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ABSTRACT 
 

Continuous-time Markov chains are an important subclass in stochastic processes, 
which have facilitated many applications in business decisions, investment risk analysis, 
insurance policy making and reliability modeling.  One should be fully aware that the 
existing continuous-time Markov chains theory is merely a framework under which the 
random uncertainty governs the phenomena. However, the real world phenomena often 
reveal a reality in which randomness and vagueness co-exist, and thus probabilistic 
continuous-time Markov chains modeling practices may be not wholly adequate. In this 
paper, we define random fuzzy continuous-time Markov chains, explore the related average 
chance distributions, and propose both a scheme for parameter estimation and a simulation 
scheme. It is expected that a foundational base can be established for reliability modeling 
and risk analysis, particularly, repairable system modeling.  

 
 
 
1  INTRODUCTION 
 

One should be fully aware that vagueness is an intrinsic feature of today’s diversified 
business environments. As Carvalho and Machado (2006) commented, “In a global market, 
companies must deal with a high rate of changes in business environment. … The parameters, 
variables and restrictions of the production system are inherently vagueness.” Therefore a co-
existence of random uncertainty and fuzzy uncertainty is inevitable aspect of safety and reliability 
analysis and modelling.  

It is obvious that probabilistic modeling is a good approximation to real world problem only 
when random uncertainty governs the phenomenon. Philosophically, if fuzziness and randomness 
both appear then probabilistic modeling alone may be questionable or inadequate. Therefore, it is 
logical to develop appropriate models for co-existent fuzziness and randomness. 

Markov processes have been applied to large and complex system modeling and analysis in 
the reliability literature, for example, in recent work of Kolowrocki (2007), Love et al. (2000), 
Soszynska (2007), and Tamura (2004), etc. 

We may also note that in recent year researchers in repairable system modeling, particularly 
in Asian reliability communities, proposed repair impact scenario models, which assume that the 
repair impacts to a repairable system may be classified into several states: no improvement, minor 
improvement, medium improvement, and major improvement. Hence one may utilize Kijima’s age 
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models (Kijima, 1989) to estimate those repair effects on the system repair states for optimal 
maintenance policy decision making, see Chan and Shaw (1993), Dohi et al. (2006), Lim and Lie 
(2000), Love et al. (2000), Wang, H. and Pham, H. (1996), Sheu et al. (2004), and Zhang (2002). 
However, less attention has been paid to the repair effect estimation, except for a few authors, Guo 
and Love (1992, 2004), Lim and Lie (2000), Yun et al. (2004), etc. 

In this paper, we will give a systematic treatment for random fuzzy continuous-time Markov 
chains not only in the mathematical sense (building models based on postulates and definitions), but 
also in the statistical sense (estimation and hypothesis testing based on sample data).   
 
2  PROBABILISTIC CONTINUOUS-TIME MARKOV JUMP PROCESSES 
 

Grimmett and Stirzaker (1992) and also Guo (2009) describe continuous-time Markov jump 
processes by focusing the stochastic semigroup and the rate matrix. 

Let { }, 0tX X t= ³  be a Markov chain with state space { }0,1,2, , 1N= - . Further, let  

( ) { }, Pr |ij t sp s t X j X i= = =  (1)

be the transition probabilities. For the stationary Markov chain 

( ) ( )0, , ,  ij ijp t s p s t s t- = " <  (2)

Definition 1: (Grimmett and Stirzaker (1992)) A stochastic semigroup { }P P , 0t t= ³ , with 

( )( )Pt ij N N
p t

´
=  satisfies the following properties:  

(a) 0P I= , an N N´ identity matrix; 

(b) For t" , ( )0 1ijp t£ £ , ( ) 1ijj
p t =å ; 

(c) The Chapman-Kolmogorov equations, for any , 0s t > , P P Pt s t s+ = .   

A stochastic semigroup { }P P , 0t t= ³  is standard if 0lim P It t = . The characterization of a 

stochastic semigroup { }P P , 0t t= ³  can be stated as a theorem. 

