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ABSTRACT 
 

The paper is concerned with the construction of lower bounds for the reliability of a system when 
statistical data come from independent tests of its elements. The overview of results known from literature 
and obtained under the assumption that elements in a system are independent is given. It has been 
demonstrated using a Monte Carlo experiment that in case when these elements are dependent and when 
their dependence is described by Clayton and Gumbel copulas these confidence bounds are not satisfactory. 
New simple bounds have been proposed which in some practical cases perform better than the classical ones.  

 
 
 
1  INTRODUCTION 
 

Reliability indices of complex systems can be estimated from the results of lifetime tests. When 
a system is treated as a one entity we can distinguish two different types of reliability tests. In the 
first one, we observe consecutive failures of a system, and after each of them a failed system is 
completely renewed. In such a case, random times between consecutive failures are described by 
random variables having independent and identical probability distributions. If this assumption is true, 
we can estimate a required reliability characteristic using a sample of observed lifetimes. In the 
second case, we have to observe several identical systems working in the same conditions. Times to 
first failures of these systems constitute a sample which may be used for the estimation of the 
considered reliability characteristic. In both cases, however, we need to have either sufficiently long 
time of test or sufficiently large number of observed systems. Both these requirements are seldom 
met in practice. Thus, this method of the reliability estimation is rarely used in practice despite the 
fact that from a statistical point of view the required estimators are obtained in the simplest possible 
way. Moreover, in such a case we do not profit from the information about the structure of the 
considered system, and from the knowledge of times to failure of its elements.  

In practice we are frequently faced with a different problem: how to evaluate reliability 
characteristics of a system on its design stage. There exist many methods for the prediction of 
reliability using available statistical data. In this paper we consider the simplest one, when we can 
utilize the results of reliability tests of system’s elements performed in presumably the same 
conditions as the conditions of work of the designed complex system. 

Research studies on statistical methods aimed at the estimation of system’s reliability using the 
results of reliability tests of its elements were initiated independently in the 1950s in the United 
States and the Soviet Union, where they were performed by prominent mathematicians and 
statisticians. Some strong mathematical results were obtained, and these results can be used for both 
point and interval estimation of system’s reliability using the data obtained for its elements or 
subsystems. In this paper we will focus our attention on the interval estimation. The reason for the 
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importance of the results of this type stems from practice. Usually we can use scarce reliability data, 
and thus the obtained point estimators are not very precise. Therefore, we need to know some lower 
bounds for the predicted reliability characteristics.  

Preliminary analysis of the theoretical results shows undoubtedly that even in the cases of 
simple systems exact analytical methods require utilization of complex mathematical tools such as 
nonlinear mathematical programming. On the other hand, interesting approximate results, obtained 
mainly by American researchers, can be used in practice when a sufficiently large number of failures 
have been observed. For this reasons already in the 1980s the reliability theoreticians lost their 
interest in further research on those problems. However, the problem is still interesting for 
practitioners who need approximate, or even heuristic, methods which may be used for the 
prediction of reliability using existing statistical data.  

The paper is partly based on the lecture for young scientists working in the area of reliability. 
Therefore the purpose of this paper is two-fold. In first six sections we give a short overview of 
different methods for the construction of confidence intervals for the reliability of systems. In all 
these methods it has been assumed that the elements of a system are independent. In the last section 
of the paper we present new heuristically designed bounds which seem to be robust to deviations 
from this assumption in certain practical cases. 

 
2  GENERAL METHODOLOGY FOR THE EVALUATION OF SYSTEM’S 

RELIABILITY 
 

Evaluation of reliability of complex systems became the subject of intensive theoretical 
investigation in the beginning of 1960s. Fundamental results were summarized in the famous book 
(Barlow & Proschan 1965). In the developed mathematical models we assume that both the system 
as a whole, and system’s elements at any time instant t>0 are either in the state of functioning (or 
failure-free state), when the random variable X(t) describing the reliability state adopts the value 1, or  
in the state of failure, when this random variable adopts the value 0. When the considered system 
consists of m elements, then its reliability state is described by the random vector X=(X1,X2,…,Xm), 
and the probability of the observation of  any reliability state is given by 
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where 
     n,,i,XEXPp iii 11  .     
 (2) 
In the above formulae we have omitted time t assuming that in case of specific calculations it adopts 
the same value for all components of the random vector. 

