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ABSTRACT 
 
In this paper we consider some algorithmic problems which appear in a calculation of a ruin 
probability in discrete time risk models with an interest force which creates stationary and 
reversible Markov chain. These problems are connected as with a generation of the Markov chain 
by its stationary distribution so with a calculation of the ruin probability.  
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1. INTRODUCTION 
 
       In this paper we consider some algorithmic problems which occur in a calculation of a ruin 
probability in discrete time risk model with an interest force which creates stationary and reversible 
Markov chain. Such model of the interest force is suggested by A.A. Novikov. Algorithmic 
problems are connected as with accuracy calculation of the ruin probability so when we deal with 
its asymptotic analysis. First numerical experiments show that without a solution of these 
algorithmic problems it is impossible to construct programs of numerical calculation of the ruin 
probability. 
     Markov chain generation reduces to a definition of permissible solutions of appropriate 
transportation problems. The ruin probability calculation is connected as with a definition of special 
sums of exponents so with a calculation of ruin probability asymptotic. These procedures also need 
to solve some auxiliary algorithmic problems: of convenient designations and symbolic 
calculations, some enumeration problem and so on. A specific of these problems is that primitive 
variants of their solution have very high complexity. Moreover some calculation procedures can not 
be realized without a solution of these problems. 
 
 

2. PRELIMINARIES 
 

  Consider recurrent discrete time risk model (with annual step) with initial capital x , 0x ≥  
and nonnegative losses nZ , 1,2,...,n =  ( ) ( )nP Z t F t< = : 
 0S x= , 1n n n nS B S A−= + , 1,2...n = , (1) 

Here annual income nA , 1,2,...n = to end of n-th year is defined as difference between unit premium 
sum and loss 1n nA Z= − . Assume that 1nB >  is inflation factor from 1n −  to n  year, 1,2,...n = . In 
[1] n nX A= −  is called insurance risk and 1

n nY B−=  is called financial risk. In this model with initial 
capital x  ruin time is defined by formula 

 ( ) { }0inf 1,2,... : 0nx n S S xτ = = ≤ =   
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and finite time ruin probability ( ),x nψ - by formula 

 ( ) ( )( ),x n P x nψ = τ ≤ .  

So the sum nS  money accumulated by insurance company to n- th year end satisfies recurrent 
formula 

 0S x=  ,
11 1

n nn
n j i j

ij j i
S x B A B

== = +
= + ∑∏ ∏ ,  1,2...n = , (2) 

where 1 1n
j n= + =∏  by convention. According to the notation above, we can rewrite the discounted 

value of the surplus nS  in (2) as  

 � 0S x= ,      �
11 1

n in
n n j i j n

ij j
S S Y x X Y x W

== =
= = − = −∑∏ ∏ .  

Hence, we easily understand that, for each 0,1,...n = ,  

 ( ) ( ), nx n U xψ = Ρ > , { }1
max 0, maxn kk n

U W
≤ ≤

= , 0 0U = . (3) 

Suppose that the sequence { }, 0nY n ≥  is stationary and reversible Markov chain with state set 
{ }1,qr q Q− ∈ , { }1,...,Q m= consisting of different positive numbers and transition matrix , ,q q q q Q′ ′ ∈

π . It 

means that the following formulas are true 

( )1
n q qP Y r p−= = , 0 qp< , 1q

q Q
p

∈
=∑ , q q q q qqp p′ ′ ′π = π , ,q q Q′∈ , 0n ≥  

and consequently [2,Theorem 2.4] 

 ( )
( )
( )1 1,..., ,...,

d

n nY Y Y Y= , 1n ≥ . (4) 

Assume that the random sequence { }, 0n n ≥ω  consists of independent and identically distributed 
random variables (i.i.d.r.v.`s) with uniform distribution on interval [0,1]. Suppose that random 
sequences { }, 0nY n ≥ ,{ }, 0n n ≥ω are independent. Introduce distribution functions (d.f.`s) ,qF q Q∈  

and designate ( )1F − ω , 0 1,ω≤ ≤  inverse function to distribution function ( )F t , t−∞ < < ∞ . Denote 
( )1

nn Y nZ F −= ω , 0n ≥ , then from the formula (4) we obtain the formula 

 ( ) ( )( )
( )

( ) ( )( )1 1 1 1, ,..., , , ,..., ,
d

n n n nX Y X Y X Y X Y= , 1n ≥ . (5) 

In such a way it is possible to introduce dependence between financial and insurance risks provided 
financial risks create stationary and reversible Markov chain. 
Define another random sequence 
 0 0V = , ( )1max 0,n n n nV Y X V −= + , 1,2,...n = . (6) 

Using recurrent formula (6) we introduce Markov chain ( ),n nY V , 1,2,...n =  and designate 

( ) ( )1
, ,n q n q nx P Y r V x−= = >ψ , q Q∈ , 0x ≥ , 0n ≥ . 