Theorem 1: For a standard stochastic semigroup { }P P , 0t t= ³ , the limit  

( )
0

( ) 1
lim ii

i ii
h

p h
q q

h

-
=- =  (3)

exists (maybe -¥ ), while the limit 

0

( )
lim ij

ij
h

p h
q

h
=  (4)

exists and is finite. Guo (2009) detailed the proof of Theorem 1. 
Definition 2: The matrix Q  

0 01 0, 1

10 11 1, 1

1,1 1,2 1, 1

Q

N

N

N N N N

q q q

q q q

q q q

-

-

- - - -

é ù-
ê ú
ê ú-ê ú= ê ú
ê ú
ê ú-ê úë û




   


 (5)

where 

0

( )
lim ij ij

ij
h

p h
q

h

-d
=  (6)

with 1,  ij i jd = = , 0 otherwise. 

Lemma 1: In the rate matrix Q, 
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1

0,

,  , 0,1, 2, , 1
N

i ij
j j i

q q i j N
-

= ¹

= = -å   (7)

The rate matrix Q characterizes the movements of the continuous-time Markov chain 
{ }, 0tX X t= ³ . The following theorem reveals that fundamental fact.  

Theorem 2: If the process { }, 0tX X t= ³  is currently halted at state i , it halts in state i  

during a time exponentially distributed with parameter iq , independently of how the process 

reached state i  and of how long it takes to get there. Furthermore, The process { }, 0tX X t= ³  

leaves state i , and moves to state j  with probability ( ) ij iq q i j¹ .  

Theorem 3. A standard stochastic semigroup { }P P , 0t t= ³  satisfies Kolmogorov equations: 

P P Q (Forward)

P QP  (Backward)

t t

t t

d

dt
d

dt

=

=
 (8)

 Corollary 1. A standard stochastic semigroup { }P P , 0t t= ³  satisfies 
QP t

t e=  (9)

where matrix 

( )Q

0

1
Q

!
it

i

e t
i

¥

=

=å  (10)

It is well-established fact that every entry of Pt ,  say ( )ijp t , can be expressed by a linear 

combination of l ter  with appropriate coefficient ( )c l , where lr is the thl eigenvalue of Q  or of 

an appropriate minor matrix of Q , i.e.,  

( ) ( )
1

0

l

N
t

ij
l

p t c l e
-

r

=

=å  (11)

Example 1: Two-state continuous-time Markov chain. Let the rate matrix  

Q
é ù-n n
ê ú= ê úl -lë û

 (12)

The eigenvalues are ( ) ( )( )1 2, 0,r r = - n+l , thus 

( ) ( )

( ) ( )
P

t t

t
t t

e e

e e

- l+n - l+n

- l+n - l+n

é ùl n n n
ê ú+ -
ê úl +n l+n l+n l+n= ê ú
ê úl l n l

- +ê ú
ê úl +n l+n l+n l+në û

 (13)

which confirms the formal result Equation (11). 
 
3  FOUNDATION OF RANDOM FUZZY PROCESSES 
 

Without a solid understanding of the intrinsic feature of random fuzzy processes, there is no 
base for exploring the modelling of random fuzzy continuous-time Markov chains. Liu’s (2004, 
2007) hybrid variable theory established on the axiomatic credibility measure and probability 
measure foundations provides the mathematical foundation. 
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Guo et al. (2009) gave a systematic review on random fuzzy variable theory. In order to 
shorten the current paper, we keep only contents necessary for notational clarity, for details, see 
Guo and Guo (2009), or directly Liu’s books (2004, 2007). 

First let us review the credibilistic fuzzy variable theory. Let   be a nonempty set, and 
 P  the power set on  .  

