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ABSTRACT

The paper presents a new heuristic algorithm for determining optimal redundancy
allocation of complex networks. The present algorithm is an iterative method; all the paths
of the network are first arranged in decreasing order of their priority determined using a path
sensitivity factor, the highest priority path is optimized first by adding redundant
components for subsystems of the path iteratively based on proposed subsystem selection
factor.  In case of availability of any residual resources next lower priority paths are
considered for redundancy allocation. The proposed algorithm not only demonstrates
improved performance in comparison with most of the existing heuristic algorithms but also
leaves minimum slack of components without any further possibility of redundancy.

Keywords: constrained redundancy optimization; complex networks; heuristic algorithm.

1. INTRODUCTION

The problem of redundancy allocation generally has been solved as a single objective
optimization problem to maximize system reliability subject to several constraints such as cost,
weight, volume, etc. The solutions of such optimization problems have been obtained using
mathematical models like dynamic programming [1-3], heuristic methods [4-23] and meta-
heuristics such as genetic algorithms [24-26], tabu search [27], ant colony optimization [28],
etc.

In recent works, major focus is on the development of heuristic and meta-heuristic
algorithms for redundancy allocation problems to improve system reliability [4, 29]. Many
heuristic algorithms have been proposed in the literature for solving redundancy reliability
optimization problems which search for the solutions not only in feasible regions but also do
excursion in infeasible/bounded infeasible regions for finding possibly improved solutions [30-
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32].  For example, Shi method [19] searches solution only in feasible region and shows good
temporal efficiency. The Nakagawa –Nakashima (N-N) method [15] also search solution in the
feasible region and is superior to other heuristics in terms of optimality rates and relative errors,
but have poor temporal efficiency [4,29].  The Agarwal - Gupta (A-G) algorithm [32] is the one
of the recent methods for solving redundancy optimization of complex combinatorial problems
and allows the search for optimal solution not only in the feasible region but also into the
bounded infeasible region. Recently, Kumar et al. [22,23] presented heuristic algorithms which
shows better performance.

The purpose of this paper is to present an efficient heuristic algorithm for determining
optimal redundancy allocation of complex systems.  The proposed algorithm [P-Alg] consists
of: arranging all the path sets of the network in the decreasing order of path sensitivity factor
value and then selecting the highest priority path set for redundancy allocation. A redundant
parallel subsystem is added to the unsaturated subsystem of the chosen path set having
maximum value of subsystem selection factor, if no constraints are violated. In case of violation
of any constraint, the subsystem is excluded from further consideration and the next subsystem
of the path set having highest value of subsystem selection factor is considered for redundancy
allocation.  The path is removed only after exhausting all the subsystems of the path set. The
proposed algorithm not only demonstrates improved performance in comparison with most of
the existing heuristic algorithms but it also leaves minimum slack of components without any
further possibility of redundancy.  The P-Alg not only utilizes a different formulation for
subsystem selection factor but it also differs significantly from Kumar [22] the way the path
sets are removed from further consideration in case of violation of any constraints.

The computational experiments are conducted on 4-, 5-, 7-, 10- and 15-unit complex systems
with linear constraints. The numerical results obtained with P-Alg, Kumar [22], Shi [19], N-N [15]
and A-G [31] methods are compared in terms of performance measures like average relative error
(A), maximum relative error (M), optimality rate (O) and average execution time (T) [22, 30,31].

2. PROBLEM FORMULATION

2.1 Assumptions:

1. There are n subsystems in the system.
2. The system and subsystems are coherent. The subsystem structure is not restricted.
3. Subsystem states are mutually and statistically independent.
4. Constraints are separable and additive among components. Each constraint is an

increasing function of ix for the subsystem.
5. Redundant components can not cross subsystem boundaries.

2.2 Problem Definition:

A complex system consists of several components connected to each other neither in series nor in
parallel.  Figs. 1-5 show 5 such complex systems for 4-, 5-, 7-, 10- & 15- unit networks
respectively. The problem of constrained redundancy optimization can be reduced to the following
integer programming problem:

Maximize: )(xRs (1)

Subject to: ,)(
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ix ≥ 1, for i = 1, 2, …, n.
3. PROBLEM FORMULATION

3.1 Algorithm
Assuming that the system reliability expression Rs(x) is known (Shi [1]), the proposed

algorithm uses following steps for finding the solution.