Reliability state of the whole system depends on the states of all individual system’s elements. 
Denote by  the set of all 2m possible states of system’s elements. We can divide this set into two 
exclusive subsets: the subset of all functioning states of the system G, and the system of all failure 
states of this system  G  ( GG ). The function 
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 (3) 
is called the structure function, and it describes the relation between reliability state of the whole 
system and reliability states of its elements. The effective construction of this function is the subject 
of numerous research works. Particular results may be found in all classical textbooks on reliability 
such as (Barlow & Proschan 1965, 1975). 
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Probability that the considered system is in the failure-free state depends on the vector 
p=(p1,p2,…,pm) that describes the probabilities of failure-free functioning of system’s elements, and 
system’s reliability structure function. It is given by the function called the reliability function which 
is given by the following formula 
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 (4) 
Below, we present the respective formulae for the reliability structures which are most frequently 
met in practice. 
a) In case of a system with series reliability structures which consists of m groups of identical ni, 
i=1,…,m elements we have: 

   



m

i

n
i

ipR
1

p  (5) 

b) For the system with a parallel reliability structure which consists of m elements the respective 
formula is given by 
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c) In case of a series-parallel reliability system which consists of m connected in series groups, where 
each of these groups consists of ni connected in parallel identical elements, the reliability function is 
given by the formula: 
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d) For a parallel-series system consisting of m connected in parallel groups, where each of these 
groups consists of ni identical elements connected in series, the reliability function is given by the 
formula: 
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In formulae (5) – (8) pij denotes the probability that the j-th element in the i-th subsystem is in a 
failure-free state. 

The systems with structures described above belong to a more general class of systems called 
coherent systems, or systems with monotonic structure. The system has monotonic structure if 
    YX          
 (9) 
holds when XiYi, i=1,...,m, and when  
      10  10  , , (10) 
with 0=(0,…,0) and 1=(1,…,1). For systems with a monotonic structure the reliability function can 
be always computed. However, for large and complex systems this can be a hard computational task. 

In order to compute the probability that the system is in the failure-free state we need to know 
the estimates of the elements of the vector p. These estimates can be obtained from the results of 
reliability tests. We assume that for each of system’s elements we have the results of independent 
reliability tests. From these tests we obtain the vector of estimates p*=(p1

*, p1
*,…, pm

*). The 
estimators pi

* are unbiased estimators of unknown probabilities pi only in certain particular cases. 



O. Hryniewicz – CONFIDENCE BOUNDS FOR THE RELIABILITY OF A SYSTEM FROM SUBSYSTEM DATA 

 
RT&A # 02(17)  

(Vol.1) 2010, June 
 
 

 

148 

However, in the majority of practical cases, when we apply the maximum likelihood method of 
estimation, these estimators are asymptotically unbiased, but in practice the conditions of 
asymptotics usually do not hold due to the limited number of the pertinent statistical data. The 
knowledge of estimates p*=(p1

*, p1
*,…, pm

*) allows for simple estimation of the reliability R(p). In 
such a case we apply the method of substitution. We substitute in (4) unknown probabilities p with 
their estimates p*. The estimator of the reliability of the whole system R(p*) is unbiased only in a 
particular case of systems with a series reliability structure and unbiased estimators of pi. In all other 
cases R(p*) is biased or at best asymptotically unbiased. Therefore, in practical situations the 
estimates of the system’s reliability are very uncertain, and we need to have methods for the 
computation of lower bounds for its possible value. Such bounds may be obtained by the calculation 
of confidence intervals for R(p). 