Definition 3: Any set function ( ) [ ]Cr : 0,1Q P  which satisfies Liu’s four Axioms (2004, 

2007) is called a credibility measure. The triple ( )( ), ,CrQ QP  is called the credibility measure 

space. 
Definition 4: A fuzzy variable   is a measurable mapping, i.e.,      : , ,     P B . 

A fuzzy variable is not a fuzzy set in the sense of Zadeh’s fuzzy theory (1965, 1978), in 
which a fuzzy set is defined by a membership function. 

Definition 5: (Liu (2004, 2007)) The credibility distribution  : 0,1   of a fuzzy variable 

  on ( )( ), ,CrQ QP  is 

    Crx x        (14)

         Liu (2004, 2007) defines a random fuzzy variable as a mapping from the credibility 
space ( ),2 ,CrQQ  to a set of random variables. 

Definition 6: (Guo et al, (2007)) A random fuzzy variable, denoted as   ,X    , is a 

set of random variables X  defined on the common probability space  , Pr A,  and indexed by a 

fuzzy variable     defined on the credibility space ( ),2 ,CrQQ .  

Definition 7: (Liu (2004, 2007)) Let x  be a random fuzzy variable, then the average chance 

measure denoted by {}ch ⋅ , of a random fuzzy event { }xx£ , is  

{ } ( ){ }{ }
1

0

ch Cr |Pr dx xx£ = q ÎQ x q £ ³a aò  (15)

Then function ( )Y ⋅  is called as average chance distribution if and only if 

( ) { }chx xY = x£  (16)

Definition 8: A random fuzzy process is a family of random fuzzy variables defined on the 
common Product measure space ( ) ( ),2 ,Cr , PrQQ ´ W A, , denoted by { },t tx = x Î , where   is an 

index set. 
Theorem 4: Let   be a fuzzy variable defined on the credibility space   , ,CrP   and 

  be a random variable defined on the probability space   , , P A , then 

(1) Let   be an arithmetic operator, which can be “  ”, “  ”, “  ” or “  ” operations, such that 
   maps from   , ,Cr P  to a collection of random variables on   , , P A , denoted by  . 

Then   is a random fuzzy variable defined on hybrid product space      , ,Cr , , P    P A . 

(2) Let :f     be a continuous mapping, such that  ,f    maps from   , ,Cr P  to a 

collection of random variables on   , , P A , denoted by  . Then  ,f    is a random 

fuzzy variable defined on hybrid product space      , ,Cr , , P    P A . 
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(3) Let  ;F x   be the probability distribution of random variable  with parameter   (possibly 
vector-valued), then  ;F x   defines a random fuzzy variable   on the hybrid product space 

     , ,Cr , , P    P A . 

         Note that Theorem 4 merely repeats facts stated in Liu’s books, (2004, 2007).  
 
4  STATIONARY RANDOM FUZZY CONTINUOUS-TIME MARKOV CHAIN 
 

Let { }, 0tX X t= ³  be a Markov process with a standard stochastic semigroup { }P P , 0t t= ³  

having a fuzzy rate matrix Q defined on credibility space ( )( ), ,CrQ QP  with credibility distribution 

function matrix ( )ij N N´
L= L . Then by a direct application of Theorem 4, Item (3), a random fuzzy 

continuous-time Markov chain can be obtained.  
Definition 9: A process is called a random fuzzy continuous-time Markov chain 

{ }, 0t tx= x ³  taking values in set { }0,1,2, , 1N= - , if   

(a) { }, 0t tx= x ³  satisfies a Markov property:  

{ }
{ }

1 21 2Pr | , , ,

Pr |

t t t s

t s

j i i i

j i

x = x = x = x =

= x = x =


 (17)

for all 1 2t t s t< < < <  and any 1 2, , , ,i i i j Î  . 

(b) the stochastic semigroup { }P P , 0t t= ³  is standard; 

(c) and the fuzzy rate matrix 

( )
0

P I
Q lim t

ij N N t
q

t´ 

-
= =  (18)

is defined on credibility space ( )( ), ,CrQ QP  with credibility distribution function matrix 

( )ij N N´
L= L . 