First of all, unsaturated minimal path sets of the system are arranged in their decreasing order of
priority using path sensitivity factor )(xal
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From the above ordered set of minimal path sets, path set having highest sensitivity factor- al(X) is
considered for optimization and subsystem selection factor )( ii xb of all the unsaturated subsystem is
found using
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where )1()(  iiiii xRxRR

∆Ri is termed as increment in subsystem reliability when a unit is added in parallel to the
subsystem. After finding the subsystem having highest value of subsystem selection factor )( ii xb  of
the chosen path set, a redundant parallel component is added to the unsaturated subsystem if no
constraint is violated.  In case of violation of any constraint the subsystem is removed from further
consideration for redundancy and the next subsystem of the path set having highest value of
subsystem selection factor )( ii xb is considered for redundancy allocation. The iteration continues
either till all the subsystems are removed from further consideration or all the resources are
consumed. If all the resources are exactly consumed the iteration stops giving the optimal solution.
But in case of all the subsystems of the chosen path set are removed from further consideration and
there are still some resources available, the minimal path set having next highest value of sensitivity
factor al(X) is considered for optimization and then the steps are repeated till optimal solution is
reached.

3.2 Steps of the Proposed Algorithm

Step1: Find all minimal path sets Pl (for all l = 1,2,…,m.) of the system using any method.
Step2: Let xi = 1 for all i; i = 1, 2,…, n such that  X = (1, 1,…, 1)
Step3: All unsaturated minimal path sets Pl (for all l = 1,2,…,m.) of the system are arranged in

their decreasing order of priority Ps using sensitivity factor )(Xal .
Step4: The path set [PPs(Q)](Q = 1) is selected for optimization.
Step5: For the above chosen path set, calculate bi (xi) for all the subsystems of the path set and

find i*such that bi* (xi) = max [bi (xi)].
Step6: Check, by adding one redundant unit to unsaturated subsystem i*:

i. if no constraints are violated, add one redundant subsystem to unsaturated
subsystem i* by replacing xi* with xi*+1 and go to step 5.

ii. if at least one constraint is exactly satisfied and others are not violated, then add
one redundant subsystem to unsaturated subsystem i* by replacing xi* with xi*+1.
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The x* = x is the optimal solution. Go to step 7.
iii. if at least one constraint is violated then exclude the subsystem i* from further

consideration and the next subsystem i*of the same path set having highest value
bi* (xi) is considered for redundancy allocation, go to step 6.

iv. if at least one constraint is violated and all other subsystems of the path [PPs(Q)]
are excluded; exclude the path [PPs(Q)] from further consideration; consider the
next path [PPs(Q+1)] having next highest value of )(Xal  and go to step 5.

v. if all the subsystems and/or all the minimal path sets are excluded from further
consideration, than x* = X  is the optimal solution; go to step 7.

Step7: Calculate the system reliability, )( *xRs .

4. COMPUTATION AND RESULT

The redundancy allocation problem for complex systems is formulated with the
objective of maximization of the system reliability under constraint environment. In this paper,
the test problems of computational experiments are generated for 4-, 5-, 7-, 10- and 15- unit
complex networks shown in Figs. 1-5 respectively.  As an illustration of P-Alg method two sets
of bench mark examples consisting of 4- unit composite network (Fig. 1) and 5-unit bridge
network (Fig. 2) with linear constraints are considered.  The same examples are also solved by
Kumar, Shi, N-N and A-G methods for comparison.

Example 1: 4-unit composite network (Fig. 1) with linear constraints (n = 4 and k = 2). The
constraint redundancy optimization problem is expressed as the following integer programming
problem:

Figure 1.  4-Unit Composite Network

Max. )(xRs =
)()()()(
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                                                             (5)

ix ≥ 1, for i = 1, 2, 3, 4.