Let us now consider a system consisting of element s of m different types. Suppose that the 
reliability of the element of the i-th type, i=1,…,m, is a certain function of a parameter i  whose 
value is unknown. Thus, we may assume that the reliability of the whole system is described by a 
function R() which depends on the vector m) of parameters describing the reliability 
of system’s elements. Moreover, we assume that the information from reliability tests of system’s 
elements is denoted by xi, i=1,…,m. Thus, the results of the tests are described by a vector x=(x1, 
x2,…, xm). We have to note that the values of i and xi only in special cases are represented by single 
numbers. In a general case they are represented by vectors of numbers. The interval  R,R , where 

 xRR   and  xRR   is the two-sided confidence interval, calculated on the confidence level    
for the unknown value of R() if the following condition is fulfilled 
     RRRP θθ . (11) 

In an analogical way we can define one-sided lower and upper confidence intervals for the 
reliability function R(). In the sections which follow we present methods for the calculation of such 
confidence intervals. In this presentation we use notation given in the book (Gnedenko et al. 1999). 
 
3  CONFIDENCE INTERVALS FOR SYSTEM’S RELIABILITY IN THE CASE OF 

DISCRETE RELIABILITY DATA 
 

Let us consider the problem of reliability estimation when the results of reliability tests of 
system’s elements are available in a discrete form. Let us assume that the elements of all types are 
independently tested in exactly the same conditions as the work conditions of the considered system. 
In the simplest case we test samples of size Ni, i=1,…,m, for all m types of elements, and the 
duration of all tests is the same, and is equal to t.  In this simplest case we assume that we know the 
reliability state of each tested element at the end of the test. Thus, we assume that we know the 
numbers of elements di, i=1,…,m, which failed during the test. The test result is described, therefore, 
by pairs of integer numbers (di,Ni), i=1,…,M. In such a case we say that the reliability tests, also 
known as pass-fail tests, are performed according to a binomial scheme. In this simple case there 
exists an unbiased estimator of the reliability of a tested element given by a simple formula  

 mi
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 (12) 

The random number of the observed failures is thus described by the binomial distribution 
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  (13) 

Calculation of the confidence interval for the reliability pi is not simple. For a given confidence level 
one can calculate the confidence interval using a so called fiducial approach. The respective 
formulae are known as the Clopper-Pearson formulae, and in the considered case of reliability 
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estimation they have the form given in (Gnedenko et al. 1999). The lower bound p  of the one-sided 
confidence interval for the reliability p is given as the solution of the following equation 
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, (14) 

and the upper bound p  of the one-sided confidence interval for the reliability p is given as the 
solution of the equation 
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In case of d=N we have 1p , and when d=0 we have 0p . It is worth noticing that if we replace 
1– in (14) – (15)with0,5< and 0,5<, respectively, we can use these formulae for the 
calculation of a two-sided confidence interval for the reliability p on the confidence level equal to  1– 
.  

When the probability of a failure is low, or when reliability is high, i.e. when the strong 
inequality qi=1–pi<<1, i=1,…,m holds, and when the number of tested elements Ni, i=1,…,m is large, 
the probability distribution of the number of failed elements di, i=1,…,m can be approximated by the 
Poisson distribution with the parameter i=qiNi, and the probability mass function given by the 
formula 

   m,,i,e
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 (16) 

This approximation is valid when in case of q  and N   the condition Nq=const holds.  
One-sided confidence intervals for the parameter  of the Poisson distribution can be found by 

solving the following equations 
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When d = 0 we have 0 . For further calculation we can use the connection between the Poisson 
distribution and the special case of the gamma distribution, namely the chi-square distribution. The 
confidence intervals can be thus calculated from the formulae: 

  d2
2
1 2

  , (19) 

                   22
2
1 2

1   d , (20) 

where  n2
  is the quantile of order    of the chi-square distribution with n degrees of freedom. 

Similarly, as in the case of the binomial distribution, for  0,5< and 0,5<we can use(19) – 
(20) for the calculation of the two-sided confidence interval for the parameter   on the confidence 
level 1 – .  