It is obvious that in Definition 9 for a given value of matrix 0Q Q= , { }, 0t tx= x ³  is a 

probabilistic continuous-time Markov chain. However, if Q  is a fuzzy matrix, then for any given 
time t , the count tx is a random fuzzy variable according to Theorem 5. Therefore, Definition 9 
defines a stationary random fuzzy Poisson process.  

Theorem 5: If the process { }, 0t tx= x ³  is currently halted at state i , it halts in state i  

during a a time interval which is exponentially distributed with fuzzy parameter iq , independently 
of how and when the process reached state i  and of how long it has been there. Furthermore, The 
process { }, 0t tx= x ³  leaves state i , and moves to state j  with a fuzzy probability 

( ) ij iq q i j¹ .  

Proof: A straightforward application of Definition 9 and Theorem 2. 
Corollary 2: If ijq  ( )i j¹ , , 0,1, , 1 i j N= - , follow piecewise linear credibility 

distributions 
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( )
( )

( )

0        

 
2

,  
2

2

1          

ij

ij
ij ij

i ij

ij
ij ij

ij ij

ij ij

ij

x a

x a
a x b

b a
x i j

x c b
b x c

c b

x c

ì <ïïïï -ïï £ <ïï -ïïL = ¹íï + -ï £ <ïï -ïïïï ³ïïî

 (19)

The halting times, denoted by iT , 0,1, , 1i N= - , are independent random fuzzy exponential 

variables with fuzzy parameter i ijj
q q=å  following a piecewise linear credibility distribution 

( )
( )

( )

0        

 
2

,  
2

2

1          

i

i
i i

i i

i
i i

i i
i i

i

x a

x a
a x b

b a
x

x c b
b x c

c b

x c

ì <ïïïï -ï £ <ïï -ïïL =íï + -ï £ <ïï -ïïïï ³ïî

 (20)

where 
1

1,

1

1,

1

1,

N

i ij
j j i

N

i ij
j j i

N

i ij
j j i

a a

b b

c c

-

= ¹

-

= ¹

-

= ¹

ìïï =ïïïïïïï =íïïïïïï =ïïïî

å

å

å

 (21)

Thus the average chance distributions (for holding times) are 

( ) ( ) ( ){ }

( ) ( )

1

0

= Cr : ln 1 d

       1
2 2

i i i i

i i

b t a t c t b t

i i i i

t q t

e e e e

b a t b c t

- - - -

Y ³- -

- -
= + +

- -

ò q q a a

 (22)

Proof: Note that 

  Pr 1 iq t
iT q t e    (23)

Therefore the event ( )( ){ }{ }: Pr iT q t£ ³q q a  is a fuzzy event and is equivalent to the fuzzy 

event ( ) ( ){ }: ln 1iq t³- -q q a . As a critical part of the derivation of the average chance 

distribution, it is necessary to calculate the credibility measure for fuzzy event 
( ) ( ){ }: ln 1iq t³- -q q a , i.e., to obtain the expression for 

( ) ( ){ }Cr : ln 1iq t³- -q q a  (24)

Recall that for the credibilistic fuzzy variable, i ijj i
q q

¹
=å , the credibility measure takes the 

form 
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( ){ }
( )

( )

1           

2
 

2
Cr : ,  

    
2

0           

i

i i
i i

i i

i
i

i i
i i

i

x a

b a x
a x b

b a
q x

c x
b x c

c b

x c

ì <ïïïï - -ï £ <ïï -ïï> =íï -ï £ <ïï -ïïïï ³ïî

q q  (25)

Accordingly, the range for integration over a can be determined as shown in Table 1. Recall that 
the expression of ( )ln 1x ta=- -  appears in Equation (25), which constitutes the link between 

intermediate variable   and average chance measure. 
The average chance distribution for the exponentially distributed random fuzzy lifetime is 

then derived by splitting the integration into five terms according to the range of   and the 
corresponding mathematical expression for the credibility measure ( ) ( ){ }Cr : ln 1iq t³- -q q a , 

which is detailed in the following table. 
 