)(xL = (1, 1, 1, 1), )(xU = (6, 1, 13, 4)

   The problem is solved for P-Alg, Kumar, Shi, N-N and A-G methods with the randomly
generated values of parameters ri, c1i, c2i, C1 and C2 shown in Table 1.  It is interesting to note that
all the methods yield same solution *x = (3, 1, 2, 1) for Rs(x*) = 0.989612, which is also the global
optima.  The time taken by P-Alg (0.00413 sec.) is comparable with Kumar (0.00342 sec.) and Shi
(0.00264 sec.) methods and is much smaller than N-N (0.01963 sec.) and A-G (0.90486 sec.)
methods.
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Table 1. Data for Figure 1

I 1 2 3 4
ri 0.6984 0.625 0.8464 0.7536
c1i 2 64 3 4
c2i 48 74 23 74
C1 132
C2 341

Example 2: 5-unit complex network (Fig. 2) with linear constraint (n = 5 and k = 1). The problem is
defined as:

Figure 2.  5-Unit Bridge Network

Maximise Rs(X)  =
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Subject to: 290)(
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ix ≥ 1, for i = 1, 2, 3, 4, 5.
)(xL = (1, 1, 1, 1, 1), )(xU = (4, 146, 19, 3, 5)

The problem is solved for all the above methods with randomly generated values of parameters
given in Table 2.

Table 2.  Data for Figure 2

i 1 2 3 4 5
ri 0.8106 0.6940 0.6974 0.8068 0.633 1
c1i 45 1 8 56 35
C1 290

   The results obtained for *x , )( *
1 xg , )(xRs and T with various methods are compared in Table 3.

From the table it is evident that P-Alg and A-G methods obtain best optimal solution *x = (4, 11, 1,
1, 1) for )(xRs = 0.999546 without any slack of components, but the execution time of P-Alg is
much lower than that of A-G.  The A-G method takes more time by an order of 25 in comparison
with P-Alg method. Though both Shi and N-N methods also do not leave any slack of components
but their solution quality is inferior in comparison with P-Alg and A-G methods. Although, Kumar
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method takes minimum execution time but the quality of solution is poorest of all and it leaves
maximum slack of components.  To illustrate the working of different iterations of the algorithm, an
example of 7- unit bridge network (Fig. 3(a)) has been solved for random generated data set in
Appendix B.

Table 3.  Comparison of Figure 2 Complex Network

Methods x* g1(x*) Rs(x*) T (sec.)
P-Alg (4,11,1,1,1) 290 0.999546 0.04992
Kumar (3,7,3,1,1) 257 0.999293 0.00326
Shi (2,61,6,1,1) 290 0.997432 0.24205
N-N (3,16,6,1,1) 290 0.999514 0.05007
A-G (4,11,1,1,1) 290 0.999546 1.26784

5. PERFORMANCE MEASURES

In addition to the above, each of the n = 4- and 5- unit (Fig. 1 and 2 respectively) complex
networks is further solved for 9 additional sets of randomly generated parameters ir , jic and Cj for
the comparison of performance measures of different methods.

   The performance in terms of computational efficiency and solution quality of P-Alg, Kumar, Shi,
N-N and A-G methods, defined as u =1, 2, 3, 4, 5 respectively, is illustrated with number of
examples.  The test problems of computational experiments are generated for 4-, 5-, 7-, 10-, and 15-
unit examples of complex systems (shown in Figs. 1- 5) used by Kumar [22, 23] with linear
constraints. The algorithms of different methods for the test problems are compared through
performance measures such as average relative error (Au), maximum relative error (Mu), optimality
rate (Ou) and average execution time (T) for ten randomly generated initial data (v = 1, 2, …., 10),
defined as:
Average relative error for method u,

*10

1

* /)(
10
1

v
v

uvvu RRRA 


               (8)

where
uvR  is system reliability obtained by method u for test problem v; and *

vR  is the best  system
reliability obtained by any of the four methods or by complete enumeration for the test problem
v.