The Poisson distribution can be also used when the times to failure are described by the 
exponential distribution. When all elements failed during the test are replaced by new ones, and the 
duration of the test is equal to T, the observed number of failures is described by the Poisson 
distribution with the parameter , where  is the failure (hazard) rate in the exponential 
distribution, and N is the number of simultaneously tested elements. Confidence intervals for the 
parameter  (and for the failure rate ) are in this case calculated from the formulae (19) – (20). 
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4  CONFIDENCE INTERVALS IN THE ABSENCE OF OBSERVED FAILURES 
 

Contemporary technical systems are built of very reliable elements. For such elements we 
usually do not observe failures during reliability tests. In such a case, the point estimation of system’s 
reliability is trivial, and is equal to 1. However, we are interested in the lower bound for this 
characteristic which may be interpreted as kind of guaranteed reliability. Suppose, that for each of 
the m types of elements the system is built of we test Ni, i=1,…,m, elements, and in every case the 
number of observed failures is di = 0, i=1,…,m. For such results tests the upper bound for the 
confidence interval is always equal to 1R . On the other hand, it is possible to calculate the lower 
bound R  of the confidence interval for the reliability of the considered system. In the book 
(Gnedenko et al. 1999), where results of many works were summarized, it has been shown that the 
computation of this bound is equivalent to solving the following optimization problem 
  p

p
RminR

H 0
 , (21) 

where the set H0 contains all values of the vector p=(p1,p2,…,pm) such that 
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and 
 m,,i,pi 110  . (23) 

In many interesting cases there exist closed solutions to this optimization problem. In case of a 
series system such solution was given in (Mirnyi & Solovev 1964). They showed that the lower 
bound of the confidence interval for system’s reliability is given by a simple formula 
 

ii
pminR   (24) 

where 
i

p  is the lower bund of the one-sided confidence interval, calculated according to the 
Clopper-Pearson method (14). It is easy to show that this bound can be calculated from an 
equivalent formula  
   

 NR 11   (25) 
where 
 ii

NminN  . (26) 

For systems with a more complicated structure very strong theoretical results were obtained in 
(Pavlov 1982) who considered systems with a convex cumulative risk function defined as follows 
    tHetR  . (27) 
He has shown that for such systems 
  1111 ,,,p,,,RminR

ii
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where 
   m,,i,p iN

i
11 1   . (29) 

The solutions of this problem for parallel, series-parallel, parallel-series, and k-out-of-n systems have 
been presented in the book (Gnedenko et al. 1999). For example, in the case of a system with a 
parallel reliability structure, consisting of n different elements the lower bound of the one-sided 
confidence interval for system’s reliability is given by: 
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where t is the solution of the following equation 
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In a particular case, when N1=…=Nn=N Tyoskin and Kurskiy obtained a simple analytic solution (see 
(Gnedenko et al. 1999)) 
   nnNR 1111  . (32) 

For systems with a more general coherent structure such simple solutions do not exist. 
However, in the book (Gnedenko et al. 1999) two boundaries for the lower bound of the confidence 
interval have been proposed. Consider the set of all minimal cuts of the system, and assume that the 
minimal cut with the smallest number of elements consists of b elements. Then, consider the set of all 
possible minimal paths. For this set consider its all possible subsets consisting of independent, i.e. 
having no common elements, paths. Let a be the number of such paths in the subset with the largest 
number of independent paths. Assume additionally, that for each type of system elements exactly N 
elements have been tested.   The boundaries for the lower bound for the system’s reliability are the 
given by  
      bNbaNa R 11 111111    (33) 
In a particular case of  a = b we have 
   bNbR 1111   (34) 
The authors of (Gnedenko et al. 1999) notice, that this case is typical for many reliability structures 
such as lattice or radial structures which are typical for large network systems. 

Another very interesting method for the calculation of the lower bound of the confidence 
interval for system’s reliability was presented in (Gnedenko et al. 1999). Let us assume that the same 
vector of reliabilities p=(p1,p2,…,pm) is used for the calculation of reliability of two systems: the 
reliability R(p) of the considered complex system, and the reliability R’(p) of a simple (e.g. series) 
auxillary system. For this auxillary system we must know the lower bound of the respective 
confidence interval  p'R . In order to find the lower bound of the confidence interval for the 
reliability of the considered system we have to solve the following optimization problem: 
  p

p
RminR   (35)  

where the element of the vector p must fulfill the following constraint  

 m,,i,p,Rp
m

i
i

'
i 110
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. (36) 

The lower bound calculated in this way fulfills all the requirements for a lower bound of a confidence 
interval, but the length of such interval is usually not the shortest possible. 
 