Theorem 1.  The formula 

 ( ) ( ),n n q
q

x x
∈

= ∑ψ ψ , 0,1,...n = , 0x ≥ , (7) 

is true. 
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Proof . The result (7) is trivial for the case when 0n = . Now we aim at (7) for each 1,2,...n = . Let 
1n ≥  be fixed. In view of the equality (5) we replace iX  and jY  in nU  respectively by 1n iX + −  and 

1n jY + − in deriving the following relations: 
( )

1 11 11 11 1
max 0, max max 0, max

di ik k
n i i n i n jk n k ni ij j

U X Y X Y+ − + −
≤ ≤ ≤ ≤= == =

⎧ ⎫ ⎧ ⎫= = =∑ ∑∏ ∏⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

 * * * *
** * ** * * *1 11

max 0, max max 0, max
n nn n

i j i jk n k ni n k i kj i j i
X Y X Y

≤ ≤ ≤ ≤= + − == =

⎧ ⎫ ⎧ ⎫
= =∑ ∑∏ ∏⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
. (8) 

If we write the right-hand side of (8) as nV% , which satisfies the recurrence equation 

( )* *
1max 0,n n n nV Y X V −= + , 1,...n = , 

which is just the same as (6). So we immediately conclude that *
n nV V=  for each 1,...n = . Finally, it 

follows from (8) that (7) holds for each 1,...n = . This ends the proof of Theorem 1. 
 

 
3. RECURRENT ALGORITHMES OF RUIN PROBABILITY CALCULATIONS 
 
Introduce m -dimensional vectors ( )1, ,1 ,...,q q m q= δ δ  where ,i jδ  is Kronecker symbol and 

( )1,..., mR r r= , ( )1,..., mK k k= , 0ir > , { }0,1,...ik ∈ , 1,...,i m= , 

and denote 

 
qkK

q
q Q

R r
∈

= ∏ , q
q Q

K k
∈

= ∑ . 

Redefine the function ( )exp t−  so that for 0t <  we have ( )exp 1t− =  and for 0t ≥  this function is 
defined as usual. Introduce the function 

( ) {1, 0,
0, 0.

tE t t
≤=
>

 

Suppose that 

( ) ( ),
1

exp
l

q q i i
i

F t a t
=

= −λ∑ , 1n ≥ , 0t ≥ , 

with 

ia−∞ < < ∞ , 1,...,i l= , ,
1

1
l

q i
i

a
=

=∑ , q Q∈ . 

Theorem 2.  Suppose that 
 K

i jR λ ≠ λ ,1 i≤ , j l≤ , 1 K≤ . (9) 

 
Then there are real numbers , ,

K
n i qB , 1,...,i l= , 1 K n≤ ≤ , which satisfy for 1n ≥ , 1,..., ,i l=  initial 

conditions 
 ( )

1
, exp1, ,

q

iq q ii qB p a −λ= , 1
1, , 0q

i qB ′ = , ,q q Q′∉ , q q′≠ . (10) 

and recurrent formulas for q Q∈ : 

( ) ( )1 , , , 0
, , ,1, ,

1 1
exp expq

Kl n j q q i K
q q q j i n q q i in i q Kq Q K n j j i

B a
B p R B a

R
′

′ ′ ′+
′∈ ≤ ≤ =

⎡ ⎤
= π λ −λ + −λ∑ ∑ ∑⎢ ⎥

λ − λ⎢ ⎥⎣ ⎦
, q q′= , 
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 1
1, , 0q

n i qB ′
+ = , q q′≠ , (11) 