Maximum Relative Error for method u,
}/){(max **

vuvvvu RRRM 
                       (9)

Optimality rate for method u, uO = number of times (out of 10 problems) method u yields the best
system reliability.
T  is average execution time of 10 test problems (sec.)

Following section illustrate the solution of 3 complex networks (Figs. 3-5).  For n = 7 (Fig. 3(a))
network, 4 problems are formed by taking two constraints k = 1, 5 and two different values of
parameter Cj as ‘small’ and ‘large’ defined as

                                   { Cj } = wj * 

n

i
j

ig
1

(10)

 here wj denotes random uniform deviates from 1.5 to 2.5 for ‘small’, and from 2.5 to 3.5 for ‘large’.
Data for the parameters of the problems are generated randomly by taking { )( i

j
i xg } a random



Pardeep Kumar, D.K. Chaturvedi, G.L. Pahuja – AN EFFICIENT HEURISTIC ALGORITHM FOR DETERMINING OPTIMAL
REDUNDANCY ALLOCATION OF COMPLEX NETWORKS

RT&A # 03 (18)(Vol.1) 2010, September

21

uniform deviates from 0 to 100 and random uniform deviates { ir } from 0.6 to- 0.85.  Another n = 7
(Fig. 3(b)), 10- (Figs 4) and 15- (Figs 5) unit networks are solved for two different data sets of
parameters k = 5, Cj = ‘small’ and k = 5, Cj = ‘large’.  Thus, in total 12 test problems are solved for
6 different networks (Figs. 1-5) with various methods using MATLAB on a Pentium(R) D, 3.4 GHz
CPU based computer. Each of the test problems is then solved for 10 randomly generated data sets
for ir , jic and Cj.

   To obtain optimal solutions, P-Alg, Kumar and Shi methods use single initial solution (1, 1,…, 1)
whereas A-G method uses 10 initial solutions generated randomly by a 2-phase procedure of Kim
and Yum [30]. For N-N method, each problem is solved by taking initial solution  (1, 1, …, 1) and
10 values of the balancing coefficient   as 0.1, 0.2,…., 1.0.  Thus, out of 10 such solutions
obtained by N-N and A-G methods best solution is selected for comparison with other methods.
Thus in total 1320 test problems are solved (120 test problems by P-Alg, Kumar and Shi methods
and  1200 test problems by N-N and A-G methods).

Figure 3(a).  7-Unit Complex System (n = 7)

Figure 3(b).  7-Unit Complex System (n = 7)

Figure 4.  10-Unit Complex System (n = 10)

Figure 5.  15-Unit Complex System (n = 15)
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 The results of performance measures, i.e., average relative error (A), maximum relative error (M),
optimality rate (O) and average execution time (T) obtained with P-Alg, Kumar, Shi, N-N, and A-G
methods, are compared in Table 4. The performance measures A, M and O of P-Alg are consistently
better than all other methods, except in case of 4,7x5-‘large’ and 8,10x5-‘small’ network examples
where N-N method shows better performance.  The average execution time (T) of P-Alg is also
better or comparable with Kumar in most of the cases.

Table 4. Comparison of Performance Measures
for 4-, 5-, 7-, 10-, 15-Unit Networks  (Fig. 1-5 respectively)

Performance MeasuresExample
(m, n x k) Methods A M O T (sec.)

P-Alg 0 0 10 0.06020
Kumar 0.000353 0.00186 5 0.053242
Shi 0.000344 0.00186 6 0.27828
N-N 9.5E-06 9.5E-05 9 0.02385

3, 4 x 2
Figure 1

A-G 0.000296 0.00173 1 12.38190
P-Alg 4E-07 4E-06 9 0.04992
Kumar 0.001382 0.003364 1 0.003262
Shi 0.003845 0.007585 0 0.24205
N-N 3.6E-06 3.6E-05 9 0.05007

4, 5 x 1
Figure 2

A-G 0.000593 0.002059 2 1.26784
P-Alg 7.95E-05 0.000795 9 0.05076
Kumar 0.001152 0.004727 2 0.05165
Shi 0.048417 0.182504 0 0.98615
N-N 0.000486 0.003217 8 0.08194