5  CONFIDENCE INTERVALS IN THE PRESENCE OF OBSERVED FAILURES 

 
When failures are observed during reliability tests of system’s elements the problem of building 

confidence intervals for the reliability of the whole system becomes much more complicated. 
Comprehensive information about available methods can be found in the fundamental book 
(Gnedenko et al. 1999). Below, we present only some basic results considered in this book and 
related literature. 

Let us assume that the considered system consists of elements of m different types. For each of 
these types we test a sample of Ni elements, and for each sample we observe di 0, i=1,...,m failures. 
Let 
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be the point estimator of system’s reliability, where mip i ,,1, 


 are the estimators of the 
reliability of systems elements calculated according to (12). Now, denote by d*= (d1

*, d2
*,…, dm

*) the 
vector of numbers of observed failures. Moreover, denote by S*=S(d*) the observed value of the 
estimator of system’s reliability presented as the function of the vector d*. The lower bound of the 
confidence interval for the system’s reliability is now calculated from the formula 
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where maximum is calculated over the set AR of vectors  mp,,p,p 21 , such that 
  m,,,p,Rp,,p,pR im  111021  .                                    (39) 

The sum in (38) is calculated over all possible values of the vector d*= (d1
*, d2

*,…, dm
*)  that fulfill 

the condition given for this sum in (38). In certain cases other formulation of this optimization 
problem is more suitable for computations. According to this formulation we denote by  
n(d)=n(d1,d2,…,dm) a non-decreasing, with respect to all components, series of vectors. The first 
element of this series is the vector  (0,0,…,0), and then we have the vectors of the type 
(0,..,0,1,0,…,0), etc. The lower bound of the confidence interval for system’s reliability can be 
calculated from 
  mp,,p,pRminR 21 , (40) 
where minimum is taken over the set of all values of the vector (p1,p2,…,pm) such that 
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The optimization problem given by (40) – (41) was formulated first time in (Buehler 1957) 

where a system consisted of two elements was considered. This was the first result of the calculation 
of the confidence interval for system’s reliability.  

Let us now consider the series system consisted of m different elements. The optimization 
problem is now the following: 
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where minimum is taken over all vectors (p1,p2,…,pm) such that 
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The calculation of the lower bound of the confidence interval for system’s reliability R  can be 
simplified when the probabilities of failures are small, i.e. when the inequality qi=1–pi <<1, i=1,…,m 
holds. In such a case we can assume that the number of failures is described by the Poisson 
distribution with the parameter i=qiNi, i=1,…,m. It has been shown in (Gnedenko et al. 1999) that 
in this case we have 
 feR   (44) 
where 
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and the maximum in (45) is taken over all vectors m such that 
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This practical result was obtained first time in (Bol’shev & Loginov 1966) for the case of equal 
values of Ni, and, independently, in (Pavlov 1973) and (Sudakov 1974) for any values of these 
numbers. 
 
6  APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM’S RELIABILITY 
 

Computation of exact bounds of confidence intervals for system’s reliability requires, with only 
few exceptions, solving difficult optimization problems. Therefore, its practical applicability is 
somewhat limited unless specialized software is available. For this reason several authors, mainly 
American, have tried to obtain approximate, but relatively easy for computation, solutions. Different 
approximate solutions have been proposed in the papers like (Madansky 1965, Myhre & Saunders 
1968, Easterling 1972, Mann 1974 a, b, Mann & Grubbs 1972, 1974). Comprehensive review of 
such results can be found in a well known book (Mann, Shaefer & Singpurwalla 1974). However, 
probably the most interesting from a practical point of view result was presented in one of the first 
textbooks on reliability (Lloyd & Lipow 1962). These authors presented a heuristic method, 
attributed to Lindstrom and Madden, for the calculation of the approximate confidence interval for 
the system with a series reliability structure. This method utilizes the concept of so called equivalent 
tests. To present this method we consider, following the book (Gnedenko et al. 1999), a system with 
a series-parallel structure which has the same elements in its parallel subsystems. Let R*

 be the 
estimated value of the reliability function for the considered system, and Ni, i=1,…,m be the number 
of tested items for the element of the i-th type. The equivalent number of failures Di

* for the element 
of this type is then calculated from the equation 
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At the next stage of the computation procedure, for each equivalent test (Ni,Di
*) we calculate the 

lower bound of the confidence interval  iii D,NP  by solving the equation 
     11*

iiip D,DNB , (48) 
where 
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is the incomplete beta function whose values can be computed using an available numerical 
procedure. The lower bound of the confidence interval is now calculated from a simple formula 
   1111

1
,,,D,NP,,,RminR iiimi

 


 . (50) 

The Lindstrom-Madden method was proposed as an approximate heuristic method. However, 
it has been proved (see (Gnedenko et al. 1999) for additional information) that for many simple 
reliability structures it produces exact confidence intervals. 