Table 1.  Range analysis for   
 

x a  and credibility measure expression 

x a-¥< <  Range for a  0 1 ate-£ £ -a  

( ) ( ){ }Cr ln 1 t³- -l q a  1 
a x b£ <  Range for a  1 1at bte e- -- < £ -a  

( ) ( ){ }Cr ln 1 t³- -l q a  ( ) ( )( )1 2x a b a- - -  
b x c£ <  Range for a  1 1bt cte e- -- < £ -a  

( ) ( ){ }Cr ln 1 t³- -l q a  ( ) ( )2c x c b- -  
c x£ <+¥  Range for a  1 1cte-- < £a  

( ) ( ){ }Cr ln 1 t³- -l q a  0 

 
Then the exponential random fuzzy lifetime has an average chance distribution function:  

( ) ( ) ( ){ }

( ) ( )

1

0

= Cr : ln 1 d

       1
2 2

bt at bt ct

t t

e e e e

b a t c b t

- - - -

Y ³- -

- -
= + +

- -

ò q l q a a

 (26)

and the average chance density is 

( )
( ) ( )

( ) ( )

2

2

=
2 2

       
2 2

at bt bt at

bt bt ct bt

e e be ae
t

b a t b a t

e e ce be

c b t c b t

- - - -

- - - -

- -
+

- -

- -
+ +

- -

y
 

(27)

This expression concludes the proof. 
Similarly to the probabilistic reliability theory, we define a reliability function or survival 

function for a random fuzzy lifetime and accordingly name it as the average chance reliability 
function, which is defined accordingly as 

( ) ( )1t tY = -Y  (28)

Then, for an exponential random fuzzy lifetime, the average chance reliability function is 
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( )
( ) ( )

=
2 2

at bt bt cte e e e
t

b a t c b t

- - - -- -
Y +

- -
 (29)

Remark 1: The average chance distributions of jump probabilities ij jq q do not have closed 

forms, which require the application of Zadeh’s extension theorem (1978). However, the values of 
fuzzy probability ij jq q  fall in intervals 

min , ,max ,ij ij ij ij

ij ij ij ijj i j i j i j i

a c a c

a c a c
¹ ¹ ¹ ¹

é ùæ ö æ ö÷ ÷ç çê ú÷ ÷ç ç÷ ÷ê úç ç÷ ÷ç ç÷ ÷ê ú÷ ÷ç çè ø è øë ûå å å å
 (30)

which will inform the explorations of the process { }, 0t tx= x ³ . 

 
5  NON-STATIONARY RANDOM FUZZY CONTINUOUS-TIME MARKOV CHAIN 
 

The probabilistic non-stationary continuous-time Markov chain is an extension to the 
stationary case except that the rate matrix is function of time, i.e., time-dependent. Hence, a non-
stationary random fuzzy continuous-time Markov chain can be defined as follows. 

Definition 10: A process is called as random fuzzy continuous-time non-stationary Markov 
chain { }, 0t tx= x ³  taking values in state space { }0,1,2, , 1N= - , if: 

(a) { }, 0t tx= x ³  satisfies Markov property:  

{ }
{ }

1 21 2Pr | , , ,

Pr |

t t t s

t s

j i i i

j i

x = x = x = x =

= x = x =


 (31)

for all 1 2t t s t< < < <  and any 1 2, , , ,i i i j Î  . 
(b) for s t" < , ( ) { }, Pr |ij t sp s t j i= x = x = , the transitional probabilities satisfy: 

(i) for a small time-increment h, { }, 0t tx= x ³  moves from state i  to state j  with (fuzzy) 

probability: 

( ) ( ) ( ) ( ),  0ij ijp t t h q t h o h h i j+ = +  ¹  (32)