4, 7 x 1
‘small’
Figure 3(a)

A-G 0.003395 0.010776 0 33.03050
P-Alg 0 0 10 0.05164
Kumar 0.003966 0.010224 4 0.050893
Shi 0.011981 0.06485 3 0.61064
N-N 0.000895 0.005394 8 0.05421

4, 7 x 5
‘small’
Figure 3(a)

A-G 0.001741 0.009337 1 7.80162
P-Alg 0 0 10 0.04938
Kumar 0.000217 0.000444 0 0.05124
Shi 0.005614 0.025473 0 1.41909
N-N 2.6E-06 1.4E-05 8 0.14222

4, 7 x 1
‘large’
Figure 3(a)

A-G 0.000112 0.000215 0 14.51660
P-Alg 0.008177 0.021486 4 0.04226
Kumar 0.001184 0.004195 0 0.05186
Shi 0.005277 0.019515 0 1.07131
N-N 0.000274 0.000788 5 0.09980

4, 7 x 5
‘large’
Figure 3(a)

A-G 0.000436 0.001459 1 8.62698
P-Alg 0 0 10 0.05200
Kumar 0.006507 0.015626 0 0.03064
Shi 0.012012 0.040473 0 0.66712
N-N 0.005372 0.008265 0 0.05283

6, 7 x 5
‘small’
Figure 3(b)

A-G 0.004888 0.00917 0 12.40320
P-Alg 0.001255 0.010007 8 0.05080
Kumar 0.000235 0.001405 0 0.05107
Shi 0.000231 0.001419 0 1.16433
N-N 3.22E-05 0.000131 2 0.09677

6, 7 x 5
‘large’
Figure 3(b)

A-G 9.84E-05 0.000724 0 13.93550
P-Alg 0.01371 0.058709 3 0.04383
Kumar 0.010458 0.058121 5 0.05611
Shi 0.043408 0.080705 0 1.95416
N-N 0.001176 0.010479 7 0.15770

8, 10 x 5
‘small’
Figure 4

A-G 0.005039 0.013028 0 3.62803
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Performance MeasuresExample
(m, n x k) Methods A M O T (sec.)

P-Alg 0.003071 0.02704 8 0.04433
Kumar 0.02487 0.041681 1 0.05511
Shi 0.044704 0.080265 0 1.95288
N-N 0.015437 0.038307 0 0.15536

8, 10 x 5
‘large’
Figure 4

A-G 0.014913 0.038306 1 14.09680
P-Alg 0 0 10 0.04407
Kumar 0.041613 0.064621 0 0.08765
Shi 0.088131 0.174326 0 3.70830
N-N 0.033755 0.059137 0 1.08656

8, 15 x 5
‘small’
Figure 5

A-G 0.037845 0.059135 0 15.34900
P-Alg 0 0 10 0.05097
Kumar 0.067226 0.091703 0 0.08684
Shi 0.112797 0.178473 0 3.65437
N-N 0.059578 0.07733 0 1.07747

8, 15 x 5
‘large’
Figure 5

A-G 0.063573 0.077328 0 62.50630

CONCLUSIONS

In this paper, an efficient heuristic algorithm for determining optimal redundancy allocation
of complex systems has been proposed. It has been shown that quality of solution in P-Alg is better
than all other methods in most of the cases. The computational time of P-Alg is either better or
comparable with Kumar and Shi methods. The method also leaves minimum slack of components
without any further possibility of redundancy.  Therefore, the P-Alg method finds its greater utility
for solving redundancy allocation problems where both the solution quality and computational time
are of prime importance.
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APPENDIX A

Notation
al(X) Sensitivity factor of lth minimal path set
bi(xi) Subsystem selection factor for ith subsystem with ix components
cji Cost of subsystem i for kth constraint.
Cj Total amount of resource j available

)( i
j

i xg Amount of resources-j consumed in subsystem-i with ix components

k Number of constraints, j = 1, 2,…, k
)(xL ),...,,(

21 nxxx LLL , Lower limit of each of subsystem i,
m Number of minimal path sets, l = 1, 2,., m
n Number of subsystems, i = 1, 2,…, n

lP lth minimal path set of the system

Ps (l1,l2,…,lmin): priority vector s.t. l1 and lmin are the number of minimal path sets respectively  having
maximum and minimum value of path selection parameter al(X).