Another method which uses the concept of equivalent tests, and which can be used for the 
analysis of complex systems consisted of many simple subsystems, was proposed in (Martz & Duran 
1985). In this method it is assumed that for each simple subsystem we are able to calculate the value 
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of its reliability estimator Ri, and the lower bound for the respective confidence interval iR . Next, 
from a set of equations 

 i
i

i R
M
r

1  (51) 

and 
  iiii r,MPR   (52) 
we calculate the parameters (Mi,ri) of the equivalent binomial reliability tests. In further analysis the 
considered subsystem is treated as a single element described by the equivalent test. Note, that for 
the application of this method it is not important how we have found the values of Ri and iR . 
 
7  SOME REMARKS ABOUT OTHER METHODS FOR THE CALCULATION OF 

CONFIDENCE INTERVALS FOR SYSTEM’S RELIABILITY 
 

In the previous sections we have presented methods for the calculation of confidence intervals 
for system’s reliability for the case of discrete reliability data from tests, i.e. when the numbers of 
tested elements and the numbers of observed failures are known. It is a well known fact that the 
knowledge of lifetime distributions combined with the knowledge of observed times to failures may 
increase the accuracy of reliability estimation. Moreover, this knowledge may be sufficient for the 
prediction of reliability at time instants other than the times of the performed reliability tests. 
Unfortunately, even in the simplest case of the exponential distribution of lifetimes the exact and 
practically applicable solutions are known only in few cases when lifetime tests are performed 
according to the type-II censoring scheme (a fixed number of observed failures). For example, 
(Lentner & Buehler 1963) considered the case of a series system with only two elements. Their 
result was generalized in an unpublished PhD thesis (El Mawaziny 1965) who proposed an iterative 
method for the calculation of the lower bound of the confidence interval for reliability of a series 
system consisted of m elements. Because of its complicated nature this algorithm has not been 
described in reliability textbooks. However, there exists a good approximation proposed in (Mann & 
Grubbs 1972), and in a simplified version in (Mann 1974b). 

Consider the case when the lifetimes are exponentially distributed, and reliability tests provide 
type-II censored data. For each type of system elements we test a sample of ni items, and observe 
times ti,j of the first ri>0, i=1,…,m failures.  The respective value of the total time on test zi, is given 
by 
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1
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Denote by z(1) the minimal value of zi, i=1,…,m.  (Mann 1974b) has shown that the estimator of the 
hazard rate of the series system has approximately the expected value given by 
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and the variance given by 
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To approximate the optimum lower bound on series system reliability )(tR s  at confidence level , 
using the Wilson-Hilferty transformation, one calculates 
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where y  is the quanitile from the standardized normal distribution. For systems with more complex 
structures an interesting approach has been proposed in (Gnedenko et al. 1999). According to this 
approach first we have to calculate upper bounds for the hazard rates of system’s elements using the 
following simple formula 

 
 

m,,i,
S

r

i

i
i 1

2
22

  , (57) 

where  r22
  is the quantile of the  order from the chi-square distribution with 2r degrees of 

freedom. When we insert these lower bounds into a formula for the calculation of the system’s 
reliability function instead of respective hazard rates, i.e. if we calculate 
  m,,.RR  21 , (58) 
the obtained value usually fulfills the requirements for a confidence interval. (Pavlov 1982) has 
shown that in case of >0,778 this approach allows to calculate confidence intervals for a broad class 
of reliability structures for lifetime distributions having non-decreasing (in time) hazard rates (i.e. for 
elements with the ageing property).  