 ( ) ( )
1

,, , 1
, , , 1

1
0 exp

q

q

q

K
l q j jn j q KK

n j q q q q q iK
q Q j i j

B a
B p I k R

R

−
′ −

′ ′ −′∈ =

λ
= − π > − λ∑ ∑

λ − λ
, 1 1K n< ≤ + , (12) 

so that 

 ( ) ( ) ( )0
, , ,,

1 1
exp

l K K
s i q i s qs q t

K s i
B R t B E t

≤ ≤ =
= − λ +∑ ∑ψ , 0s > , (13) 

where 

 0
, , ,

1 1

l K
s q q s i q

K s i
B p B

≤ ≤ =
= − ∑ ∑ . (14) 

Proof . If positive random variables ,ξ η  are independent and 
( ) ( )expP t t> = −ξ μ , ( ) ( )expP t t> = −η λ , , 0>λ μ , ≠λ μ , 

then it is easy to obtain that 

 ( ) ( ) ( )exp expt tP t − − −
+ > =

−
μ λ λ μξ η

μ λ
. (15) 

Calculating for 0t >  

( )( ) ( )( ) ( )( )1 11 1 1
1 1 1 1 1, 1 1 1q q

q q q q qP Y r Y Z t p P F R t p P F R t− − −= − > = − > = > + =ω ω  

( )( ) ( ) ( )1 1
, ,

1 1
exp 1 exp expq q

l l
q q i i q q i i i

i i
p a R t p a R t

= =
− + = − −∑ ∑λ λ λ  

we obtain that 

( ) ( ) ( ) ( )1 0
1, , 1,

1
exp exp q

l
q q q i i i q

i
t p a R t B E t

=
= − − + =∑ψ λ λ  

( ) ( )1 1 0
1,1, ,

1
expq q

l
i qi q

i
B R t B E t

=
= − +∑ λ . 

So the formula (13) is true for 1s =  with the initial conditions (10) and the equality (14). 

Suppose that the formula (13) takes place for s n= and using the formula (15) calculate 

( ) ( )( )1
1, 1 1 1, 1n q n q n n nt P Y r Y V Z t−
+ + + += = + − > =ψ  

( )( ) ( )( )1 1 1 1
1 1 , 1 1, 1 , 1n q n q n q q q q n q n q n q

q Q
P Y r V F r t p P Y r V F r t− − − −

′ ′ ′+ + + +
′∈

= = + > + = = + > +∑ω π ω . 

As for 0x >  

( )( )1 1
1,n q n q nP Y r V F x− −

′ += + > =ω  

( ) ( )( ) ( ), , , 0
, ,

1 1 1 1
exp exp exp

Kl l ln i q q j K K
i j j i n q q i iK

K n i j ii j

B a
R x R x B a x

R
′ ′

′
≤ ≤ = = =

= λ − λ − λ − λ + −λ∑ ∑ ∑ ∑
λ −λ

, 

so for 0t >  

( )( ) ( ), , ,1 1
1 , , ,

1 1 1
, 1

Kl l n i q q j k
n q n q n q i j q nK

K n i j i j

B a
P Y r V F r t A t

R
′− −

′ +
≤ ≤ = =

= + > + = +∑ ∑ ∑
λ −λ

ω  
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( ) ( )10
, ,

1
exp exp q

l
n q q i i i

i
B a x R t′

=
+ −λ −∑ λ  

with 

( ) ( )( ) ( )( ), , , exp 1 exp 1K K K
i j q n i j q j i qA t R r t R r t= − + − − + =λ λ λ λ  

( ) ( ) ( ) ( )exp exp exp expK K K
i j j q j i i qR r t R R r t= − − − − − =λ λ λ λ λ λ  

( ) ( ) ( ) ( )1 1exp exp exp expq qKK K
i j j j i iR R t R R t+= − − − − − =λ λ λ λ λ λ  

Consequently we obtain for 0t >  

( ) ( ) ( ), , , 1
1, ,

1 1 1
exp exp q

Kl l n i q q j K
n q q q q i j jK

q Q K n i j i j

B a
t p R R t

R
′

′ ′+
′∈ ≤ ≤ = =

⎡= π λ −λ −λ −⎡∑ ∑ ∑ ∑⎣ ⎣λ − λ
ψ  

( ) ( ) ( ) ( )1 10
, ,

1
exp exp exp expq q

lKK
j i i n q q i i i

i
R R t B a R t+

′
=

⎤⎤−λ − λ − λ + −λ − λ =∑⎦ ⎥⎦
 

( ) ( ), , , 1
,

1 1 1
exp exp q

Kl l n i q q i K
q q q j i iK

q Q K n i j j i

B a
p R R t

R
′

′ ′
′∈ ≤ ≤ = =

= π λ −λ −λ −∑ ∑ ∑ ∑
λ −λ

 