)( ii xQ Unreliability of subsystem i with xi components.

ir Reliability of a component at subsystem i.

)( ii xR Reliability of subsystem i with xi components.
Rr Residual resources Cj-∑cijxi

)(xRs System reliability
T Average execution time of 10 test problems (sec.)

)(xU ),...,,(
21 nxxx UUU , Upper limit of each of subsystem i,

0x Initial feasible solution
*x Optimal solution

ix Number of components in subsystem i; i = 1,2,….n
X (x1,………xn)
 Balancing coefficient for N-N method
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APPENDIX B

This section presents how the P-Alg is applied for constraint redundancy reliability
optimization problem of a 7- unit bridge network with n = 7, k = 1 (Fig. 3(a)) for data given in
Table 5 and the procedure is illustrated below:

Table 5. Data for Figure 3(a)

i 1 2 3 4 5 6 7
ri 0.7321 0.6109 0.7963 0.7013 0.6247 0.7104 0.6631
c1i 54 48 95 24 68 9 99
C1 794

Illustration
Step1:  Initialize i = 7, m =4, k=1, ri = [0.7321, 0.6109, 0.7963, 0.7013, 0.6247, 0.7104,

0.6631], c1i  = [54, 48, 95, 24, 68, 9, 99], Rr = Cj = 794, and Pl (for l = 1, 2, 3, 4.) of
the system are P1 = [1, 2, 3], P2 = [1, 4, 7], P3 = [5, 6, 7] and P4 = [2, 3, 4, 5, 6] .

Step2:   Let xi = 1 for all i; i = 1, 2,…,7 i.e  X = (1,1,1,1,1,1,1) and for this value of X, Rr =
397.

Step3:  The sensitivity factor )(Xal  i.e.  [a1, a2, a3, a4] = [1.435, 1.527, 1.328 0.493], hence,
Ps = [2, 1, 3, 4].

Step4:    The path set [PPs(Q)](Q = 1) = [PPs(1)] = P2 is selected for optimization.
Step5:    For P2 all values of bi (xi) for each i Є P2  = [10.765, 23.201, 5.318] (i =1,4,7), i*= 4 as

b4(x4) = 23.201 is the maximum.
Step6(i): By incrementing x4 = x4 +1, X = (1,1,1,2,1,1,1) and Rr= 373 (i.e. a +ve number), no

constraints is violated.
Step5:     For P2, bi (xi) = [10.765, 6.930, 5.318] (i =1,4,7), i*= 1 as b1(x1) = 10.765,
Step6(i):  Increment x4 = x4 +1, X = (2,1,1,2,1,1,1) and Rr = 319, no constraint is violated. Repeat the Step5 and

Step6(i) until X = (3,1,1,4,1,1,3) and Rr = 19, bi (xi) = [0.773, 0.618, 0.604] (i =1,4,7), i*= 1 as b1(x1) = 0.773 is
the maximum.

Step6(ii): Increment x1 = x1 +1, X = (4,1,1,4,1,1,3) and Rr = -35, constraint is violated, X is
reinstated at its previous step value i.e. (3,1,1,4,1,1,3), subsystem i* = 1 of P2 is removed
from further consideration, and bi (xi) = [--, 0.618, 0.604] (i =1,4,7), next highest value of bi
(xi) is b4(x4) = 0.618 for i*= 4.

Step6(ii):  Increment x4 = x4 +1, X = (3,1,1,4,1,1,3) and Rr = -5, constraint is violated, X is
reinstated at its previous step value i.e. (3,1,1,4,1,1,3), subsystem i* = 4 of P2 is removed
from further consideration, and bi (xi) = [--, --, 0.604] (i =1,4,7), next highest value of bi (xi)
is b7(x7) = 0.604 i*= 7. Repeat the Step6 until all the subsystems of path P2 are removed
from further consideration and X = (3, 1, 1, 4, 1, 1, 3), bi (xi) = [--, --, --] (i =1,4,7), )(Xal

i.e.  [a1, a2, a3, a4] = [1.435, ++, 1.328 0.493].
Step6(iii) Q = Q +1, PPs(Q)](Q = 2) = [PPs(2)] = P1, for P1 all values of bi (xi) for each i Є P1 = [-

-, 10.105, 6.555](i =1,2,3), as subsystem i = 1 has  already been optimized hence not
considered further.