(ii) for a small time-increment h, { }, 0t tx= x ³  remaining in state i  with (fuzzy) probability:  

( ) ( ) ( ), 1  0ii ip t t h q t h o h h+ = - +   (33)

where the rate functions are given by 

( ) ( )
1

0,

,  0,1, , 1
N

i ij
j j i

q t q t i N
-

= ¹

= = -å   (34)

(c) The parameters of rate functions, i.e., the entries of the fuzzy rate matrix ( ) ( )Q ( )ij N N
t q t

´
=  are 

credibilistic fuzzy variables defined on the common credibility measure space ( )( ), ,CrQ QP . 

 Theorem 6: If the process { }, 0t tx= x ³  is currently halted at state i , it halts in state i  

during a time interval that is exponentially distributed with fuzzy parameter ( )iq t , independently of 

how and when the process reached state i  and of how long it has been there. Furthermore, the 
process { }, 0t tx= x ³  leaves state i , and moves to state j  with a fuzzy probability 

( ) ( ) ( ) ij iq t q t i j¹ .  

Corollary 3: The probability distribution of halting times given the current state 

1 1lw lx
- -x = Î , is 



R. Guo, D. Guo, and T. Dunne – RANDOM FUZZY CONTINUOUS‐TIME MARKOV JUMP PROCESSES 
RT&A # 2 (17) 

(Vol.1) 2010, June 
 

 

130  

{ }
( )( ) ( )( )

1

1 1

1 1

1 1

Pr ,

exp

l

l l

l l w l

x l x l

W w t x

m w t m w t

-

- -

- -

- -

- > x = =

- + - +
 (35)

where 

( ) ( )
0

t

i im t q u du= ò  (36)

is called the thi integrated rate function. 
Example 2: Assume a linear rate function:  

( ) ( )0, 1, 0, 1,,  , 0,  0ij ij ij ij ijq t t j i= b +b ¹ b > b >  (37)

Further, we assume that 0b  and 1b both have piecewise linear credibility distribution:  

( ) ( )

( )

( )

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( )

0        

 
2

,  0,1
2

2

1          

k
ij

k
k kij

ij ijk k
ij ij

k
ij k k

k kij ij
ij ijk k

ij ij

k
ij

x a

x a
a x b

b a
x k

x c b
b x c

c b

x c

ìï <ïïïï -ïï £ <ïï -ïïL = =íï + -ïï £ <ïï -ïïïïï ³ïî

 (38)

Then the diagonal entries ( )iq t , 0,1, , 1i N= - , have credibility distributions 

( )
( )

( )

0        

 
2

,  0,1, , 1
2

2

1          

i

i
i i

i i

i
i i

i i
i i

i

x a

x a
a x b

b a
x i N

x c b
b x c

c b

x c

ì <ïïïï -ï £ <ïï -ïïL = = -íï + -ï £ <ïï -ïïïï ³ïî

  (40)

where 

( ) ( )( )
( ) ( )( )
( ) ( )( )

1
0 1

0

1
0 1

0

1
0 1
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i ij ij
j

N

i ij ij
j

N

i ij ij
j

a a a t

b b b t

c c c t

-

=

-

=

-

=

ìïï = +ïïïïïïï = +íïïïïïï = +ïïïî

å

å

å

 (41)

The integrated diagonal entries of ( )Q t :  

( ) 2
0, 1,i i im t t t= b +b  (42)

will have credibility distributions: 
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 (43)

where 
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0 1 2
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1
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å

å
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 (44)

In general, to obtain the credibility distribution denoted as ( )im tL ,  of the integrated intensity 

function ( )m t , it is necessary to apply Zadeh’s extension principle (1978), but for the piecewise 

linear credibility distribution case, the mathematical arguments are relatively simple. 
Now let us derive the average chance distribution for the first halting times at thi  state (the initial 
state).  