( ) ( ), , , 1
,

1 1 1
exp exp q

Kl l n i q q i KK
q q q j i iK

q Q K n i j i j

B a
p R R t

R

′
′ ′+′

′ ′
′∈ ≤ ≤ = =

− π λ − λ − λ +∑ ∑ ∑ ∑
λ − λ

 

( ) ( ) ( )10
, , , 1, ,

1 1 1
exp exp expq

l l K K
q q q n q q i i i n i q i

q Q i K n i
p B a R t B R t′ ′ ′ +

′∈ = ≤ ≤ =

⎤+ π + −λ − λ = − λ =∑ ∑ ∑ ∑⎥⎦
 

( ) ( )1 1
1, ,1, ,

1 2 1 1
exp expq q

l l K K
i n i q in i q

q Q i K n i
B R t B R t′ ′

++
′∈ = ≤ ≤ + =

= − λ + − λ∑ ∑ ∑ ∑ . 

So the formula (13) is true for 1s n= + . Here for 1,...,i l= , 1 1K n< ≤ + we have the recurrent 
formulas (12) and for 1,...,i l= , 1K =  the recurrent formulas (11) and 0

1,n qB + the equality (14). 
 

4. ASYMPTOTIC FORMULAS 

 

Using the complete probability formula we obtain 

 ( ) ( ) ( )
1,..., 1 1 2 1

1,...,
, , ,...

n n n
n

n n n q q q q q q q
q q Q

P V t t t p
−∈

> = = ⋅ ⋅∑ψ ψ π π  (16) 

with 

( ) ( )1,..., 1

1 1
, 1/ ,...,

n nn q q n q n qt P V t Y r Y r− −= > = =ψ . 

(C) Suppose that ( )qF t ∈S , q Q∈ , where S  is the class of subexponential distributions. Assume 
that for any 1 2,q q Q∈ , 1 2q q≠  and for any positive a one of the following equalities is true           
 ( ) ( )( )1 2q qF t O F at=  or ( ) ( )( )2 1q qF at O F t= , 0t > . (17) 

Then using [3, Lemma 3.2]  it is possible to obtain that 

 ( ) ( )
1 2q qF t F at∗ ∈S  ,  ( ) ( ) ( ) ( )1 21 2

~ q qq qF t F at F t F at∗ + , t →∞ . (18) 

Here  F G∗  is a conjuncture of distributions ,F G . Further we consider equivalences “~” only for 
t →∞ . 
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Theorem 3.  If the condition (C) is true then 

 ( ) 1 1 1 2 1
1,...,

1
, ,

1 1
~ ...

i n k n k
n

n kn
qn q q q q q q

k q q Q i
t F t r p

− − +

− +

= ∈ =

⎛ ⎞ ⋅ ⋅∑ ∑ ∏⎜ ⎟
⎝ ⎠

ψ π π . (19) 

Proof . It is obvious that 

( ) ( ) ( ) ( )11 1 1 1

1
1, 1 1 1 1/ qq q q qt P Y X t Y r P X r t F r t−= > = = > =ψ . 

Using the condition (C) and the formula (18) we obtain for 1n >  that 

( ) ( ) ( )1 1 1

1 1 1 1
, ,..., 1 1 1~ / ,..., / ,...,

n n n n nn q q n q q n q n q q n qt P V r t Y r Y r P X r t Y r Y r− − − −
− > = = + > = = =ψ  

( ) ( )1 11, ,..., nn n n
qn q q q qr t F r t

−− += ψ . 

So an induction by n  and the formula (16) give the equivalence 

( )
1, ,...,

1
~ kn i

nn
qn q q q

k i k
t F t r

= =

⎛ ⎞∑ ∏⎜ ⎟
⎝ ⎠

ψ . 

