in each of
n drawings. The resampling copy of the data is composed of the elements of the original sample,
some of them can be taken zero times, some of them can be taken ones or twice etc. Notice that in

),...,,( )()(
2

)(
1

)( r
n

rrr
n zzz  z  the resampling copy, the elements are repeated as a rule.

The typical number of the bootstrap B or resampling copies of the data range from 50 to 1000.

3  BOOTSTRAP ESTIMATORS

Let ),...,,( **
2

*
1 nn ZZZZ  be a bootstrap sample for the given vector of data

),...,,( 21 nn zzzz . A random variable )(   nn T Zθ  is said to be a bootstrap estimator of the
parameter .

The distribution of the statistics nn θθ   for the bootstrap sample with the fixed values data is
close to the distribution of the statistics nθ .
From that rule it follows that the shapes of the distributions of the statistics nn θθ , are similar .To
obtain empirical distribution of the random variable 

nθ we have to simulate bootstrap copies
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of data ),...,,( 21 nn zzzz . After that we calculate the values of statistics
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We can use a nonparametric kernel estimator to obtain the estimate of probability density of the
bootstrap estimator 

nθ . The value of this estimator with Gaussian kernel is given by
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4 THE BOOTSTRAP ESTIMATE OF STANDARD ERROR
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are the bootstrap replications of the statistics values
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n ,....,2,1),( )*()(                                                   (5)
and they correspond to the bootstrap censoring data.

The bootstrap estimate of the standard error of   is defined by the following formula
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The bootstrap algorithm for estimating standard errors is as follows:
- Get B independent bootstrap samples Bbzzz b

n
bbb

n ,....,2,1),,...,,( )*()*(
2

)*(
1

)*( z
    (for estimating a standard error, the number of B  should be in the range 30-200).

-     Compute the bootstrap replication correspond each bootstrap sample,
.,....,2,1),( )*()( BbT b

n
b

n  z

-     Compute the standard error 
se by the sample standard deviation of B  replications

             according to (6).

5  EMPIRICAL BAYES ESTIMATION

The recent work deal with empirical Bayes estimation has been stimulated by the work of
Robbins  (1955). It is well known that the value of Bayes estimator B  of parameter   under the
squared-loss function is an expectation in posterior distribution. If   is a value of sufficient
statistics for parameter  , than the value of Bayes estimator B  of the parameter   is
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where   denotes a discrete counting measure or Lebesgue measure and )(g  is a prior density
function of the parameter   with respect to measure  .
We suppose that a prior density of mentioned above parameter is unknown. In classical empirical
Bayesian procedure a prior distribution is assessed from the past data. Very often the only data we
have is the small sample ),...,,( 21 nzzzz .  In those cases instead of past data, we can use the
vectors Bbzzz b

n
bbb

n ,....,2,1),,...,,( )*()*(
2

)*(
1

)*( z , that are values of the bootstrap samples
corresponding to an unknown distribution )(F  of a random variable X denoting (for example)
time to failure.  The bootstrap copies for censored data are generated from the distribution )(F ,

where )( )(nT z . To estimate the unknown parameter   we have to calculate values of the

bootstrap statistics BbzT b
n

b ,....,2,1),( )*()(  of that one.  As a prior density we propose
discrete density function
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From  (7), for the counting measure   and the density function defined by (8) we obtain
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with unknown parameter  . The function is defined by the formula
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Notice that a prior distribution is constructed on the basis on the bootstrap samples. Since, a value
of bootstrap empirical Bayes estimator has the form of (9).

6  EXAMPLES

Example 1.
Suppose that we wish to estimate a failure rate    in the exponential distribution given by

pdf
0,0,)(    

 xexf x  .                                                     (11)
Assume that we have data, which is the vector

),...,,,..,( )()1()()2()1()( nkkn zzzzz z ,
where )()2()1( ,...,, kzzz  are times to failure of the tested elements and )()2()1( ,...,, nkk zzz  are times of
the working elements observations. In that case a likelihood function is
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is the value of some sufficient statistics for the unknown parameter λ. By substitution we obtain the
likelihood function

,),(   el k

which depends on  . To find the value of the maximum likelihood estimator we have to solve an
equation
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The same way, using formula (7) for the bootstrap samples
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The function (9) in this case is given by the formula
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By repetition we can obtain a sequence of values of a Bayes estimator that we can use to construct
its empirical distribution.

Example 2.
We wish to estimate a value of an exponential reliability function
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   xexR x                                                 (15)
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There is a given vector
),...,,,..,( )()1()()2()1()( nkkn zzzzz z

the coordinates of which have the same meaning as in Example 1. Let   be described by (13).
A likelihood function of the parameter   for nz  is

.),(   el k

Substituting the value of   and rer ln  we get the form of the likelihood function
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 The likelihood equation
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A root of the equation is a value of the maximum likelihood estimate of r and it has a form of
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Using the bootstrap samples
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7  CONCLUSIONS

In that paper we present the possibility of applying the bootstrap and resampling methods in
empirical Bayes estimation. The bootstrap and resampling copies of the given data are used to
construct an empirical prior distribution.

REFERENCES

1. Belyaev Yu. K.: Resampling and bootstrap methods in analysis of reliability data. Safety &
Reliability. ESREL 2001, p.1877-1882.
2. Grabski F. Jaźwiński J.: Metody bayesowskie w niezawodności I diagnostyce. WKŁ, Warszawa
2001.
3. Efron B., Tibshirani R. J.: An introduction to  the Bootstrap, Chapman & Hall, New York,
London 1993.
4. Koronacki J. Mielniczuk J.: Statystyka dla studentów kierunków technicznych i przyrodniczych,
Wydawnictwa Naukowo-Techniczne, Warszawa 2001.
5. Savĉuk W.P. Bayesian methods of  the statistical assessment. Nauka,  Moskva 1989 (Russian).