( ) ( ){ }( )
1

1

0

Cr : PrT t T t dY = q q £ ³a aò  (45)

Note that for the first arrival time, 

( ){ }{ }

( )

( ){ }
( ) ( ){ }

1

0 1

0

: Pr

:1 exp

:1

: ln 1

t

m t

T t

u du

e

m t

-

q q £ ³a

ì üæ öï ï÷ï ïçï ï÷ç= q - - b +b ³aí ý÷ç ÷ï ï÷çè øï ïï ïî þ

= q - ³a

= q ³- -a

ò
 (46)

Therefore, the average chance distribution for 1T , the first halting at state i, is 

( )

( ){ }( )

( )( )

1

1

0

1

0

Cr : Pr

Cr : ( ) ln 1

iT t

T t d

m t d

Y

= q q £ ³a a

= q ³- -a a

ò

ò

 
(47)

We observe that ( )ln 1y =- -a , therefore,  
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 (48)

Hence,  
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(49)

 
6  A PARAMETER ESTIMATION SCHEME  
 

Here parameter estimation is essentially a problem of estimation of credibility distributions 
from fuzzy observations. Guo and Guo (2009) recently proposed a maximally compatible random 
variable to a credibilistic fuzzy variable and thus the fuzzy estimation problem is converted into 
estimating the distribution function of the maximally compatible random variable. The following 
scheme is for estimating a piecewise linear credibility distribution. 

Definition 11:  Let X  be a random variable defined in   , B  such that 

Crc P X      1 1  (50)

Then X  is called a maximally compatible to fuzzy variable . 
In other words, a random variable X can take all the possible real-values the fuzzy variable   

may take and the distribution of X  , ( )XF r  equals the credibility distribution of x , ( )rxL  for all 

r . 
It is observed that the induced measure Crc    1  and measure P X  1  are defined on the 

same measurable space   , B . Furthermore, we note that the pre-image    B   1 P , but the 

pre-image      X B    1 A P , which implies that for the same Borel set  B B ,  the pre-

images under fuzzy variable   and random variable X  are not the same. It is expected that 

( ){ } ( ){ }: :X r rq ÎQ q £ Í qÎQ x q £  (51)

but  

( ){ } ( ){ }Pr : Cr :X r rq ÎQ q £ = qÎQ x q £  (52)

The statistical estimation scheme for parameters  , ,a b c  of the credibility distribution based 

on fuzzy observations  1 2, , , nx x x  can be stated as: 

Estimation Scheme 1: 
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Step 1: Rank fuzzy observations  1 2, , , nx x x to obtain “order” statistics       1 2, , , nx x x  in 

ascending order; 
Step 2: Set  1â x  and  ˆ

nc x ; 

Step 3: Set a tentative estimator for b ,  

   14
ˆ

2

n n

e

x x x
b

 
  (53)

where 

1

1 n

n i
i

x x
n 

   (54)

Step 4: Identify ( )0i
x  from       1 2, , , nx x x  such that ( ) ( )10 e ii

ˆx b x£ <  and 0 11 i i  , then we 

may see       
01 2, , , ix x x  as a set of order statistics from uniform [a,b]. Hence the “sufficient” 

statistic for parameter b  is ( )0i
x . 

Then         
01

ˆ垐, , , , nia b c x x x  is the parameter estimator for the piecewise linear credibility 

distribution.  

 
 

 

ˆ0      

ˆ ˆˆ
ˆ ˆ2

ˆ
ˆˆ 2 ˆ ˆ

ˆˆ2

ˆ1         

x a

x a
a x b

b a
x

x c b
b x c

c b

x c


   
 
  

    
 

 (55)

The next issue is how to extract the information on matrix rate Q  in the stationary random 
fuzzy continuous-time Markov chain. Basawa and Prakasa Rao (1980) developed a maximum 
likehood procedure for estimating the entries ijq in Q. 