The general methodology for the calculation of confidence intervals for system’s reliability was 
proposed in (Belyaev 1966, 1968). Other, but completely equivalent general method, was proposed 
in (Bol’shev & Loginov 1966). Below, we present the main results of Belyaev.  

Suppose that we know the statistic S which can be used as a point estimator of system’s 
reliability, i.e. R€S  . Moreover, we assume that this statistic is a function of a vector of parameters 
describing probability distributions of lifetimes of system’s elements. Additionally, we assume that 
the probability distribution of this statistic is known, i.e. we know 
    tSP,tF  θθ . (59) 
For a given value of the vector  we can now introduce two functions t1() and t2(), such that 
   θ,tF 1  (60) 
and 
   12 θ,tF . (61) 
Now, let’s denote by 
   RRAR  θθ :  (62) 
the set of all values of the vector for which the reliability function adopts a given value R. Next, 
introduce two functions 
    θ

θ 11 tminRK
RA

  (63) 

and 
    θ

θ 22 tminRK
RA

 . (64) 

The lower and upper bounds of the confidence interval on the confidence level 1for system’s 
reliability can be found by solving equations 
    SRK1  (65) 
and 
    SRK2 , (66) 
where S* is the observed value of the statistic S. 
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The described general methodology is based on the original methodology for the construction 
of confidence sets proposed in (Neyman 1935), and is valid for any type of reliability data, and any 
type of reliability structure. However, its practical applicability is limited only to rather simple cases. 
 
8  APPROXIMATE LOWER BOUNDS FOR SYSTEM’S RELIABILITY BASED ON 

MINIMUM VALUES OF THE RELIABILITY OF SYSTEM’S ELEMENTS 
 

Computation of optimal (i.e. the shortest) and exact confidence intervals is, with a few 
exceptions, a very difficult task. Moreover, in all published results it is assumed that the elements in a 
system are mutually independent. Additional problems arise from a fact that confidence intervals 
used for the description of test results may be conservative, as in the case of intervals based on the 
Clopper-Pearson formula.  In this section we present approximate bounds for system’s reliability 
which, under certain conditions, may replace lower bounds of confidence intervals. 

In order to investigate the robustness of the confidence intervals for system’s reliability against 
the departure from the assumption of independence of system’s elements let us introduce the notion 
of a copula. According to a famous theorem of Sklar (see e.g. (Nelsen 2006)) any two-dimensional 
probability distribution function H(x,y) with marginals F(x) and G(y) is represented using a function 
C called a copula in the following way: 
       yGxFCyxH ,,   (67) 
for all x,y  R. Conversely, for any distribution functions F and G and any copula C, the function H 
defined by (67) is a two-dimensional distribution function with marginals F and G. Moreover, if F 
and G are continuous, then the copula C is unique. In our investigation we will consider three types 
of copulas: 

a) Clayton copula defined as 

      0,1,
1


  GxFyxH  (68) 

b) Gumbel copula defined as 

          0
1







  

 ,yGlnxFlnexpy,xH , (69) 

c) Fairlie-Gumbel-Morgenstern (FGM) copula defined as 
              11111   ,yGxFyGxFy,xH  (70) 

The Clayton and Gumbel copulas can be used for modeling a positive stochastic dependence. 
The FGM copula can be used for modeling both negative ( and positive ( dependence. The 
Clayton copula is especially interesting in reliability applications as it describes stronger dependence 
for smaller lifetimes than for larger ones. If this type of dependence exists the reliability of a series 
system with dependent elements is greater than in the case of independence. On the other hand, for a 
parallel system the reliability of a system with dependent elements is smaller. 

In the majority practical cases the reliability of tested elements is high, and even for moderate 
sample sizes the number of observed failures is small. This suggests utilization of the result obtained 
for the case of zero-failure tests for the calculation of the lower bounds for reliability of a series 
system given by the expression (24). To analyze the properties of this approximation let us consider 
a two-element series system whose elements are equally reliable. We also assume that the sample 
sizes for both elements are the same. On Figure 1 we present the comparison of the values of our 
simple approximate bound with the bounds calculated for this system using a substitution method. 
For obtaining the presented results we performed a Monte Carlo simulation experiments, and in each 
of them we generated 500 000 test cases, Our approximate bound, plotted against the expected 
number of observed  failures in a sample (for a probability of failure equal to 0,01), is represented by 
a continuous upper curve. The middle curve represents the bound calculated by the insertion into (5) 
the respective lower bound of the confidence intervals for the reliability of elements, calculated for 
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the same confidence level (=0,9).The lower curve is a similar to the previous one, but calculated for 
the confidence level equal to  , as it is suggested in statistical literature. 