Step5:      The next highest value of bi (xi) is b2(x2) = 10.105 for i*= 2.
Step6:     By repetitively checking the various conditions for the sub steps in similar manners

as described above, it is found that there is no possible of redundancy for any of the
subsystem of the path set P1, hence all the subsystems the path set are removed from
further consideration, hence the path set is removed. X = (3,1,1,4,1,1,3), bi (xi) = [--, --, -
-] (i =1,2,3), )(Xal i.e.  [a1, a2, a3, a4] = [++, ++, 1.328 0.493].
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Step6(iii) Q = Q +1, PPs(Q)](Q = 3) = [PPs(3)] = P3, for P3 all values of bi (xi) for each i Є P3 =
[7.294, 62.673, -- ](i =5,6,7), as subsystem i = 7 has  already been optimized hence not
considered further.

This way, the above Step5 and Step6 are again repeated for the selected path set
P3 until all the subsystems and/or all the minimal path sets are excluded from further
consideration, till optimal solution x* = X = (3,1,1,4,1,3,3) is obtained for Rr = 1.  All the
intermediate steps and the values of different parameter during different steps are given
in Table 6.

Step7:      System reliability, Rs (x*) = 0.971495 is determined for the optimal solution x* = X = (3,
1, 1, 4, 1, 3, 3) and T = 0.05076 sec.

Table 6.  Procedure of P-Alg for Figure 3 Complex Network

Allocation
Residual
resources Minimal path set sensitivity factor Components selection factor

(x1, x2, x3,
x4,x5, x6, x7) Cj-∑cijxi (a1 a2            a3 a4)      (b1            b2              b3                b4               b5              b6            b7)
1,1,1,1,1,1,1 397 1.435 1.527* 1.328 0.493 10.765 23.201# 5.318
1,1,1,2,1,1,1 373 10.765# 6.930 5.318
2,1,1,2,1,1,1 319  2.884 6.930# 5.318
2,1,1,3,1,1,1 295  2.884 2.070 5.318#

2,1,1,3,1,1,2 196  2.884# 2.070 1.792
3,1,1,3,1,1,2 142  0.773 2.070# 1.792
3,1,1,4,1,1,2 118  0.773 0.618 1.792#

3,1,1,4,1,1,3 19  0.773# 0.618 0.604
4,1,1,4,1,1,3 -35$ -- 0.618# 0.604
3,1,1,5,1,1,3 -5$ -- -- 0.604#

3,1,1,4,1,1,4 -80$ -- -- --
3,1,1,4,1,1,3 19 1.435* ++ 1.328 0.493 -- 10.105# 6.655 -- --
3,2,1,4,1,1,3 -29$ -- -- 6.655# -- --
3,1,2,4,1,1,3 -76$ -- -- -- -- --
3,1,1,4,1,1,3 -19$ ++ ++ 1.328* 0.493 -- -- -- -- 7.294 62.673# --
3,1,1,4,1,2,3 10 -- -- -- 7.294 18.150# --
3,1,1,4,1,3,3 1 -- -- -- -- 7.294#  5.256 --
3,1,1,4,2,3,3 -67$ -- -- -- --  5.256# --
3,1,1,4,1,3,3 1 ++ ++ ++ 0.493% -- -- -- -- -- -- --
*    This minimal path set has the highest value of the sensitivity factor.
#    A redundant component is to be added to this subsystem for highest selection factor.
$    Constraint violation.
--   Subsystem is removed from further consideration.
++ Minimal path set removed from further consideration.
%   All the subsystems of the path have already been optimized, hence no further possibility of redundancy.
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