It is noted that for a given random fuzzy continuous-time Markov chain { },t t tx= x ³ , if we 

fix the fuzzy rate matrix at a given value 0Q , then { },t t tx= x ³  becomes a probabilistic 

continuous Markov chain, Obtain the sample of the process: 
( ) ( ) ( ){ }1 1 2, 0 , , , , , N NK N X W X W W W X W

t tt t= + +  , which is sufficient. Then an MLE estimator for 0Q  

, denoted as 0Q̂  is obtained. Repeat the sampling procedure from the random fuzzy continuous-
time Markov chain as many times as possible, say, m  times, then the fuzzy rate matrix 
“observation” sequence is  

{ } ( )( ) ( )( ) ( )( ){ }1 2
1 2

垐 ? 垐 ?Q ,Q , ,Q , , , m
m ij ij ijq q q=   (56)

Apply the Estimation Scheme 1 to the estimated observations at ( ),
th

i j  entry of rate matrix 

Q  ( ) ( ) ( ){ }1 2垐 ?, , , m
ij ij ijq q q , then the piecewise linear credibility distribution shown in Equation (55) for ijq .  

For the non-stationary random fuzzy continuous-time Markov chain, the parameters 
specifying the rate matrix ( )Q ;t b , we may use a maximum likelihood procedure for estimating the 

parameters that define fuzzy parameters b . Therefore the idea is similar to that of stationary case 

but the credibility distribution treatments involved may be very complicated, since Zadeh’s 
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extension principle (1978) must be applied.  And mean measure involves two linear piecewise 
credibility distributions for fuzzy parameters 0b  and 1b  respectively.  
 
7  A SIMULATION SCHEME 
 

Simulation of a random fuzzy continuous-time Markov chain is intrinsically two-stage 
procedure: a fuzzy parameter simulation for generating realizations ( )( ) ( )( ) ( )( ){ }1 2, , , m

ij ij ijq q q  from a 

matrix of credibility distribution functions ( )ijL  and then for each realization of ( )ijq , a 

probabilistic continuous-time Markov chain is simulated. Repeat this procedure until all the ( )ijq  

realizations are complete. 
As to the fuzzy parameter simulation, following Guo and Guo (2009), we utilize the concept 

of a maximally compatible random variable to a fuzzy variable and the inverse transformation of 
the probability distribution function approach to generate fuzzy variable realizations. An algorithm 
is stated as follows:  

Simulation scheme 1: 
Step 1: Simulate a uniform random variable U[0,1], and denote the simple random sample as 

 , , , nu u u1 2  ; 

Step 2: Set    ,  , , ,i ix u k n   1 2 ; 

Step 3: Set  ,  , , ,ix i n 1 2 : 

( )
( )

2 if 0 0.5

2 2 if  0.5 1
i i

i
i i

a b a u u
x

b c c b u u

ì + - £ £ïï=íï - + - £ £ïî
 (57)

Then  , , , nx x x1 2   is a sample from the fuzzy variable   with a piecewise linear credibility 

distribution . 
Step 4: Repeat Step 1 to Step 3, until m  realizations of fuzzy rate matrix { }1 2Q ,Q , ,Qm  are 

obtained. 
Step 5: For each rate matrix, say, Qi , simulate a probabilistic continuous-time Markov chain, 

until m  set of realizations of random fuzzy continuous-time Markov chain are obtained. 
It should be mentioned that simulating a probabilistic continuous-time Markov chain is well-

established in the literature. 
 
8  CONCLUSION 
 

In this paper, we give a systematic treatment of random fuzzy continuous-time Markov chains 
not only for the stationary one, and then for the non-stationary case, but also propose a parameter 
estimation scheme and a simulation scheme. In this way, the foundation is provided for the random 
fuzzy continuous-time Markov chains, although in its early stage. The applications to reliability 
engineering fields and the risk analysis now can extend from case with only random uncertainty to 
case with both co-existing randomness and fuzziness. It is expected that this development will assist 
reliability and risk analysis researchers as well as reliability analysts and engineers. 
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