Then, we calculated the coverage probability of the considered confidence intervals. The 
results of the comparison are presented on Figure 2 for our approximate bound, and the bound 
represented by a middle curve on Figure 1. 

As we can see, our simple bound fulfills requirements for a confidence interval not only for 
zero-failure reliability tests, but for all tests with the expected number of failures not greater than 
1,95. The classical and much wider confidence intervals have the probability of coverage close to 1, 
i.e. much greater than the designed value of 0,9.  

 
 

 
 
 

Figure 1. Lower bounds for a series system 
 

 
 
 

Figure 2. Coverage probabilities for a series system in case of independence 
 
 

Now, let us consider the case when the elements of the system are dependent. On Figure 3 we 
show the coverage probability when this dependence is described by the Clayton copula with 
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dependence parameter , and the Gumbel copula, with dependence parameter For this value 
of the parameter the Kendall measure of dependence for both copulas is equal to 0,5. It means that 
the dependence is positive and fairly strong. 

The coverage probability in the case of the Clayton copula (solid line) is greater than the 
designed value for tests with the expected value of observed failures greater than 5. However, in the 
case of the dependence described by the Gumbel copula (dashed line) this feature is guaranteed only 
for this value not greater than 2. It shows, how the type of dependence influences the results despite 
the fact that the popular measure of dependence, such as Kendall in both cases gives exactly the 
same value. 

 
 

 
 
 

Figure 3. Coverage probabilities for a series system in case of dependence 
 
 

Now, let us consider the case of the system with elements connected in parallel. For such 
systems a simple for computation bound which is similar to that for a series system does not exist. 
Instead we propose the following approximation  
 

i
iqR min1 , (71) 

where iq   is the upper bound of the confidence interval for the probability of failure. The lower 
bound calculated according to (71) is always smaller than the bound obtained by substitution of the 
probabilities of failures qi with their respective upper bounds iq . Thus, the coverage probability in 
case of independent elements of the system, calculated according to (71), is always greater than the 
respective confidence level. It can be seen at Figure 4, where this probability is always equal to 1. 
(Note that the coverage probability in case of the bound obtained by substitution is also much greater 
than the confidence level which is equal to 0,9). 

The situation changes dramatically when the elements of the system are dependent, and when 
their dependence is described either by the Clayton copula or by the Gumbel copula. On Figure 5 we 
present the coverage probabilities in such cases when the confidence intervals are calculated using 
the substitution method. 
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Figure 4. Coverage probabilities for a parallel system in case of independence 
 
 

 
 
 

Figure 5. Coverage probabilities for a parallel system in case of dependence 
 

The coverage probabilities (the left-most curve for the Clayton copula, and the curve next to it 
for the Gumbel copula) show dramatically that the confidence intervals obtained by substitution 
under the assumption of independence are too narrow. On the other hand, the interval calculated 
according to (71) has the coverage probability (depicted by a dashed curve for the Clayton copula, 
and equal to one for the Gumbel copula) greater than the confidence level. 
 
9  CONCLUSIONS 
 

Many prominent authors, mainly from USA and the Soviet Union, contributed to the problem 
of computing the lower confidence bounds for system’s reliability using the data from tests of 
separate elements or subsystems. The proposed exact bounds are usually difficult to compute. Good 
approximations exist, but they are usually obtained under the assumption that failures of all elements 
or subsystems are observed during the tests. In the paper we have shown using Monte Carlo 
simulation that in case when elements working together in a system are dependent these bounds are 
inaccurate or even useless, as it is the case of parallel (redundant) systems. In the paper, we have 
proposed very simple bounds characterized by satisfactory performance, at least for highly reliable 
system elements, which are robust against the presence of positive dependence of the elements of a 
system. 
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