Consequently using the formula (16) it is easy to obtain the equivalence 

( )
1 1 2 1

1,...,
, ,

1
~ ... kn n i

n

nn
qn q q q q q q

q q Q k i k
t p F t r

−∈ = =

⎛ ⎞⋅ ⋅∑ ∑ ∏⎜ ⎟
⎝ ⎠

ψ π π . 

So the formula (19) is true. 
Consider the following conditions. 

1) There are positive numbers ,q qc α , q Q∈ , 1 qα < α , 1 q m< ≤ , so that ( ) ~ q
q qF t c t−α . 

2) There are positive numbers qc , q Q∈ , α , so that ( ) ~q qF t c t−α . 

3) There are positive numbers ,q qc β , q Q∈ , 1 q<β β , 1 q m< ≤ , so that ( ) ( )~ exp q
q qF t c t− β . 

4) There are positive numbers qc , q Q∈ , β , so that ( ) ( )~ expq qF t c t− β  and 1 1 q qc r c r<β β , q Q∈ ,  
1q ≠ . 

It is easy to prove that the family ( )qF t , q Q∈  under each of the conditions 1) - 4) satisfies the 
condition (C).  

Using Theorem 3 it is possible to obtain the following statements. If the condition 1) is true 
then 

( ) ( ) 1
1 1 1 1

1
~

n
n n k

k
t c p r t S−α

− +
=
∑ψ , 

with  
1 1S = , 

2
2

2 2,q
q Q

S S
∈

= ∑ , 1
2 2 22, 1,q q qS r−= απ , 

 1 , i
i

i q
q Q

S S
∈

= ∑ , 1
1 1

1
, 1, ,i i i i i

i
i q i q q q q

q Q
S S r

− −
−

−α
−

∈
= ∑ π , 2 i<  . (20) 

If the condition 2) is true then 

( ) 1
1

~
n

n n k
k

t t T−α
− +

=
∑ψ  

with  

1 1
1 1

1 1, ,
,

q q
q q Q

T T
∈

= ∑ , 
1 1 1 1 11, ,q q q q qT c p r−α= ,  

 
1

1
, ,

, i
i

i i q q
q q Q

T T
∈

= ∑ , 
1 1 1 1

1 1
, , 1, , ,

,i i i i i
i

i q q i q q q q q
q q Q

T T r
− −

−

−α
−

∈
= ∑ π , 1 i<  . (21) 
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The formulas (20), (21) show that to find asymptotic constants in the conditions 1), 2) it is 
necessary to use number of arithmetical operations proportional to n .  If the condition 3) is true then 

( ) ( )( )1
1 1 1~ expn t p c r t −− βψ . 

If the condition 4) is true then 
( ) ( )( )1 1 1~ expn t p c r t− βψ . 

 

 

5.  GENERATION OF TRANSITION MATRICES FOR STATIONARY  

     AND REVERSIBLE MARKOV CHAINS 
 
Consider stationary and reversible Markov chain nY , 0n ≥ , with stationary distribution qp , q Q∈ . 

Then its transition matrix , , 1
m

i q i q=
π  satisfies the equalities: 

 , , 0i j j iA A= > , , ,
1 1

m m
i j i j i

j j
A p A

= =
= =∑ ∑ , 1 ,i j m≤ ≤  . (22) 

where , ,i j i i jA p= π . So symmetric matrix , , 1
m

i j i j=
Α  with positive elements is a permissible solution 

of the transportation problem (22) with n  sources and n  consumers. If we have the problem (22) 
solution , , 1

m
i j i j=

Α  then it is possible to find the transition matrix , , 1
m

i j i j=
π  using the formula 

, , /i j i j iA p=π . 
Each permissible solution of the transportation problem (2) may be found by the following 

sequence of algorithms. 
The algorithm { }1,..., mp p generates 1,1 1,,..., mA A  so that 

1,1 1 1,0 ,...,0 m mA p A p< < < < , 1, 1
1

m
k

k
A p

=
=∑  

and put 2,1 1,2 ,1 1,,..., m mA A A A= = and redefines  1 1 1: 0p p p= − = ,  2 2 1,2 1,: ,..., :m m mp p A p p A= − = − . 
     As a result the transportation problem (2) with n  sources and n  consumers is transformed into 
the transportation problem 

 , , 0i j j iA A= > , ,
2

m
i j j

j
A p

=
=∑ , 2 ,i j m≤ ≤  . (23) 

with 1n −  sources and 1n −  consumers. So the algorithm { } { } { }1 2 1,..., , ,..., ,..., ,...,m m m mp p p p p p−  
generates arbitrary solution of the transportation problem (22). 

The algorithm { }1,..., mp p  consists of m  steps. 
Step 1. Define 1,1A  from the inequalities 1,1 10 A p< < , 1 1,1 2 ... mp A p p− < + +  and put 

1 1 1,1:p p A= − . 
Step 2. Define 1,2A  from the inequalities 1,2 10 A p< < , 1,2 20 A p< < , 1 1,2 3 ... mp A p p− < + +  and 

put 1 1 1,2:p p A= − . 
Step m-1. Define 1, 1mA −  from the inequalities 1, 1 10 mA p−< < , 1, 1 10 m mA p− −< < , 1 1, 1m mp A p−− <  

and put 1 1 1, 1: mp p A −= − . 
Step m. Define 1, 1 1mA p− =   
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The algorithm { } { } { }1 2 1,..., , ,..., ,..., ,...,m m m mp p p p p p−  is a modification of the algorithm for 
constructing the routing matrix for an open network [4, p.177]. 

 
 
6.  ENUMERATION PROBLEM 
 
Assume that vector K  consists of components 0,1,… and its dimension is dim dim K . 

Introduce the sets of vectors { : dim ,| | }j
i K K j K iΚ = = =  and designate | |j

iΚ  number of vectors in 
the set , 0, 1j

i i jΚ ≥ ≥ . Our purpose is to enumerate all vectors K  of the set         

                     
1

{ : dim ,1 | | }
n

m
i

i
K K m K n

=
= ≤ ≤ = ΚU . 

It is easy to construct algorithm to define the set m
iΚ  from the set 1

m
i−Κ as follows: 

1{ 1 : , 1,..., }.m m
i q iK K q m−Κ = + ∈Κ =  But a complexity of this algorithm is proportional to nm  and it 

may generate coinciding vectors. So it is worthy to construct more efficient algorithm for example 
with power by n  complexity. 

It is obvious that 1j
i
+Κ  is a union of nonintersecting sets  

                    1j
i
+Κ =

1
1

1
0
{( , ) : }

j
j

i
j

j i k
k

K k K
+

+
+ −

=
∈ΚU                                               (24) 

and consequently  

               1

0 0
| | | | | |

i i
j j j
i i t tt t

+
−

= =
Κ = Σ Κ = Σ Κ  where 1, 0.j i≥ ≥                                      (25) 

Here 0
jΚ  consists of single j - dimensional vector with zero components, 0| | 1jΚ =  and 

0 1 ...j j j
iΚ ≤Κ ≤ ≤ Κ . From the formula (25) we have by induction that 

                    1 1
0

| | | | ( 1) ( 1) .
i

j jj j
i t it

i i+ +

=
Κ = Σ Κ ≤ + Κ ≤ +                                          (26) 

As 1
iΚ  consists of single one dimensional vector i  so to find the set m

nΚ  using the formula 
(24) we construct the sequence of the sets 

                                   1 2
0 0 0, ,..., mΚ Κ Κ ; 

                                   1 2
1 1 1, ,..., mΚ Κ Κ ; 

                                    ......................; 
                                   1 2, ,..., .m

n n nΚ Κ Κ ; 
Consequently complexity of this algorithm is not larger than 1( 1) .mn ++  
 
 
7.  SOLUTION OF SMALL DENOMINATORS PROBLEM 
 
Consider how to find 1 , , ...,1,..., m ls s ν ν  so that for any fixed 0ε >  the inequalities 

               1 1 1 1| | ,...,| | , | | ,...,| |m m l ls r s r− < ε − < ε ν − λ < ε ν − λ < ε                                 (27) 
are true and for any K  we have an analogy of the condition (9):  

                                K
i jS ν ≠ ν 1 i≤ , j l≤ ,1 K≤ ,                                               (28)  

where ( ,..., ).1S s sm=  For this aim we take integer b  so that 2b < ε  and choose fractions 

, 1,..., , , 1,...,
2 2

uv jis i m j li jb b= = ν = = , with odd numerators iv  so that the formula (27) is true. Then the 

formula (28) takes place. 
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